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Abstract: Efficient characterization of IgE antibodies and their glycan structures is required for
understanding their function in allergy and in the emerging AllergoOncology field for antibody
immunotherapy. We report the generation, glyco-profiling and functional analysis of native and
sialic acid-deficient glyco-engineered human IgE. The antibodies produced from human embryonic
kidney cells were purified via a human IgE class-specific affinity matrix and structural integrity was
confirmed by SDS-PAGE and size-exclusion chromatography (SEC). Purified IgEs specific for the
tumor-associated antigens Chondroitin Sulfate Proteoglycan 4 (CSPG4-IgE) and Human Epidermal
Growth Factor Receptor 2 (HER2-IgE) were devoid of by-products such as free light chains. Using
neuraminidase-A, we generated sialic acid-deficient CSPG4-IgE as example glyco-engineered anti-
body. Comparative glycan analyses of native and glyco-engineered IgEs by Hydrophilic interaction
liquid chromatography (HILIC)-high performance liquid chromatography (HPLC) indicated loss of
sialic acid terminal residues and differential glycan profiles. Native and glyco-engineered CSPG4-
IgEs recognized Fc receptors on the surface of human FcεRI-expressing rat basophilic leukemia
RBL-SX38 cells, and of CD23/FcεRII-expressing human RPMI-8866 B-lymphocytes and bound to
CSPG4-expressing A2058 human melanoma cells, confirming Fab-mediated recognition. When cross-
linked on the cell surface, both IgEs triggered RBL-SX38 degranulation. We demonstrate efficient
generation and functional competence of recombinant native and sialic acid-deficient IgEs.

Keywords: antibodies; immunoglobulin E; IgE; IgE purification; IgE glycosylation; glyco-engineered IgE;
neuraminidase; sialic acid; allergy; AllergoOncology

1. Introduction

Immunoglobulin E (IgE) antibodies have long been ascribed well-characterized roles
in the pathogenesis of allergy and hypersensitivity [1,2]. In addition, IgE has also been
implicated in the immune responses to parasitic worm infections and the clearance of
parasites via effector mechanisms [3,4]; and several studies support potential roles of IgE
as part of protective immunosurveillance and response against cancer [5–7], highlighting a
multifaceted immune role for this antibody. More recently, attention has turned towards
novel applications of IgE, particularly in a therapeutic setting. Different features of IgE,
including a high affinity for FcεRI (although CD23 is low affinity, increased binding can
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be achieved via avidity [8]); lack of inhibitory Fc receptors or patient Fc receptor polymor-
phisms; and efficient long-lasting tissue surveillance have earmarked this antibody class
as a potential powerhouse in the field of cancer therapeutics [2,9]. This growing interest
can be visualized in the nascent field of AllergoOncology, as well as through the recent
completion of the Phase I clinical trial of the first-in-class monoclonal IgE antibody (MOv18
IgE) specific for the tumor-associated antigen Folate Receptor alpha (FRα) (NCT02546921)
which validated the safety of IgE as a novel cancer treatment as well as demonstrating
preliminary anti-tumor efficacy [10].

Separately, interest in IgE glycosylation has been recently reignited. Although heavily
glycosylated, with 6 occupied N-linked Fc glycan sites on the constant regions in humans
compared to IgG’s sole glycan site [11], limited roles for IgE glycans have been reported
with regard to structure and function [12,13]; and, indeed, IgE glycosylation has been
largely regarded as non-essential in IgE function as a whole. Only the N394 glycan (the
sole oligomannose IgE glycan, considered structurally equivalent to IgG’s Fc glycan) has
been implicated in FcεRI binding, although whether this is due to an outright role for this
glycan in FcεRI interactions or merely structural stabilization within the IgE molecule has
remained controversial [14–17]. More recently, N394 was conclusively deemed ‘essential’
for induction of IgE responses through FcεRI, with genetic ablation of this glycan found to
alter secondary structure and render IgE incapable of binding FcεRI [18]. With regard to
complex glycans (representing 5 out of the 6 occupied N-glycan sites [11]), little to no roles
have been reported in reference to IgE structure and/or function, and, indeed, they have
been ascribed a non-essential role. Supporting this, antibody fragments containing only the
N394 glycan have been reported to retain receptor binding and functional activity [15,19,20].
A subsequent study reported increased prevalence of sialic acid residues on IgE from
allergic individuals compared to healthy controls, supporting previous observations [21,22],
with sialylated IgE driving increased anaphylaxis compared to desialylated IgE [23]. These
findings together highlight the need to further evaluate the glycan profiles of IgE, including
of IgE sialylation.

Clearer insights into IgE glycosylation will enhance understanding and treatment of
allergy and IgE-mediated atopic diseases and will help inform the development of novel
antibody scaffolds aimed at filling the gaps in existing monoclonal antibodies for cancer
therapy. Consequently, this creates a growing demand for the generation, purification,
and characterization of recombinant IgEs with human Fc regions, an endeavor which has
historically been highlighted to be an area requiring further research [24,25]. Hence, studies
detailing purification of high quality unmodified IgE and production, purification, and
characterization of glyco-engineered IgE are highly desired. Existing antibody purification
processes predominantly focus on the isolation of IgE from human sera to derive antibodies
from relative low serum levels in healthy or allergic individuals, or from disease states
such as myeloma or hyper-IgE syndrome [11,17,26,27]. On the contrary, for recombinant
IgE generated via cellular expression systems, purification largely involves non-specific
matrices which rely on recognition of light chains of any antibody isotype. For specific
purification of IgE class antibodies, it is only recently that efforts have been made towards
the class specific purification, seeking to address the technical barriers thus far limiting
IgE research [24,25]. However, to date, there are no published studies demonstrating
the use of class-specific matrices in a laboratory setting for unmodified IgE, or for glyco-
engineered IgE.

