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Abstract

Serine biosynthesis disorders comprise a spectrum of very rare autosomal recessive

inborn errors of metabolism with wide phenotypic variability. Neu–Laxova syn-

drome represents the most severe expression and is characterized by multiple

congenital anomalies and pre‐ or perinatal lethality. Here, we present the mutation

spectrum and a detailed phenotypic analysis in 15 unrelated families with severe

types of serine biosynthesis disorders. We identified likely disease‐causing variants

in the PHGDH and PSAT1 genes, several of which have not been reported previously.

Phenotype analysis and a comprehensive review of the literature corroborates the

evidence that serine biosynthesis disorders represent a continuum with varying

degrees of phenotypic expression and suggest that even gradual differences at the

severe end of the spectrum may be correlated with particular genotypes. We pos-

tulate that the individual residual enzyme activity of mutant proteins is the major

determinant of the phenotypic variability, but further functional studies are needed

to explore effects at the enzyme protein level.

K E YWORD S

autosomal recessive, genotype–phenotype correlation, L‐serine biosynthesis, Neu–Laxova

syndrome, PHGDH, PSAT1

1 | INTRODUCTION

Serine biosynthesis disorders constitute a clinically and genetically

heterogeneous group of autosomal recessive diseases caused by

pathogenic changes in genes encoding enzymes of the L‐serine bio-

synthesis pathway: phosphoglycerate dehydrogenase (PHGDH; MIM#

606879), phosphoserine aminotransferase (PSAT1; MIM# 610936),

and phosphoserine phosphatase (PSPH; MIM# 172480; Acuna‐
Hidalgo et al., 2014; Hart et al., 2007; Klomp et al., 2000; Shaheen

et al., 2014; Veiga‐da‐Cunha et al., 2004). The phenotype ranges from

nonspecific developmental delay (Tabatabaie et al., 2011) to the se-

vere lethal disease known as Neu–Laxova syndrome (NLS; MIM#

256520). Following the first descriptions by Neu and Laxova in 1971

and 1972, respectively (Laxova, Ohara, & Timothy, 1972; Neu, Kajii,

Gardner, & Nagyfy, 1971), fewer than 100 cases of NLS have been

reported to date (Acuna‐Hidalgo et al., 2014; Bourque et al., 2019;

Cavole et al., 2020; Coto‐Puckett et al., 2010; El‐Hattab et al., 2016;

Manning, Cunniff, Colby, El‐Sayed, & Hoyme, 2004; Mattos

et al., 2015; Ni et al., 2019; Shaheen et al., 2014). The clinical hall-

marks of this disorder are severe intrauterine growth restriction

(IUGR), microcephaly, cutaneous abnormalities, and distinctive cra-

niofacial features including sloping forehead, ocular hypertelorism,

prominent eyes, ectropion, flat nose, round gaping mouth, micro-

gnathia, short neck, and low‐set malformed ears. Variable central

nervous system (CNS) abnormalities have been described including

microcephaly, lissencephaly, hypoplastic cerebellum, agenesis, or

dysgenesis of the corpus callosum, and Dandy–Walker malformation

(Badakali, Badakali, & Dombale, 2012; Coto‐Puckett et al., 2010;

Ostrovskaya & Lazjuk, 1988). The spectrum of skin abnormalities

includes varying degrees of ichthyosis (Curry, 1982), edema of the

hands and feet, and excessive fatty tissue under the epidermis

(Karimi‐Nejad, Khajavi, Gharavi, & Karimi‐Nejad, 1987). Joint con-

tractures are common and pterygia may be present, most likely re-

flecting fetal akinesia (Curry, 1982; Ejeckam, Wadhwa, Williams, &

Lacson, 1986; Fitch, Resch, & Rochon, 1982). Additional congenital

malformations including cleft lip and palate (Coto‐Puckett
et al., 2010; Rouzbahani, 1995), spina bifida (Manning et al., 2004;

Naveed, Manjunath, & Sreenivas, 1990), genitourinary anomalies

(cryptorchidism, hypoplastic genitalia, renal agenesis; Naveed

et al., 1990; Shivarajan, Suresh, Jagadeesh, Lata, & Bhat, 2003), pul-

monary and gastric hypoplasia (Manning et al., 2004) have occa-

sionally been reported. Although pre‐ or perinatal lethality is a

hallmark of this condition, survival from a few weeks to several

months has been observed in some cases (Carder, Fitzpatrick, &

Weston, 2003; Coto‐Puckett et al., 2010; El‐Hattab et al., 2016;

Horn, Muller, Thiele, & Kunze, 1997; Ugras, Kocak, & Ozcan, 2006),

presumably representing milder variants of the syndrome. So far,

only 12 different variants in the PHGDH gene, 5 in the PSAT1 gene,

and 1 frameshift variation in PSPH have been identified in association

with NLS (Tables S1–S3 and Figure 1).

The nonlethal forms of serine biosynthesis deficiency comprise

nonspecific disorders with neurodevelopmental defects, epilepsy, and

1616 | ABDELFATTAH ET AL.
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microcephaly as the major clinical findings and low serine levels in

plasma and cerebrospinal fluid as the diagnostic hallmark (Brassier

et al., 2016; Byers et al., 2016; de Koning et al., 1998; El‐Hattab

et al., 2016; Glinton et al., 2018; Hart et al., 2007; Hausler, Jaeken,

Monch, & Ramaekers, 2001; Jaeken et al., 1996; Klomp et al., 2000;

Meneret et al., 2012; Pind et al., 2002; Pineda et al., 2000; Poli

et al., 2017; Tabatabaie et al., 2009, 2011; Veiga‐da‐Cunha
et al., 2004; Vincent et al., 2015). A spectrum of disease‐causing
variants in the same genes have been reported in the nonlethal

forms, which differs from NLS‐associated variants (Tables S1–S3 and

Figure 1). It was proposed that the severity of enzymatic deficiency is

the main cause of phenotypic variability of serine biosynthesis dis-

orders, and considerable residual enzymatic activity has been de-

monstrated for some variants associated with nonlethal serine

deficiency.

Herein, we report a new cohort of patients with severe serine

biosynthesis disorders, thereby expanding and further elucidating the

genotype–phenotype spectrum.

2 | MATERIALS AND METHODS

2.1 | Patients

Patients referred for molecular genetic testing for suspected NLS/

severe serine biosynthesis disorder or with a diagnosis of such a

disease established by whole exome sequencing (WES) were eligible

for this study. All molecular testing was performed in a diagnostic

context after obtaining informed consent according to the respective

national regulations for genetic testing. Specific written parental

permission was obtained for publication of photographs presented in

this article.

The study cohort included a total of 19 patients, 10 females and

9 males, from 15 unrelated families. Three of these families had a

history of another probably affected offspring, but no details were

available from these. The clinical data of all patients were collected

using a questionnaire. Families were of various ethnic origin

(Table 1). The majority of the patients were stillborn or died shortly

after birth. In five cases, the pregnancy was terminated after severe

malformations having been identified by fetal ultrasonography.

2.2 | Molecular analysis

DNA was extracted from blood samples of the patients, except for

families 4 and 11, where only FFPE (formalin‐fixed, paraffin‐
embedded) tissue from the affected fetus was available. From three

families, DNA samples of affected fetuses (patients 5a/5b, 12, and

14) were not available, and therefore parental DNA was tested

assuming heterozygous carrier status (Table 1). In family 5, a

chorionic villus sample DNA (CVS DNA) was analyzed to provide

prenatal diagnosis in a family with a previous child clinically diag-

nosed with NLS.

In the majority of samples, targeted Sanger sequencing was per-

formed for all coding exons and flanking intronic regions of the known

causative genes for NLS (PHGDH [ENST00000369409]; PSAT1

[ENST00000376588]; PSPH [ENST00000395471]). Sequence data

were generated using the ABI BigDye Terminator Cycle Sequencing

Kit (Applied Biosystems, Germany) and an automated capillary se-

quencer (ABI 3500; Applied Biosystems), and Sequence Pilot software

(JSI medical systems, Germany) was used for analysis. Due to the very

poor quality of the DNA extracted from the formalin‐fixed tissue of

patients 4 and 11, no full mutation screening of the three genes

of interest was possible. Only amplification of a very short fragment of

exon 7 of PHGDH and of exon 4 of PSAT1, encompassing the most

common NLS‐associated variant in this gene, were successful, re-

spectively. In four cases (families 4, 6, 7, and 8) the molecular diagnosis

was made by diagnostic (trio) exome sequencing. All variants identified

in the three genes were analyzed using the online prediction tools

MutationTaster (http://www.mutationtaster.org/), Meta‐SNP (http://

snps.biofold.org/meta-snp/), and CADD (https://cadd.gs.washington.

edu/). Human splicing finder (http://www.umd.be/HSF3/) was used to

predict the effect of the splice site variants. Mutated protein stability

was also analyzed in silico using an integrated predictor for protein

stability change upon single mutation (http://predictor.nchu.edu.tw/

istable/). The level of evidence for pathogenicity of all observed var-

iants was classification according to the recommendations of the

American College of Medical Genetics and Genomics (ACMG; Richards

et al., 2015). All the variants were submitted to the genetic Leiden

Open Variation Database, LOVD v.3.0 Build 23 (https://www.lovd.nl/).

2.3 | Structural analysis and molecular modeling

The structural analysis of the protein variants was performed based

on the crystal structures of PHGDH (PDB code: 2G76) and PSAT1

(PDB code: 3E77). Missense changes were modeled with SwissMo-

del (Guex & Peitsch, 1997) and RasMol (Sayle & Milner‐White, 1995)

was used for structure analysis and visualization.

3 | RESULTS

3.1 | Mutation screening

In 15 families with NLS, variants in either PSAT1 or PHGDH were

identified that were considered as likely causative (Table 2). In one of

these families (family 4) with abnormal fetuses occurring in two

branches of the family, which was previously reported negative for a

mutation in the three genes for NLS (family 11 in Acuna‐Hidalgo

et al., 2014), exome sequencing of additional family members re-

vealed a likely disease‐causing PHGDH variant in one branch of the

family (Figure S1). In total, the disease was attributable to PSAT1 in

11 unrelated families and to PHGDH in 4 (Table 1). PSPH variants

were not observed in this cohort. A total of 13 different presumably

disease‐causing variants were identified in those two genes. Nine of

ABDELFATTAH ET AL. | 1617

 10981004, 2020, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hum

u.24067 by T
est, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.mutationtaster.org/
http://snps.biofold.org/meta-snp/
http://snps.biofold.org/meta-snp/
https://cadd.gs.washington.edu/
https://cadd.gs.washington.edu/
http://www.umd.be/HSF3/
http://predictor.nchu.edu.tw/istable/
http://predictor.nchu.edu.tw/istable/
https://www.lovd.nl/


T
A
B
L
E

1
G
en

o
ty
p
e,

fa
m
ily

in
fo
rm

at
io
n
,a

u
xo

lo
gy

,a
n
d
m
aj
o
r
m
al
fo
rm

at
io
n
s
in

th
e
st
u
d
y
co

h
o
rt

P
at
ie
n
t/
fa
m
ily

n
u
m
b
er

1
2

3
4

5
a

5
b

M
u
ta
te
d
ge

n
e

P
H
G
D
H

P
H
G
D
H

P
H
G
D
H

P
H
G
D
H

P
SA

T
1

P
SA

T
1

N
u
ce
lo
ti
d
e
ch

an
ge

(s
ta
tu
s)

c.
1
6
0
C
>
T
(h
o
m
)

c.
4
8
8
G
>
A

(h
o
m
)

c.
6
3
8
C
>
T
(h
o
m
;
U
P
D
1
)

c.
7
0
4
C
>
T
(h
o
m
)

c.
1
A
>
G

(p
re
su
m
ed

h
o
m
;

h
et

in
p
ar
en

ts
)

c.
1
A
>
G

(p
re
su
m
ed

h
o
m
;
h
et

in
p
ar
en

ts
)

P
re
d
ic
te
d
ef
fe
ct

o
n
R
N
A
/

p
ro
te
in

p
.(A

rg
5
4
C
ys
)

p
.(A

rg
1
6
3
G
ln
)

p
.(T

h
r2
1
3
M
et
)

p
.(A

la
2
3
5
V
al
)

p
.?

p
.?