Herein, we sought to produce, purify, characterize and functionally evaluate matched
native and exoglycosidase-generated sialic acid-deficient glyco-engineered versions of IgE.
We first evaluated the IgE class-specific affinity matrix for its suitability for small-scale
purifications, such as those utilized for glyco-engineering with glycosidase enzymes, versus
a non-class specific method. We demonstrated the production and purification of native
and glyco-engineered IgE–Neu-IgE, a sialic acid-deficient IgE, building on previous studies
investigating sialylation as a contributor to the allergic functions of IgE [23,28]. We studied
the structural stability and the glycan structural features of the purified native and sialic
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acid-deficient glyco-engineered IgE. We evaluated binding to target antigen and Fc receptor-
expressing cells, and we conducted preliminary functional assessments of these native and
glyco-engineered IgEs. Our findings contribute towards addressing current limitations in
the field of recombinant IgE glyco-engineering, glyco-profiling and functional study.

2. Results
2.1. High Purity of Full-Length IgE Antibody Yields via IgE Class-Specific
Affinity Chromatography

Using affinity matrices, we evaluated the purification of two recombinant IgE antibod-
ies: the mouse/human chimeric antibody CSPG4-IgE recognizing the melanoma-associated
antigen Chondroitin Sulfate Proteoglycan 4 and the humanized antibody HER2-IgE rec-
ognizing the breast cancer-associated antigen Human Epidermal Growth Factor Receptor
2. CSPG4-IgE was generated from stably transfected Expi293F cells as we described pre-
viously [29]. HER2-IgE was generated from transiently transfected Expi293F cells, as we
previously reported [30]. Both antibodies were originally purified via existing methods
using light chain (e.g., HiTrap™ KappaSelect columns, herein referred to as KappaSelect).
We used CSPG4-IgE as a benchmark to validate the purification of IgE in a laboratory set-
ting using an IgE class-specific affinity matrix (CaptureSelectTM IgE Affinity Matrix, herein
referred to as CaptureSelect™) and assessed its suitability for small-scale purifications and
downstream glyco-engineering.

First, using IgE class-specific affinity matrix-isolated CSPG4-IgE, we evaluated the elu-
tion conditions able to generate the highest antibody yields from culture supernatants using
Pierce™ Micro-Spin Columns (ThermoFisher Scientific, Waltham, MA, USA, Cat. 89879).
We assessed packing conditions using 100, 200, 300, or 400 µL of IgE class-specific matrix
slurry in 500 µL spin columns [Figure 1A,B], looking for consistent bed heights and return
of known volumes of IgE. Using 50 µg CSPG4-IgE, we confirmed that, although 100 µL
slurry is recommended by manufacturers, there is no significant difference in percentage
yield recovery across the different resin volumes, which averaged at approximately 80%
return of antibody [Figure 1A], potentially allowing for purification of higher concentra-
tions of antibody using a small purification set-up. SDS-PAGE analysis under non-reducing
conditions confirmed the purification of full length IgE at the expected molecular weight.
No antibody was detected in the flow-through, suggesting that all IgE product was purified
using variable resin volumes [Figure 1B]. We selected a 200 µL resin volume for future
studies. With the IgE class-specific affinity matrix offering a binding capacity of >5 mg/mL,
this volume should provide the capacity to purify up to 1 mg antibody.

We next investigated the impact of different elution buffers on antibody yields returned
following purification, using three elution buffers: Buffer 1, 50 mM sodium citrate and
150 mM NaCl (pH 3.5) (recommended by the manufacturer); Buffer 2, 0.1 M glycine (pH
2.3) (used for light chain-specific purification, and other affinity matrices); and Buffer 3,
20 mM citric acid (pH 3.0), another common purification buffer, used for purification in
our laboratory [Figure 1C,D]. Whilst all 3 buffers were capable of eluting IgE, only Buffer 1
gave consistently high returns of a known volume of IgE (100 µg) from the matrix in four
independent experiments [Figure 1C]. SDS-PAGE under non-reducing conditions was used
to confirm purification of full-length IgE, with all IgE product appearing in the elute and
not in the flow-through, suggesting purification of antibodies with each buffer [Figure 1D].
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Figure 1. Optimization of IgE Purification using IgE class-specific affinity chromatography. (A). Quan-
titation of the % yield CSPG4-IgE antibody recovered using varying volumes of resin slurry from a set
IgE volume of 100 µg per purification, N = 4, error bars = SD (Standard Deviation); (B). InstantBlue-
stained SDS-PAGE of IgE purified using variable resin volumes against a set concentration of IgE
under non-reducing conditions, representative experiment from A (FT: flow through; Elute: column
elute; M: molecular marker); (C). Quantitation of the % yield of CSPG4-IgE recovered using different
elution buffers from a set IgE volume of 100 µg and a resin slurry volume of 200 µL. Buffer 1 = 50 mM
Sodium Citrate + 50 mM NaCl, pH 3.5; Buffer 2 = 0.1 M Glycine, pH 2.3; Buffer 3 = 20 mM Citric Acid,
pH 3.0. N = 4, error bars = SD; *** p > 0.005 **** p > 0.001 (D). InstantBlue-stained SDS-PAGE of IgE
purified using different elution buffers against a set concentration of IgE, shown under non-reducing
conditions. B1: Buffer 1 = 50 mM Sodium Citrate + 50 mM NaCl, pH 3.5; B2: Buffer 2 = 0.1 M Glycine,
pH 2.3; B3: Buffer 3 = 20 mM Citric Acid, pH 3.0. Representative independent experiment from C (B-FT:
flowthrough; B: column elute; M: molecular marker); (E). InstantBlue-stained SDS-PAGE of IgE purified
using light chain-specific (KappaSelect) or IgE class-specific (CaptureSelect™) affinity chromatography,
for CSPG4-specific IgE and HER2-specific IgE. M, molecular marker; KAP = KappaSelect-purified;
CS = CaptureSelect™-purified. Red arrows indicate free light chain; green arrows indicate additional
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impurities in KS-purified HER2-IgE; (F). SEC analysis of CSPG4-specific IgE purified via light chain
(black) versus IgE class-specific (red) affinity chromatography; (G). SEC analysis of HER2-specific IgE
purified via light chain (black) versus IgE class-specific (red) affinity; (H). Flow cytometric histograms
of CSPG4-IgE purified via either light chain (Kappa-Select, KS-IgE) [N = 3, blue, triplicates] or
IgE class-specific (CaptureSelect™) (CS-IgE) [N = 3, red, triplicates] matrices, showing binding of
50 µg/mL IgE to FcεRI on RBL-SX38 cells. Unstained cells and secondary control are shown in green,
N = 1; (I). Geometric Means of KS-IgE [N = 3] and CS-IgE [N = 3] for binding shown in H.