M
u
ta
ti
o
n
d
et
ec
ti
o
n
m
et
h
o
d

T
S

T
S

T
S

W
E
S

T
S

T
S

G
en

d
er

F
em

al
e

F
em

al
e

F
em

al
e

M
al
e

F
em

al
e

F
em

al
e

P
ar
en

ta
l
co

n
sa
n
gu

in
it
y

Y
es

F
ir
st

co
u
si
n
s

F
ir
st

co
u
si
n
s

F
ir
st

co
u
si
n
s

A
ff
ec
te
d
si
b
lin

gs
P
o
ss
ib
ly

af
fe
ct
ed

fe
tu
s
in

p
re
vi
o
u
s
p
re
gn

an
cy

Si
st
er

Si
st
er

E
th
n
ic

b
ac
kg

ro
u
n
d

C
au

ca
si
an

(F
ra
n
ce
)

P
ak

is
ta
n

N
A

Ir
an

ia
n

Ir
an

ia
n

Ir
an

ia
n

G
es
ta
ti
o
n
al

ag
e
at

b
ir
th

2
6
+
6
w
ee

ks
3
9
+
2
w
ee

ks
4
0
w
ee

ks
3
3
w
ee

ks
4
0
w
ee

ks
4
0
w
ee

ks

B
ir
th

w
ei
gh

t
3
7
9
g
(−
2
.5
SD

)
1
,9
8
8
g
(−
3
.2
SD

)
2
,5
4
0
g
(−
2
.0
SD

)
1
,1
7
9
g
(−
2
.1
SD

)
1
,9
0
0
g
(−
3
.7
SD

)
2
,2
0
0
g
(−
2
.9
SD

)

B
o
d
y
le
n
gt
h
at

b
ir
th

2
8
cm

(−
2
.7
SD

)
4
2
.5
cm

(−
3
.1
SD

)
3
9
cm

(−
5
.0
SD

)
3
1
cm

(−
4
.9
SD

)
4
0
cm

(−
4
.6
SD

)
3
9
cm

(−
5
.0
SD

)

O
F
C

at
b
ir
th

1
8
cm

(−
4
.5
SD

)
2
7
.4
cm

(−
5
.0
SD

)
2
8
.2
cm

(−
4
.7
SD

)
2
6
cm

(−
2
.9
SD

)
3
0
cm

(−
3
.4
SD

)
2
9
cm

(−
4
.1
SD

)

Su
rv
iv
al
/d
ea

th
T
O
P

Li
ve

b
o
rn
,d

ie
d
o
n

1
st

d
ay

Li
ve

b
o
rn
,
d
ie
d
af
te
r

3
0
d
ay

s

St
ill
b
o
rn

Li
ve

b
o
rn
,d

ie
d
af
te
r
2
7
d
ay

s
Li
ve

b
o
rn
,d

ie
d
af
te
r
5
d
ay

s

C
le
ft

lip
/c
le
ft

p
al
at
e

C
en

tr
al

n
er
vo

u
s
sy
st
em

ab
n
o
rm

al
it
ie
s

LI
S,

C
H
,C

A
L,

H
Y
D

LI
S,

C
H
,C

A
L,

H
Y
D

LI
S,

C
H
,C

A
L,

H
Y
D

LI
S,

C
A
L

N
A

N
A

Li
m
b
an

d
sk
el
et
al

an
o
m
al
ie
s

C
O
N

C
O
N
,E

D
E

C
O
N
,E

D
E

C
O
N
,E

D
E

C
O
N

C
O
N

Sk
in

ab
n
o
rm

al
it
ie
s

IC
H

R
D
E
R
M

M
ild

IC
H

R
D
E
R
M

IC
H

IC
H

G
en

it
o
u
ri
n
ar
y
ab

n
o
rm

al
it
ie
s

G
E
N

K
ID

G
E
N

A
d
d
it
io
n
al

an
o
m
al
ie
s

C
at
ar
ac
t

C
at
ar
ac
t

C
at
ar
ac
t

C
at
ar
ac
t

P
at
ie
n
t/
fa
m
ily

n
u
m
b
er

6
a

6
b

7
a

7
b

8
9

M
u
ta
te
d
ge

n
e

P
SA

T
1

P
SA

T
1

P
SA

T
1

P
SA

T
1

P
SA

T
1

P
SA

T
1

N
u
ce
lo
ti
d
e
ch

an
ge

(s
ta
tu
s)

c.
1
2
9
T
>
G

(h
o
m
)

c.
1
2
9
T
>
G

(p
re
su
m
ed

h
o
m
;
n
o
ge

n
e

an
al
ys
is

in
th
is

p
at
ie
n
t)

c.
1
8
1
C
>
T
(h
et
,m

at
)

c.
1
8
1
C
>
T
(h
et
,m

at
)

c.
2
3
5
G
>
T
(h
o
m
)

c.
2
9
6
C
>
T
(h
o
m
)

c.
2
9
6
C
>
T
(h
et
,p

at
)

c.
2
9
6
C
>
T
(h
et
,p

at
)

P
re
d
ic
te
d
ef
fe
ct

o
n
R
N
A
/

p
ro
te
in

p
.(S

er
4
3
A
rg
)

p
.(S

er
4
3
A
rg
)

p
.(A

rg
6
1
T
rp
)

p
.(A

rg
6
1
T
rp
)

p
.(G

ly
7
9
T
rp
)

p
.(
A
la
9
9
V
al
)

p
.(A

la
9
9
V
al
)

p
.(A

la
9
9
V
al
)

1618 | ABDELFATTAH ET AL.

 10981004, 2020, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hum

u.24067 by T
est, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T
A
B
L
E

1
(C
o
n
ti
n
u
ed

)

P
at
ie
n
t/
fa
m
ily

n
u
m
b
er

6
a

6
b

7
a

7
b

8
9

M
u
ta
ti
o
n
d
et
ec
ti
o
n
m
et
h
o
d

W
E
S

N
o
ge

n
e
an

al
ys
is

W
E
S

T
S

W
E
S

T
S

G
en

d
er

M
al
e

M
al
e

F
em

al
e

M
al
e

F
em

al
e

M
al
e

P
ar
en

ta
l
co

n
sa
n
gu

in
it
y

F
ir
st

co
u
si
n
s

F
ir
st

co
u
si
n
s

2
n
d
d
eg

re
e
co

u
si
n
s

3
rd

d
eg

re
e
co

u
si
n
s

A
ff
ec
te
d
si
b
lin

gs
B
ro
th
er

B
ro
th
er

M
al
e
si
b
lin

g
fe
tu
s

Si
st
er

P
ro
b
ab

ly
af
fe
ct
ed

m
al
e

si
b
lin

g

E
th
n
ic

b
ac
kg

ro
u
n
d

T
u
rk
is
h

T
u
rk
is
h

C
au

ca
si
an

(G
er
m
an

)
C
au

ca
si
an

(G
er
m
an

)
A
ra
b

A
ra
b
(A
lg
er
ia
)

G
es
ta
ti
o
n
al

ag
e
at

b
ir
th

3
6
w
ee

ks
3
5
w
ee

ks
3
2
+
2
w
ee

ks
1
5
w
ee

ks
2
6
w
ee

ks
3
6
+
5
w
ee

ks

B
ir
th

w
ei
gh

t
2
,5
0
0
g
(−
1
.7
SD

)
N
A

8
2
0
g
(−
2
.4
SD

)
3
3
g

2
7
8
g
(−
3
.2
SD

)
1
,3
3
0
g
(−
3
.8
SD

)

B
o
d
y
le
n
gt
h
at

b
ir
th

4
7
cm

(−
1
.1
SD

)
N
A

3
3
cm

(−
3
.3
SD

)
9
cm

N
A

3
3
cm

(−
6
.2
SD

)

O
F
C

at
b
ir
th

3
0
cm

(−
2
.3
SD

)
N
A

2
4
cm

(−
3
.4
SD

)
N
A

N
A

2
5
cm

(−
5
.5
SD

)

Su
rv
iv
al
/d
ea

th
A
liv

e
(a
ge

4
ye

ar
s)

D
ie
d
at

ag
e
6
.5
ye

ar
s

Li
ve

b
o
rn
,d

ie
d
af
te
r

4
m
o
n
th
s

T
O
P

T
O
P

Li
ve

b
o
rn
,d

ie
d
o
n

1
st

d
ay

C
le
ft

lip
/c
le
ft

p
al
at
e

C
P

C
P

C
P

C
en

tr
al

n
er
vo

u
s
sy
st
em

ab
n
o
rm

al
it
ie
s

C
A
L,

H
Y
D

N
A

C
A
L,

H
Y
D

N
A

LI
S,

C
H
,C

A
L,

H
Y
D

LI
S,

C
A
L,

H
Y
D

Li
m
b
an

d
sk
el
et
al

an
o
m
al
ie
s

C
O
N
,E

D
E

C
O
N

C
O
N

E
D
E

C
O
N
,E

D
E

C
O
N
,E

D
E

Sk
in

ab
n
o
rm

al
it
ie
s

M
ild

IC
H

N
A

N
A

IC
H

G
en

it
o
u
ri
n
ar
y
ab

n
o
rm

al
it
ie
s

G
E
N

N
A

G
E
N

G
E
N
,K

ID

A
d
d
it
io
n
al

an
o
m
al
ie
s

C
at
ar
ac
t

C
at
ar
ac
t

D
u
o
d
en

al
at
re
si
a,

p
o
ly
d
ac
ty
ly

P
ec
tu
s
ex

ca
va

tu
m
,g

u
t

m
al
fo
rm

at
io
n

V
SD

,s
ac
ra
l
ag

en
es
is

P
at
ie
n
t/
fa
m
ily

n
u
m
b
er

1
0

1
1

1
2

1
3

1
4

1
5
a

1
5
b

M
u
ta
te
d
ge

n
e

P
SA

T
1

P
SA

T
1

P
SA

T
1

P
SA

T
1

P
SA

T
1

P
SA

T
1

P
SA

T
1

N
u
ce
lo
ti
d
e
ch

an
ge

(s
ta
tu
s)

c.
2
9
6
C
>
T
(h
et
)

c.
2
9
6
C
>
T
(h
et
,m

at
)

c.
7
3
3
T
>
C

(p
re
su
m
ed

h
o
m
;

h
et

in
p
ar
en

ts
)

c.
4
6
3
G
>
C

(h
et
)

c.
8
7
0
‐1
G
>
T
(p
re
su
m
ed

h
o
m
;
h
et

in
p
ar
en

ts
)

c.
9
5
5
d
el
A

(h
o
m
)

c.
9
5
5
d
el
A

(h
o
m
)

c.
8
7
0
‐1
G
>
T
(h
et
)

U
n
d
et
ec
te
d
2
n
d

al
le
le

c.
8
7
0
‐1
G
>
T
(h
et
)

P
re
d
ic
te
d
ef
fe
ct

o
n
R
N
A
/

p
ro
te
in

p
.(A

la
9
9
V
al
)

p
.(A

la
9
9
V
al
)

p
.(C

ys
2
4
5
A
rg
)

p
.(G

lu
1
5
5
G
ln
)

Sp
lic
in
g

p
.(A

rg
3
1
9
A
sp
fs
*1
4
)

p
.(A

r- g3
1
9
A
sp
fs
*1
4
)

Sp
lic
in
g

Sp
lic
in
g

M
u
ta
ti
o
n
d
et
ec
ti
o
n

m
et
h
o
d

T
S

T
S

T
S

T
S

T
S

T
S

T
S

(C
o
n
ti
n
u
es
)

ABDELFATTAH ET AL. | 1619

 10981004, 2020, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hum

u.24067 by T
est, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T
A
B
L
E

1
(C
o
n
ti
n
u
ed

)

P
at
ie
n
t/
fa
m
ily

n
u
m
b
er

1
0

1
1

1
2

1
3

1
4

1
5
a

1
5
b

G
en

d
er

M
al
e

F
em

al
e

M
al
e

F
em

al
e

F
em

al
e

M
al
e

M
al
e

P
ar
en

ta
l
co

n
sa
n
gu

in
it
y

N
A

2
n
d
d
eg

re
e
co

u
si
n
s

A
ff
ec
te
d
si
b
lin

gs
P
ro
b
ab

ly
af
fe
ct
ed

m
al
e

si
b
lin

g

B
ro
th
er

B
ro
th
er

E
th
n
ic

b
ac
kg

ro
u
n
d

N
A

N
A

T
u
rk
is
h

N
A

C
au

ca
si
an

(S
p
ai
n
)