Using a 200 µL resin slurry volume, micro-spin columns and Buffer 1 for IgE pu-
rification, we contrasted the IgE class-specific matrix with the kappa light chain-specific
matrix previously used for purification of IgEs in previous studies [29]. We conducted these
comparisons for the purification of two IgE antibodies with human Fc regions, namely
the chimeric CSPG4-IgE and the humanized trastuzumab equivalent HER2-IgE, both gen-
erated in Expi293F cells as we describe above. For both antibodies, we observed IgEs
of higher purity using IgE class-specific (CS) compared to our previously reported stan-
dard light chain-specific (KS) purification matrix. Free light chain and other impurities,
indicated in the KS-purified product, were absent in both CS-purified IgE samples as visu-
alized by SDS-PAGE [Figure 1E]. Similarly, size-exclusion chromatography (SEC) analysis
indicated superior purity and absence of by-products for both IgEs purified using IgE
class-specific isolation [Figure 1F,G], which showed the presence of solely intact antibody
in both CS-purified products. SEC analyses showed that lower molecular weight degra-
dation products, visible at 30–35 min for CSPG4-IgE [Figure 1F] and between 20–30 min
for HER2-IgE [Figure 1G], were completely absent from the final IgE preparation when
purified via IgE class-specific affinity and there was no significant presence of aggregation
or degradation. Flow cytometry studies indicated comparable binding profiles of both
light chain-purified (KS-IgE) and IgE class-specific affinity-purified CSPG4-IgE (CS-IgE)
to rat basophilic leukemia cell line RBL-SX38 cells expressing the high-affinity human IgE
receptor FcεRI [Figure 1H].

2.2. Generation and Purification of Sialic Acid-Deficient IgE

We next wished to generate glyco-engineered IgE, via glycosidase. Previous reports
suggested that sialic acid glycans on IgE may participate in allergic functions [23]. We there-
fore designed a pipeline for the removal of sialic acid. For this we selected neuraminidase-A
(Neu), a broad specificity exoglycosidase targeting both branched and linear terminal sialic
acid residues, to produce CSPG4-IgE with reduced sialic acid (Neu-IgE). We then compared
this variant against native CSPG4-IgE (Con-IgE). CSPG4-IgE was incubated with Neu and
the antibody was then purified using IgE class-specific affinity chromatography.

We first wished to evaluate whether enzyme incubation conditions (in the absence of
the enzyme), such as the low pH of the GlycoBuffer (pH 5.5 compared to physiological
pH of approximately 7), could impact IgE interactions with its Fc receptors independently
of the potential impact of neuraminidase-A. We therefore evaluated IgE binding to the
high affinity FcεRI receptor expressed on RBL-SX38 cells and to the low affinity receptor
CD23/FcεRII expressed on human B lymphoblastoid RPMI-8866 cells by flow cytometry.
We observed that binding of antibodies at different concentrations to these cells was similar
for CSPG4-IgE incubated with GlycoBuffer for 16 h at 37 ◦C and CSPG4-IgE incubated in
PBS alone [Figure 2A,B]. This suggested that incubation with GlycoBuffer alone (in the
absence of Neuraminidase-A) did not appear to adversely affect the ability of IgE to bind
to either one of its cognate receptors on immune cells.
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Figure 2. Small-scale generation of sialic acid-deficient CSPG4-IgE (A). Effects of enzyme incubation
conditions on IgE binding activity to FcεRI on RBL-SX38 cells. GB = GlycoBuffer 1, pH 5.5; PBS = PBS,
pH 7.0. N = 3, error bars = SD; (B). Effects of enzyme incubation conditions on IgE binding activity
to CD23 on RPMI-8866 cells. GB = GlycoBuffer 1, pH 5.5; PBS = PBS, pH 7. N = 3, error bars = SD;
(C). InstantBlue-stained SDS-PAGE to confirm purification of Neu-IgE via IgE class-specific affinity
chromatography M, molecular marker; Neu, Neuraminidase-only control sample; IgE+ Neu, post-
neuraminidase incubation sample containing CSPG4-specific IgE + neuraminidase; FT, affinity
chromatography flowthrough sample; Neu-IgE, neuraminidase-treated IgE post-purification. Green
arrows indicate location of neuraminidase; (D). InstantBlue-stained SDS-PAGE comparing Con-
IgE and Neu-IgE under non-reducing and reducing conditions; (E). InstantBlue-stained SDS-PAGE
showing Neu-IgE incubated at either 2 h or 16 h in comparison to Con-IgE under non-reducing
conditions and comparing Neu-IgE (2 h) vs. Neu-IgE (16 h) under non-reducing and reducing
conditions; (F). SEC analysis of Neu-IgE (blue) in comparison with unmodified (native) CSPG4-IgE
(Con-IgE, red) both purified via IgE class-specific affinity chromatography.