T
u
va

lu
T
u
va

lu

G
es
ta
ti
o
n
al

ag
e
at

b
ir
th

3
7
+
2
w
ee

ks
3
9
w
ee

ks
3
2
w
ee

ks
3
8
+
5
w
ee

ks
3
5
w
ee

ks
3
1
+
6
w
ee

ks
a

1
8
+
6
w
ee

ks

B
ir
th

w
ei
gh

t
1
,3
7
1
g
(−
4
.0
SD

)
2
,1
2
0
g
(−
2
.9
SD

)
7
7
0
g
(−
2
.6
SD

)
1
,5
0
7
g
(−
4
.6
SD

)
N
A

1
,6
9
0
g
(−
0
.2
SD

)
9
6
.2
g

B
o
d
y
le
n
gt
h
at

b
ir
th

3
8
.6
cm

(−
4
.8
SD

)
N
A

3
0
cm

(−
4
.7
SD

)
N
A

N
A

4
3
cm

(+
0
.5
SD

)
1
7
.8
cm

O
F
C

at
b
ir
th

2
4
.6
cm

(−
6
.1
SD

)
N
A

2
0
.5
cm

(−
6
.0
SD

)
2
6
.4
cm

(−
5
.4
SD

)
N
A

2
9
cm

(−
0
.2
SD

)
1
1
.6
cm

Su
rv
iv
al
/d
ea

th
Li
ve

b
o
rn
,d

ie
d
af
te
r

5
d
ay

s

Li
ve

b
o
rn
,d

ie
d
af
te
r

7
d
ay

s

T
O
P

Li
ve

b
o
rn
,d

ie
d
o
n

1
st

d
ay

St
ill
b
o
rn

Li
ve

b
o
rn
,d

ie
d
o
n
1
st

d
ay

T
O
P

C
le
ft

lip
/c
le
ft

p
al
at
e

C
P

C
P

C
en

tr
al

n
er
vo

u
s
sy
st
em

ab
n
o
rm

al
it
ie
s

LI
S,

C
H
,C

A
L,

H
Y
D

N
A

LI
S,

C
H
,C

A
L

LI
S,

C
H
,H

Y
D

N
A

C
H

C
H

Li
m
b
an

d
sk
el
et
al

an
o
m
al
ie
s

C
O
N

C
O
N
,E

D
E

C
O
N

C
O
N
,E

D
E

C
O
N
,E

D
E

C
O
N
,E

D
E

C
O
N

Sk
in

ab
n
o
rm

al
it
ie
s

R
D
E
R
M

R
D
E
R
M

IC
H

R
D
E
R
M

R
D
E
R
M

R
D
E
R
M

IC
H

G
en

it
o
u
ri
n
ar
y

ab
n
o
rm

al
it
ie
s

G
E
N

K
ID

G
E
N

G
E
N
,K

ID
K
ID

A
d
d
it
io
n
al

an
o
m
al
ie
s

C
at
ar
ac
t

C
at
ar
ac
t,
A
V
SD

,s
it
u
s

in
ve

rs
u
s

M
yo

ca
rd
ia
l

h
yp

er
tr
o
p
h
y

N
ot
e:

A
m
o
re

d
et
ai
le
d
co

m
p
ila

ti
o
n
o
f
cl
in
ic
al

d
at
a
is

p
ro
vi
d
ed

in
T
ab

le
S4

.

A
b
b
re
vi
at
io
n
s:

A
V
SD

,a
tr
io
ve

n
tr
ic
u
la
r
se
p
ta
l
d
ef
ec
t;
C
A
L,

ca
llo

sa
l
h
yp

o
p
la
si
a
o
r
ag

en
es
is
;
C
H
,c

er
eb

el
la
r
h
yp

o
p
la
si
a;

C
LP

,c
le
ft

lip
an

d
cl
ef
t
p
al
at
e;

C
O
N
,j
o
in
t
co

n
tr
ac
tu
re
s;

C
P
,c

le
ft

p
al
at
e;

E
D
E
,e

d
em

a/

sw
el
lin

g
o
f
h
an

d
s
an

d
/o
r
fe
et
;
G
E
N
,g

en
it
al

h
yp

o
p
la
si
a/
an

o
m
al
ie
s;

h
et
,h

et
er
o
zy
go

u
s;

h
o
m
,h

o
m
o
zy
go

u
s;

H
Y
D
,h

yd
ro
ce
p
h
al
u
s/
en

la
rg
ed

ve
n
tr
ic
le
s;

IC
H
,i
ch

th
yo

si
s;

K
ID

,k
id
n
ey

an
o
m
al
ie
s,
LI
S,

lis
se
n
ce
p
h
al
y

sp
ec
tr
u
m
;
m
at
,m

at
er
n
al
;
O
F
C
,o

cc
ip
it
al

fr
o
n
ta
l
ci
rc
u
m
fe
re
n
ce
;
p
at
,p

at
er
n
al
;
R
D
E
R
M
,r
es
tr
ic
ti
ve

d
er
m
o
p
at
h
y;

SD
,s
ta
n
d
ar
d
d
ev

ia
ti
o
n
;
T
O
P
,t
er
m
in
at
io
n
o
f
p
re
gn

an
cy
;
T
S,

ta
rg
et
ed

se
q
u
en

ci
n
g;

V
SD

,

ve
n
tr
ic
u
la
r
se
p
ta
l
d
ef
ec
t;
W

E
S,

w
h
o
le

ex
o
m
e
se
q
u
en

ci
n
g.

a
E
st
im

at
io
n
o
f
ge

st
at
io
n
al

ag
e
in

P
1
5
a
w
as

b
as
ed

o
n
fe
ta
l
si
ze

at
th
e
fi
rs
t
sc
an

,w
h
ic
h
co

rr
el
at
ed

w
it
h
a
ge

st
at
io
n
al

ag
e
o
f
2
1
+
4
w
ee

ks
;
it
is

th
er
ef
o
re

p
ro
b
ab

ly
u
n
d
er
es
ti
m
at
ed

.

1620 | ABDELFATTAH ET AL.

 10981004, 2020, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hum

u.24067 by T
est, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



them were novel (previously not reported in NLS). Two PSAT1 var-

iants were recurrent in this cohort: one of the previously reported

variants (c.296C>T, p.(Ala99Val)); observed in four unrelated fa-

milies) and one novel splice acceptor change (c.870‐1G>T; observed
in three unrelated families). The novel PHGDH and PSAT1 variants

were either absent from the gnomAD database (https://gnomad.

broadinstitute.org/) or present at a very low frequency, compatible

with the expected carrier frequency for a very rare recessive disease.

The highest allele frequency of 1.52e−4 was recorded for the re-

current PSAT1 variant (c.296C>T, p.(Ala99Val)). Three of the novel

missense variants received a formal classification of VUS (variant of

uncertain significance) according to ACMG recommendations

(Richards et al., 2015), while all other observed variants were

classified as either pathogenic or likely pathogenic. The results of the

analysis of all the novel variants by various in silico prediction tools

are summarized in Table 2.

Affected individuals from six families with known parental con-

sanguinity were homozygous for the variant considered as causative,

while three families had different compound heterozygous constella-

tions (families 7, 10, and 13). In the non‐consanguineous family 3, SNP

(single nucleotide polymorphism) microarray showed loss of hetero-

zygosity for the entire length of chromosome 1, indicating that homo-

zygosity for the PHGDH variant resulted from UPD of chromosome 1. In

one family (family 11), where paternal DNA was unavailable and the

fetal material derived from FFPE tissue insufficient for a full screening,

only the maternally inherited PSAT1 variant could be identified, allowing

the attribution of this case to PSAT1 deficiency (Table 1).

The distribution of novel and previously described disease‐
associated variants is shown in Figure 1. Notably, most NLS‐
associated PHGDH variations predicting missense changes affect the

nucleotide binding domain (NBD) and the substrate binding domain

(SBD) of the protein respectively, whereas the majority of the

PHGDH variants previously observed in nonlethal PHGDH deficiency

are located in the C‐terminal regulatory domain (Figure 1a). In con-

trast, for pathogenic PSAT1 variants no obvious phenotype‐specific
distribution was observed (Figure 1b).

F IGURE 1 Distribution of mutations along PHGDH and PSAT1 genes. Schematic representation of variants in the genes PHGDH (a) and
PSAT1 (b). Exons are to scale (larger rectangles represents coding region, lower represents UTR) joined by a continuous line (introns, not to
scale). Different colors refer to the different domains of the protein as indicated. Disease‐associated variants are shown with their locations

along the genes. Variants observed in NLS are depicted above the diagrams, while variants observed in the nonlethal forms of PHGDH and
PSAT1 deficiency, respectively, are shown below the diagrams. Novel variants are depicted in bold. Alterations predicting a loss‐of‐function
(putative null alleles) are printed in red color. Variants whose functional impact could not be classified are printed in grey color (see

Figures S1–S3). [Prediction of different domains of PHGDH are based on the knowledge of the 94% similarity between rat and human
3‐phosphoglycerate dehydrogenase (3‐PGDH) and the paralogous enzyme of Escherichia coli, sharing 30% identical amino acids with human
3‐PGDH (Achouri et al., 1997; Cho, Jun, Bae, Ahn, & Kim, 2000; Klomp et al., 2000; Pind et al., 2002; Tabatabaie et al., 2009). Prediction of

different domains of PSAT1 are based on the knowledge of the extensive homology between E. coli SerC and phosphoserine aminotransferase of
rabbit and human that share 93.5% of their amino acid sequence (Hester et al., 1999; van der Zel, Lam, & Winkler, 1989)]. NLS, Neu–Laxova
syndrome; PHGDH, phosphoglycerate dehydrogenase; PSAT1, phosphoserine aminotransferase; UTR, untranslated region
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3.2 | Structural analysis and molecular modeling

To better understand the effects of the novel variants on the protein

structure and functional consequences, we conducted structure

analysis and molecular modeling of the novel NLS‐associated mis-

sense changes in comparison to known PHGDH and PSAT1

deficiency‐associated mutants. For both, PHGDH and PSAT1, the

functionally active enzyme proteins are dimers, and their dimeric

configuration is known to be essential for their appropriate function

(John, 1995; Mishra, Ali, Nozaki, & Bhakuni, 2010).

Taken together, the structural analyses suggest that the majority

of the previously reported and newly detected PHGDH and PSAT1

missense variants cluster at distinct sites of the protein structure.

The major region that is affected by disease‐associated variants is the

substrate/cofactor binding site of the respective proteins, suggesting

that the respective mutants directly affect enzymatic activity. A

second hot spot region in both proteins is the subunit interface in the

homodimeric enzymes, indicating that the respective variants in-

directly affect activity via a reduced dimer stability. However, it must

be noted that there also exist some additional variants at other en-

zyme sites, which may affect enzymatic activity by different me-

chanisms, like, for example, a reduced overall stability of the domain

structure (Table 2 and Supporting Information Results and Figures S2

and S3).

3.3 | Phenotype analysis

The physical findings in 19 affected individuals with PHGDH and

PSAT1 variations are summarized in Table 1, and are provided in

more detail in Table S4. Phenotypic features of selected patients

are shown in Figure 2. All cases except the two affected children

from family 6 represented pre‐ or perinatal deaths with an un-

ambiguous clinical diagnosis of NLS. Four individuals died shortly

after birth, two were stillborn, and in five cases, the pregnancy was

terminated upon the detection of severe fetal anomalies by ul-

trasound or after genetic confirmation of recurrence of the disease

in the fetus (patients 1, 7b, 8, 12, and 15b). The remaining in-

dividuals diagnosed as typical NLS survived up to 4 months. The

median age at death of the liveborn patients with NLS (excluding

family 6) was 5 days. In contrast, the affected children from family

6 exhibited a less severe phenotype, which was interpreted as

intermediate between mild NLS and a very severe expression of

nonlethal PSAT1 deficiency. One child died at age 6 years and the

other one was still alive at age 4 years. All affected individuals

showed significant IUGR (−1.7 SD to −4.6 SD for term or near‐
term newborns).

All patients examined showed typical craniofacial abnormalities

with microcephaly (−3.4 SD to −6.1 SD for term or near‐term new-

borns), sloping forehead, and micrognathia. A round gaping mouth,

low‐set and malformed ears, and a short neck were recorded in a

large majority of cases. More severe craniofacial abnormalities with

frank ocular proptosis, everted lips, and ectropium were less frequentT
A
B
L
E

2
(C
o
n
ti
n
u
ed

)

G
en

e
V
ar
ia
n
t

C
o
n
se
q
u
en

ce
o
n

R
N
A
/p
ro
te
in

gn
o
m
A
D
a

M
et
a‐
SN

P
M
u
ta
ti
o
n
T
as
te
r

C
A
D
D
b

iS
ta
b
le

3
D

m
o
d
el
in
g

A
C
M
G
c

LO
V
D
³
D
B
‐ID

P
SA

T
1

c.
9
5
5
d
el

p
.(A

rg
3
1
9
A
sp

fs
*1
4
)

N
o
t
fo
u
n
d

N
A

D
is
ea

se
ca
u
si
n
g
(1
.0
)

3
5
.0

D
ec
re
as
e

(0
.7
8
9
1
)

N
A

P
A
T
H

(P
V
S1

,

P
M
2
,P

P
1
)

P
SA

T
1
_0
0
0
0
1
5

N
ot
e:

V
ar
ia
n
ts

re
fe
r
to

th
e
re
fe
re
n
ce

se
q
u
en

ce
s
o
f
P
H
G
D
H

(N
M
_0
0
6
6
2
3
.4
;
N
G
_0
0
9
1
8
8
.1
)
an

d
P
SA

T
1
(N

M
_0
5
8
1
7
9
.4
;
N
G
_0
1
2
1
6
5
.1
).
N
o
ve

l
m
u
ta
ti
o
n
s
ar
e
p
ri
n
te
d
in

b
o
ld
.