We then prepared and purified Neu-IgE using IgE class-specific affinity chromatogra-
phy as described above. We confirmed removal of neuraminidase from the final preparation
(Neu-IgE), as indicated by green arrows [Figure 2C]. Next, we assessed unmodified Con-IgE
and Neu-IgE produced and purified via IgE class-specific affinity chromatography under
both non-reducing and reducing conditions [Figure 2D] to confirm structural integrity of
both antibodies and lack of impurities. We additionally tested the purification of Neu-IgE
treated with neuraminidase for either 2 h or 16 h to investigate any potential impact of an
extended incubation time in case these conditions had adverse effects on antibody stability.
SDS-PAGE analyses under non-reducing conditions comparing full-length IgE incubated
with neuraminidase for either 2 h or 16 h at 37 ◦C against an untreated control showed no
differences. Furthermore, when 2 h and 16 h Neu-IgE were compared under reducing and
non-reducing conditions to investigate for potential differences between preparations, we
observed no significant changes in band size [Figure 2E]. Finally, we assessed the struc-
tural integrity of IgE class-specific affinity-purified Neu-IgE preparation via SEC analysis
[Figure 2F]. This demonstrated that Neu-IgE (blue) showed a similar retention time and
SEC profile to that of Con-IgE (red). Together, these suggest the generation of full-length
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IgE at high purity following neuraminidase treatment, with no significant degradation
or aggregation.

2.3. Glyco-Analysis Retention of Complex Glycan Structures and Loss of Sialic Acid Residus on
Glyco-Engineered IgE

We next evaluated the glycan profiles of matched native (Con-IgE) versus sialic acid-
deficient (Neu-IgE) antibodies specific for CSPG4. This was conducted via release of
the N-glycan structures from both Con-IgE and Neu-IgE using PNGase F, procainamide
labelling of the released N-glycan structures and separation and detection of the antibody
glycan profiles via high-performance liquid chromatography fluorogenic derivatization
mass spectrometry HPLC-FD-MS [31]. HPLC-FD-MS profiling of both Con-IgE and Neu-
IgE and comparison of chromatograms and MS profiles confirmed complete removal of
terminal sialic acid structures from the IgE glycans. The most readily observed indicator
of this was the loss of peak numbers 46–55 in the Neu-IgE chromatogram between 35 and
41 min [Figure 3, bottom panel] compared to Con-IgE [Figure 3, top panel, IgE incubated
with GlycoBuffer alone]. These multi-sialylated, tetra-antennary glycan structures were not
present and had been digested with the neuraminidase-A resulting in an increase in peak
43, a tetra-galactosylated, tetra-antennary glycan, and in peaks 36–38, tri-galactosylated,
tetra-antennary glycans. Chromatogram comparisons also show that Neu-IgE is much
less complex than Con-IgE due to the loss of sialic acids showing the impact that these
structures have on glycan complexity.
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Table 1. Predicted Monosaccharide Compositions and Suggested Glycan Structures for Con-IgE
based on observed MS m/z masses. Numbered peaks are shown in Figure 3. H = Hexose;
N = N-Acetylhexosamine; F = Fucose; S = Sialic Acid.

Peak Number Observed MS Calculated MS
Predicted

Monosaccharide
Composition

Suggested Structure

1 740.42 2+ 740.33 2+ H3N3F1-PROC
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Table 1. Cont.

Peak Number Observed MS Calculated MS
Predicted

Monosaccharide
Composition

Suggested Structure

15 683.37 3+ 683.29 3+ H4N5F1-PROC
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Peak
Number Observed MS Calculated MS

Predicted
Monosaccharide

Composition
Suggested Structure
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FcεRI-expressing cells in a dose-dependent manner comparable to that of native CSPG4-

IgE (Con-IgE) [Figure 4A]. Neu-IgE appeared to show heightened ability to bind to CD23 

compared to the Con-IgE control [Figure 4B]. Both Con-IgE and Neu-IgE recognized and 

bound the target antigen CSPG4-expressing A2058 human melanoma cells in a similar 

dose-dependent manner [Figure 4C], suggesting that sialic acid reduction had no obvious 

impact on the Fab-mediated binding of IgE on target antigen-expressing cancer cells. 

When cross-linked using a polyclonal anti-IgE antibody, both Con-IgE and Neu-IgE were 

able to trigger degranulation of RBL-SX38 cells [Figure 4D]. These findings suggest that 

glyco-engineered IgEs retained Fc and Fab region-mediated binding to immune and tar-

get antigen expressing cells and demonstrated functional capability.  
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Analysis of the Mass Spectrometry (MS) profiles of Neu-IgE and Con-IgE resulted
in a comprehensive list of predicted monosaccharide compositions and suggested glycan
structures for each peak [Tables 1 and 2]. MS analysis showed that there were no peaks
detected in Neu-IgE that contained sialylation [Table 2]. The absence of sialylation was
confirmed by obtaining Extracted Ion Chromatograms (EIC) from the MS for Neu-IgE
for two MS fragment ions containing sialic acid, Neu5Ac-Gal-GlcNAc (657.34 ± 0.1) and
Neu5Ac-GalNAc-GlcNAc (698.34 ± 0.1). Neither of these fragment ions were found in
the MS for Neu-IgE, showing that none of the detected structures contained sialic acid. In
contrast, a number of both fragment ions were found in the MS for Con-IgE [Supplementary
Figure S1]. Except for the sialylation, Neu-IgE retained its glycan structures in a manner
comparable with Con-IgE. These findings confirmed that IgE glycan structures were not
adversely affected, beyond the loss of sialic acid which was complete.

2.4. Glyco-Engineered IgE retains Fc and Fab Region-Mediated Binding to Immune and Target
Antigen Expressing Cells and can Trigger Cellular Degranulation

We assessed whether Neu-IgE could recognize Fc receptor-expressing and target
antigen-expressing cells via its Fc and Fab regions, respectively. The Fc-mediated properties
of Neu-IgE were examined by investigating recognition of FcεRI expressing RBL-SX38
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cells and recognition of CD23-expressing RMPI-8866 cells. Neu-IgE was able bind human
FcεRI-expressing cells in a dose-dependent manner comparable to that of native CSPG4-
IgE (Con-IgE) [Figure 4A]. Neu-IgE appeared to show heightened ability to bind to CD23
compared to the Con-IgE control [Figure 4B]. Both Con-IgE and Neu-IgE recognized and
bound the target antigen CSPG4-expressing A2058 human melanoma cells in a similar dose-
dependent manner [Figure 4C], suggesting that sialic acid reduction had no obvious impact
on the Fab-mediated binding of IgE on target antigen-expressing cancer cells. When cross-
linked using a polyclonal anti-IgE antibody, both Con-IgE and Neu-IgE were able to trigger
degranulation of RBL-SX38 cells [Figure 4D]. These findings suggest that glyco-engineered
IgEs retained Fc and Fab region-mediated binding to immune and target antigen expressing
cells and demonstrated functional capability.
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Figure 4. Binding of Neu-IgE and Con-IgE on Fc receptor and target antigen-expressing cells.
(A). Binding to FcεRI-expressing RBL-SX38 cells by Con-IgE and Neu-IgE with EC50, N = 3,
error bars = SD; (B). Binding to CD23-expressing RPMI-8866 cells by Con-IgE and Neu-IgE,
N = 3, error bars = SD; (C). Binding to CSPG4-expressing (target antigen) A2058 cells by Con-
IgE and Neu-IgE with EC50, N = 3, error bars = SD; (D). Degranulation of RBL-SX38 cells. Data
represent the mean ± SEM of 9 independent experiments. ** p < 0.01, *** p ≤ 0.001.

3. Discussion

For studying the roles of IgE in Allergy and AllergoOncology, as well as for the purpose of
investigating potential therapeutic applications of IgE antibodies for the treatment of cancer,
it is important to develop efficient and reproducible pipelines for the production of native
and glyco-modified IgEs, and to evaluate the biophysical and biological characteristics of IgE
glyco-variants. Previously, we reported the stable production of recombinant IgE in mammalian
human embryonic kidney (Expi293F) cells, which we exemplified using a melanoma-associated
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antigen (CSPG4)-specific IgE antibody [29]. We wished to build and improve upon these
processes, both aiming to achieve yields of high-purity IgE and for the purpose of IgE antibody
glyco-engineering, glyco-profiling, characterization and functional evaluations. Our findings
suggest that human IgE class-specific affinity chromatography can be employed for the isolation
of glyco-engineered IgEs in a small-scale setting. Using a CSPG4-specific IgE generated from
stably transfected Expi293F cells, we demonstrate improved purification via an IgE class-
specific affinity matrix, superior to previously reported chromatography approach which
utilizes kappa light chain recognition. Native and sialic acid-deficient IgEs showed comparable
purity, structural and functional integrity [Figure 1]. IgE production and characterization in
the fields of Allergy and AllergoOncology are highly desirable, especially as interest continues
to grow surrounding the functional attributes of IgE antibodies in different disease settings
and the potential roles of glycans on the IgE structure. The use of a global human IgE class-
specific affinity chromatography for the production of glycoengineered IgE has not previously
been demonstrated in the literature. With regard to generating a glycan-modified IgE by
using enzymatic digestion, we showed that the enzyme incubation conditions, such as a lower
pH of 5.5, did not adversely affect IgE structure, stability, or ability to bind to FcεRI- and
CD23-expressing cells. This would have been potential concern due to the extended period
of time antibodies may be kept outside of physiological conditions for enzymatic digestion.
Furthermore, we confirmed the removal of impurities and additives such as enzymes for the
small-scale glyco-engineered IgE preparation, and we showed that our sialic acid-deficient
IgE remained intact as compared to the native IgE equivalent [Figures 1 and 2]. Our HILIC-
HPLC analyses confirmed desialylation, whilst the remaining native glycan structures on the
antibody appeared to have been preserved [Figure 3]. Sialic acid-deficient IgE was devoid of
multi-sialylated, tetra-antennary glycan structures resulting in Neu-IgE showing lower glycan
complexity compared with Con-IgE [Figure 4, Tables 1 and 2]. Despite the loss of sialic acid
residues, we showed that glyco-engineered IgE produced and purified via this pipeline retained
recognition of immune cells expressing both cognate IgE Fc receptors, FcεRI and CD23, as
well as of cancer cells expressing the target antigen, CSPG4 [Figure 4]. Furthermore, glyco-
engineered IgE was able to drive degranulation of RBL-SX38 cells on par with native IgE
(Con-IgE) and an IgE isotype positive control when the antibodies were cross-linked with
polyclonal anti-IgE. These data showcase the production, purification, structural and functional
assessment of a stable glyco-engineered IgE via IgE class-specific affinity chromatography
(outlined in Supplementary Figure S3).