A
b
b
re
vi
at
io
n
s:
A
C
M
G
,A

m
er
ic
an

C
o
lle

ge
o
f
M
ed

ic
al

G
en

et
ic
s
an

d
G
en

o
m
ic
s;
C
A
D
D
,C

o
m
b
in
ed

A
n
n
o
ta
ti
o
n
D
ep

en
d
en

t
D
ep

le
ti
o
n
;
LO

V
D
,L

ei
d
en

O
p
en

V
ar
ia
ti
o
n
D
at
ab

as
e;

N
A
,n

o
t
ap

p
lic
ab

le
;L

P
A
T
H
,l
ik
el
y

p
at
h
o
ge

n
ic
;
P
A
T
H
,p

at
h
o
ge

n
ic
;
P
H
G
D
H
,p

h
o
sp
h
o
gl
yc
er
at
e
d
eh

yd
ro
ge

n
as
e;

P
LP

,p
yr
id
o
xa

l
p
h
o
sp
h
at
e;

P
SA

T
1
,
p
h
o
sp
h
o
se
ri
n
e
am

in
o
tr
an

sf
er
as
e;

V
U
S,

va
ri
an

t
o
f
u
n
ce
rt
ai
n
si
gn

if
ic
an

ce
.

a
R
ep

re
se
n
ta
ti
o
n
in

gn
o
m
A
D

is
gi
ve

n
as

n
u
m
b
er

o
f
o
b
se
rv
ed

al
le
le
s/
n
u
m
b
er

o
f
h
o
m
o
zy
o
te
s.

b
C
A
D
D
P
H
R
E
D
sc
o
re
:C

A
D
D
(h
tt
p
:/
/c
ad

d
.g
s.
w
as
h
in
gt
o
n
.e
d
u
/)
v1

.4
P
H
R
E
D
‐li
ke

(−
1
0
×
lo
g1

0
(r
an

k/
to
ta
l)
)s
ca
le
d
C
‐s
co

re
:r
an

ki
n
g
a
va

ri
an

t
re
la
ti
ve

to
al
lp

o
ss
ib
le

su
b
st
it
u
ti
o
n
s
o
f
th
e
h
u
m
an

ge
n
o
m
e
(8
.6
×
1
0
9
).

A
sc
al
ed

C
‐s
co

re
≥
1
0
:
va

ri
an

t
b
el
o
n
gs

to
1
0
%

m
o
st

d
el
et
er
io
u
s
va

ri
an

ts
;
C
‐s
co

re
≥
2
0
:
va

ri
an

t
b
el
o
n
gs

to
1
%

m
o
st

d
el
et
er
io
u
s
va

ri
an

ts
.

c C
la
ss
if
ic
at
io
n
o
f
p
at
h
o
ge

n
ic
it
y
ac
co

rd
in
g
to

R
ic
h
ar
d
s
et

al
.(
2
0
1
5
).

d
V
ar
ia
n
t
is

as
su
m
ed

to
af
fe
ct

sp
lic
in
g.

ABDELFATTAH ET AL. | 1623

 10981004, 2020, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hum

u.24067 by T
est, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://cadd.gs.washington.edu/


and appeared to correlate with the degree of microcephaly and skin

involvement (Tables 1 and S4).

Structural CNS abnormalities were evaluated by ultrasound,

MRI, or at autopsy. Abnormal gyration was found in 9 of 11 cases

and variable in expression ranging from lissencephaly to pachygyria

and polymicrogyria. Cerebellar hypoplasia, hypoplasia/agenesis of

the corpus callosum, and hydrocephalus/enlarged ventricles were

identified in almost all cases who had detailed examination. Occa-

sionally observed CNS histopathological findings included wide-

spread gliosis, hypoplastic corticospinal tracts, reduced number of

anterior horn motor neurons, dysplastic thalami, and abnormal

brain vessels.

All affected fetuses and infants had some degree of joint con-

tractures, often with a typical pattern of hands and feet posture

(Figure 2). Swelling or edema of hands and/or feet occurred in 10 of

18 patients (56%). Ichthyosis was recorded in all but two cases and

was variable in expression. Seven affected individuals showed re-

strictive dermopathy (39%). Genitourinary abnormalities were re-

ported in 11 of our patients, mostly small kidneys and hypoplastic

genitalia. Cleft palate was present in five patients; cataracts were

recorded in eight cases. Occasional abnormalities that were re-

corded included heart defects (patients 9, 12, and 13), sacral

agenesis (patient 9), duodenal atresia (patient 7a), under-

development of muscles (patient 14), microcornea (patient 12),

retinal detachment (patient 10), and preaxial hexadactyly (patient

7a; Tables 2 and S4).

4 | DISCUSSION

The present cohort (15 unrelated families, 14 of them with NLS and

one with a very severe form of PSAT1 deficiency) increases the

number of molecularly characterized unrelated families affected by

NLS to a total of 35 (Acuna‐Hidalgo et al., 2014; Bourque et al., 2019;

El‐Hattab et al., 2016; Mattos et al., 2015; Shaheen et al., 2014),

among which a PSAT1 defect turned out to be the most common

cause (accounting for 18 out of 35 unrelated cases; 51%), closely

followed by PHGDH (16/35; 46%). This distribution may be affected

by population selection, as in the present and previously published

NLS cases, origin from the Middle East has been dominant with at

least one obvious PSAT1 founder allele, c.296C>T, p.(Ala99Val). This

particular missense change has been identified in four unrelated fa-

milies of our cohort and was previously reported in another five

unrelated families (Acuna‐Hidalgo et al., 2014; El‐Hattab et al., 2016).