It has long been known that differential glycosylation is common in IgG antibody
isotypes, and that the presence or absence of certain glycan features can influence the
functional capabilities of IgG [32–35]. For example, terminal Fc sialylation has been linked
to the anti-inflammatory activities arising from intravenous immunoglobulin therapy [36],
while core fucosylation is well described in the moderation of Fc-mediated effector func-
tions such as antibody-dependent cellular cytotoxicity (ADCC) of IgG, by interfering with
its ability to interact with various Fcγ receptors [37–39]. Similarly, certain disease states
such as rheumatoid arthritis [40], systemic lupus erythematosus, Crohn’s disease [41] and
autoimmune thyroid diseases (AITD) [42] show patterns of differential glycosylation on
circulating IgGs. Such observations have informed the development of therapeutic IgG
antibodies [43]. With growing interest in IgE and its roles not only in allergic diseases, but
also as a novel alternative therapeutic antibody class for cancer therapy, the generation
of purified IgEs and the evaluation of their glycan profiles is still required. The launch of
a Phase I clinical trial of the first-in-class monoclonal IgE antibody (MOv18 IgE) specific
for the tumor-associated antigen Folate Receptor alpha (FRα), which was recently com-
pleted (NCT02546921) [10], highlights the importance of developing efficient pipelines for
recombinant IgE production, purification, characterization and glycan analysis.

Investigating the role of IgE glycan functions has been complicated due to the presence
of seven N-linked glycosylation sites of which six are occupied [11,28], as compared to only
one site in the IgG Fc region. Although knowledge surrounding the function of these IgE
glycans is relatively limited, recent observations have linked terminal Fc sialylation in the
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human IgE antibody to allergic pathogenicity [23]. Examination of total IgE derived from
peanut-allergic individuals and healthy volunteers showed increased sialic acid content on
the IgE derived from allergic individuals. Subsequent removal of sialic acid was able to
successfully attenuate effector cell-driven degranulation across a multitude of functional
models as well as to reduce anaphylaxis [23]. These findings suggested that IgE sialylation
may be a regulator of allergic disease; and previous work has similarly demonstrated
evidence for roles of sialic acid in modulating IgE function [21,22]. Thus, we prioritized
sialic acid-deficient IgE as our representative glyco-engineered variant. Interestingly, our
sialic acid-deficient IgE demonstrated increased binding to the low-affinity CD23 receptor,
but not to the high-affinity FcεRI [Figure 4B]. This data support previous work on in planta
glyco-engineered IgEs, in which we demonstrated the ability of the IgE glycan profile to
modulate the binding to CD23-expressing [28], but not to FcεRI-expressing cells, which will
be of interest to investigate in future work. In keeping with comparable binding to FcεRI,
there was no discernible difference in the ability of sialic acid-deficient IgE to recognize or
trigger functional degranulation of FcεRI-expressing RBL-SX38 cells.

Our findings of the generation of intact, functionally active IgE antibodies with defined
glycan profiles address a significant gap in the IgE field and will facilitate ongoing research
into understanding the roles of IgE glycosylation in health and disease. We demonstrate
a reliable means of producing and purifying both native and glyco-engineered IgE anti-
bodies using a human IgE class-specific affinity matrix which we illustrate here by the
generation of sialic acid-deficient IgE, on a small-scale, with easy scalability for larger-
scale purifications, including the purification of IgE directly from cell culture supernatants.
Whilst we chose to use neuraminidase-treated IgE as our representative glyco-engineered
antibody due to increasing interest in IgE-associated sialic acid residues, this pipeline
can be amenable for purification of other glyco-engineered antibodies, including those
produced with glycosidases and through genetic engineering. Although not shown here,
we have also successfully used IgE class-specific affinity chromatography the purification
of IgE antibodies from cell culture supernatants, including from cultures co-treated with
glycosyltransferase inhibitors.

In conclusion, we have generated and evaluated native and sialic acid-deficient IgEs
with human Fc regions. The antibodies showed high purity compared to those isolated via
conventional means such as with light chain-based purification methods. We have shown
that the glyco-engineering process had no adverse effects on the basic structure and cell
binding attributes of the IgE antibodies such as Fc receptor binding and antigen recognition.
We present a full characterization of paired sialic acid-deficient and native IgE variants
including structural and glycan profile comparisons as well as functionality in cell-based
assays. Our study may address the current need in the field of IgE biology and represents
an accessible, adaptable, and reproducible means of rapidly generating, characterizing and
functionally evaluating native and glyco-engineered IgE antibodies.

4. Materials and Methods
4.1. Production of Recombinant IgE in Culture Using Human Embryonic Kidney Expi293F Cells

Expi293F cells were stably transfected to express IgE specific for the melanoma-
associated antigen Chondroitin Sulfate Proteoglycan 4 (CSPG4) [29] and Expi293F cells
were transiently transfected to express HER2-specific IgE [30]. Cells were seeded in 125 mL
Erlenmeyer Flasks [SLS, Nottingham, UK, Cat. 431143] at cell densities of 5 × 106 cells/mL
and incubated for 3 days under shaking conditions. On the third day after seeding, cells
were counted, and supernatants were harvested and filtered twice through 0.45 µm and
0.20 µm filters prior to antibody purification.

4.2. Packing of Chromatography Columns and Purification of Recombinant IgE from
Culture Supernatants

A C10/10 column [Cytiva, Marlborough, MA, USA, Cat. 19500101] was assembled
according to manufacturers’ instructions and connected to a P-1 peristaltic pump [Cytiva,
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Marlborough, MA, USA, Cat. 18111091]. CaptureSelectTM IgE Affinity Matrix [Ther-
moFisher Scientific, Waltham, MA, USA, Cat. 2943542005] was gently resuspended, then
5 ml of resin transferred into the column. The column was fitted with an AC-10 Flow
Adapter [Cytiva, Marlborough, MA, USA, Cat. 19500601] to allow for a smaller resin bed.
Prior to use, the column was flushed with at least 3 column volumes (CV) to equilibrate
following constant bed height. Following resin equilibration with PBS, cell supernatants
were diluted 1:1 with PBS and passed through the column at a rate of 5 ml/minute. Resin
was then washed again with PBS. Captured IgE was eluted using 20 mM citric acid (pH
3.0) or 50 mM sodium citrate + 50 mM sodium chloride (pH 3.5) [Table 3] and neutralized
with 1 M Tris (pH 8.2) for a total of 10 1 ml aliquots. Resin was first washed with 3 CV
20 mM citric acid, then with 3 CV 20% ethanol. A microscale UV-Vis spectrophotometer
[Nanodrop ND-1000, Labtech International Ltd, Heathfield, UK] was used to determine
fractions containing antibody.

Table 3. Buffer recipes.

Buffer Name Preparation

Buffer 1 50 mM Sodium Citrate + 50 mM Sodium Chloride, pH 3.5
Buffer 2 0.1 M Glycine, pH 2.3
Buffer 3 20 mM Citric Acid, pH 3.0

Neutralization Buffer 1 M Tris, pH 8.2
Calcium Buffer 0.1 mM CaCl2

FACS Buffer 1× HBSS, 2% FBS
Reducing Buffer 50 mM Dithiothreitol (DTT) in 4× Laemmli Protein Sample Buffer

T-PBS 0.1% Tween + PBS

Purification via light chain specific affinity chromatography was performed using
HiTrap™ KappaSelect column [Cytiva, Marlborough, MA, USA, Cat. 17545812] according
to manufacturer’s instructions.

4.3. Dialysis of Recombinant IgE from Culture

For bulk purification, fractions containing antibody product were pooled to a max-
imum volume of 6 ml. 4 L of PBS was prepared, and samples transferred to Tube-O-
DIALYZER Medi-50kDa dialysis tubes [G-Biosciences, St. Louis, MO, USA, Cat. 786.619]
floated in PBS on a magnetic plate with a stirrer and left to dialyze overnight at 4 ◦C.
For fractions totaling less than 1 ml, fractions were transferred instead to Slide-A-Lyzer
Dialysis Casettes (3.5k MWCO, 0.5 ml) [ThermoFisher, Waltham, MA, USA, Cat. 66333]
with PBS and dialyzed for 2 h at 4 ◦C. After 2 h, PBS was changed, then samples incubated
overnight with stirring at 4 ◦C. Sample concentrations were measured via a spectropho-
tometer as described and concentrated if needed via Amicon Ultra-4 Centrifugal 50 Kda
Filters [Merck-Millipore, Burlington, VT, USA, Cat. UFC805008]. All samples were stored
at 4 ◦C following purification and dialysis.

4.4. Production and Purification of Sialic Acid-Deficient IgE using Glycosidase Enzymes

Unmodified IgE was incubated with A2-3,6,8,9 Neuraminidase [New England BioLabs,
Ipswich, SD, USA, Cat. P0722L] for 2 h at 37 ◦C. Neuraminidase-A is a broad specificity
exoglycosidase capable of cleaving both branched and linear terminal sialic acids with α2-3,
α2-6, α2-8, and α2-9 linkages. Pierce™ Micro-Spin Columns [Thermo-Fisher Scientific,
Waltham, MA, USA, Cat. 89879] were packed with 100 µL CaptureSelect™ IgE Affinity
Matrix and resin equilibrated with PBS. Columns were capped at the base, sample loaded
to a maximum volume of 400 µL with PBS then capped and incubated for 30 mins at RT
with end-over-end mixing. Columns were placed in 2 ml collection tubes and centrifuged
for 1 min at 10,000× g then washed for 3 CV with PBS. Bound IgE was eluted [Table 3,
Buffers 1–3] and neutralized with 1 M Tris (pH 8.2) for a total of five 220 µL fractions. To
restore columns, resin was washed with elution buffer and 20% ethanol for 3 CV each and
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stored at 4 ◦C in 20% ethanol. Samples were measured via nanodrop, pooled and dialyzed
as described above.

4.5. Confirmation of Antibody Purification via Sodium Dodecyl Sulphate Polyacrylamide Gel
Electrophoresis (SDS-PAGE)

Antibody purification was confirmed using SDS-PAGE. Samples were mixed with
Laemmli Buffer 4× [Bio-Rad, Hercules, CA, USA, Cat. #1610747] or boiled at 95 ◦C for
5 mins with Reducing Buffer [Table 2] for reducing conditions then loaded into Mini-
PROTEAN TGX Gels, (15-well, 15 µL) [Bio-Rad, Hercules, CA, USA, Cat. #4561036]. Gels
were run at 150 V for 45 mins on a Mini-PROTEAN Tetra Vertical Electrophoresis Cell
[Bio-Rad, Cat. #1658004] and visualized using InstantBlue Protein Stain [Sigma-Aldrich,
St. Louis, MO, USA, Cat. ISB1L].

4.6. Size Exclusion Chromatography (SEC)

The samples were filtered through a 0.2 µm filter immediately before the experiment.
Size exclusion chromatography analysis was performed using a Superdex 200 column that
had been previously equilibrated with PBS containing 0.1% (w/v) sodium azide.

4.7. Glycoanalysis of Con-IgE and Neu-IgE by Hydrophobic Interaction Liquid Chromatography
(HILIC) HPLC

Samples were used as supplied, with no clean up, but dried down before use. Sam-
ples were treated with PNGase F to release the N-glycans and then cleaned up prior to
procainamide labelling. Following the labelling, the samples were cleaned up further to
remove excess reagents, eluted in water from the cleanup plate and concentrated prior
to HPLC-FD-MS analysis as described previously [31]. Samples were separated and ana-
lyzed via Hydrophilic Interaction Liquid Chromatography (HILIC) HPLC using a Dionex
Ultimate 3000 UHPLC instrument using a BEH-Glycan 1.7 µm, 2.1 × 150 mm column
(Waters) with a fluorescence detector (λex = 310 nm, λem = 370 nm) controlled by Bruker
HyStar 3.2 and Chromeleon data software version 7.2. MS analysis was performed using a
Bruker mazon Speed ETD electrospray mass spectrometer, which was coupled directly after
the UHPLC FD without splitting. HPLC-ESI-MS chromatogram analysis was performed
using Bruker Compass DataAnalysis 4.4 and GlycoWorkbench software. Chromeleon Data
software, version 7.2, was used to allocate glucose unit (GU) values to peaks.

4.8. Flow Cytometric Evaluations of IgE Binding to Cell Surface Receptors and Antigens

Antibody binding to cell surface Fc receptors FcεRI and CD23 and to the tumor-
associated antigen CSPG4 was analyzed via flow cytometry. FcεRI-expressing and CSPG4-
expressing adherent cells were detached using 0.5 mM EDTA, resuspended in FACS buffer
[Table 3] and incubated at 4 ◦C with serially diluted CSPG4-IgE or Neu-IgE for 30 mins
in FACS tubes. Cells were washed with PBS, then incubated on ice for 20 mins with anti-
IgE-Fluorescein [Vector Laboratories, Burlingame, CA, USA, Cat. FI-3040] or anti-IgE-APC
[BioLegend, San Diego, CA, USA, Cat. 325508] and washed again with PBS. Cells were
resuspended in FACS buffer prior to analysis. A similar protocol was used for analyzing
CD23 binding on RPMI-8866 cells, with RPMI-1640 medium + 2% FBS (fetal bovine serum)
being used in place of FACS buffer to provide higher Ca2+ concentration. Samples were
analyzed on a FACS Canto II [BD Biosciences] and results analyzed using FlowJo v10.8.1
software. Data was analyzed on GraphPad Prism 9 and non-linear regression curve fits
used to calculate the EC50.

4.9. IgE-Mediated Degranulation of RBL-SX38 Cells

RBL-SX38 cell degranulation was measured by quantifying release ofβ-hexosaminidase,
as described previously [29]. Cells were seeded at 1 × 104 cells/well overnight in culture
medium and the next day, sensitized with 200 ng/mL IgE, control antibody, or medium
alone by incubating for 1 h at 37 ◦C. Cells were washed 3 times with stimulation buffer
(HBSS + 2% FBS) and stimulated for 1 h at 37 ◦C with either stimulation buffer alone
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or rabbit anti-IgE (1.5 µg/mL). For quantifying β-hexosaminidase, 25 µL culture super-
natant was diluted 1:1 with stimulation buffer and transferred onto black 96-well plates
containing 50 µL florigenic substrate per well (1 mmol/L 4-methyllumbelliferyl N-acetyl
b-D-glucosaminide, 0.1% dimethyl sulfoxide, 200 mmol/L sodium citrate, pH 4.5). Plates
were incubated for 1 h in the dark at 37 ◦C then the reaction quenched with 100 µL per
well of 0.5 M Tris. Plates were read with a FLUOstar Omega Microplate Reader (350-nm
excitation, 450-nm emission; BMG Labtech, Ortenberg, Germany). Degranulation was
expressed as a percentage of Triton X-100 release (100%).

4.10. Statistical Analysis

Error bars represent SDs or SEMs. Statistical significance of degranulation assays was
calculated using 1-way ANOVA with the Tukey’s multiple comparisons test. p values of
less than 0.05 were considered significant. Data were analyzed using GraphPad Prism
9 software.
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