Notably, PHGDH variations are more prevalent in nonlethal serine

deficiency disorders (Figure 1 and Tables S1–S3). For PSPH, there is

still only one NLS family (3%) with a presumed causative variant

(Acuna‐Hidalgo et al., 2014). Therefore, this gene is still awaiting

confirmation of its association with NLS. As we could solve the un-

derlying genetic defect in one of the two families previously reported

as negative for mutations in the three serine biosynthesis pathway

genes (family 4, previously reported as family 11 by Acuna‐Hidalgo

et al., 2014), there is only one remaining family from that previous

study with a clinical diagnosis of NLS and an unidentified genetic

F IGURE 2 Clinical photographs documenting the phenotype in selected cases of this cohort. Variable clinical presentation of several
patients as newborns (P3, P4, P7, P9, P11, P14) and at the age of 3.5 years (P6a). Patient ID is indicated on the top of the respective photos
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cause. As the phenotype in that family had not a final diagnosis of

NLS (according to a careful review of the clinical phenotype), the

hypothesis of possible further genetic heterogeneity of NLS (Acuna‐
Hidalgo et al., 2014) cannot be further supported. In patient 11, we

were able to identify only the disease‐causing variant on one allele,

but the presence of the recurrent NLS‐associated PSAT1 variant

(c.296C>T) in the heterozygous state is strongly suggestive that this

is another case of PSAT1‐associated NLS. The poor quality and

quantity of the patient's DNA extracted from the formalin‐fixed tis-

sue slides and unavailability of a paternal DNA sample prohibited a

full screening for the paternal variant.

The discovery that genes encoding enzymes of the L‐serine bio-

synthesis pathway are mutated in NLS suggested that this phenotype

represents the severe end of the spectrum of serine deficiency dis-

orders (Acuna‐Hidalgo et al., 2014; Shaheen et al., 2014). However,

the proposed more severe impact on the enzymatic activity of NLS‐
associated changes has not yet been proven. It is known that serine

plays a vital role in the cellular proliferation and in development of

the CNS and other organs. De novo biosynthesis of L‐serine from

glycolytic intermediate 3‐phosphoglycerate is the essential source of

L‐serine in mammals (Furuya, 2008). The nonlethal types of serine

biosynthesis defects share with NLS a prominent impact on brain

development and function, but the degrees of microcephaly and brain

dysfunction are extremely variable. For a few PHGDH mutants as-

sociated with nonlethal types of serine biosynthesis defects, a con-

siderable residual enzymatic activity in the range of 12–35% of

normal has been shown (Klomp et al., 2000; Pind et al., 2002;

Tabatabaie et al., 2011).

The present cohort of 14 novel NLS families further expands the

spectrum of NLS‐associated PSAT1 and PHGDH variants (7 and 3

novel variants, respectively), and genotype analysis confirmed the

nonoverlap with genetic changes causing nonlethal serine biosynth-

esis defects (Figure 1 and Tables S1 and S2). Our observation of the

family 6 (intermediate phenotype between a mild form of NLS and

very severe expression of nonlethal serine biosynthesis) defect fur-

ther supports the view that there is a continuum of phenotypic ex-

pression from the most severe prenatally lethal forms (patients 12

and 14), moderate NLS expression allowing a short period of post-

natal survival (patients 3 and 7a) to a very severe nonlethal type of

serine deficiency (patients 6a and 6b). The severity of the disease did

not correlate with the identity of the mutated gene. Less severe

expression of NLS was instead observed with variants in either

PHGDH (e.g., patient 3 with the homozygous mutation c.638C>T) or

PSAT1 (e.g., patient 7a with the compound heterozygous changes

c.181C>T and c.296C>T). Biallelic nonsense, frameshift or splice site

changes, predicting complete loss‐of‐function of PSAT1 or PHGDH

gene products, have never been reported in nonlethal serine bio-

synthesis disorders and in only one case of NLS (Mattos et al., 2015;

Tables S1 and S2). Notably, this affected fetus had a most severe

expression of NLS. We report here a homozygous splice acceptor

change (c.870‐1G>T) in the PSAT1 gene in patient 14 with a very

severe expression of NLS (Figure 2). Notably, the same splice site

change was also found in compound heterozygosity with two

different missense variants (p.Ala99Val and p.Glu155Gln) in two li-

veborn patients of our cohort (patients 10 and 13). These findings

further support the view that a complete or near‐complete loss of

enzymatic activity leads to the most severe expression of NLS. Such

cases are presumed to end with early fetal loss and are likely to

remain undiagnosed. Consistently, there is one report on a homo-

zygous truncating PHGDH variant, c.1030C>T, p.(Arg344*), in a case

of fetal loss due to nonimmune hydrops fetalis (Monies et al., 2019).

In the presence of one allele with a variant causing complete loss of

function, the severity of expression appears to be dictated by the

nature of the change on the second allele. The phenotypic expression

in such cases and in those with homozygous variants allows a pre-

liminary empirical classification of PSAT1 and PHGDH variants ac-

cording to their impact on protein (enzymatic) function (Tables S1

and S2). Notably, the PSAT1 allele c.296C>T, p.(Ala99Val), has re-

peatedly been observed with a somewhat milder expression of NLS,

when this change was in the homozygous or in a compound het-

erozygous state (Acuna‐Hidalgo et al., 2014). Consistently, the same

homozygous variant has recently been reported in a patient that died

at 9 weeks of life and was classified as an intermediate phenotype

between NLS and infantile serine biosynthesis defect (El‐Hattab

et al., 2016). Comparison of all cases with the recurrent PSAT1 mis-

sense change p.Ala99Val in a homozygous state also shows some

variability, but the phenotypic spectrum appears to be shifted toward

a milder expression (all cases were liveborn at term or near term and

were lacking frank proptosis or restrictive dermopathy). Accordingly,

the PSAT1 variant c.129T>G, p.(Ser43Arg), we identified in family 6

with the intermediate clinical expression has been published before

with a similar phenotype of serine biosynthesis deficiency with se-

vere prenatal onset microcephaly (Brassier et al., 2016). As it seems

that gradual differences in residual enzymatic activity may have

great influence on the phenotype, we anticipate quite tight

genotype–phenotype correlations, but many more observations are

necessary to corroborate the variant‐specific phenotype associations.

Additional unidentified genetic modifiers or nongenetic factors may

also play a role in determining the severity of expression. These

considerations underscore the need for functional studies to assess

the residual enzymatic activity of mutants associated with variable

expressions of serine biosynthesis defects. In fact, a very recently

published study using a quantitative, yeast‐based growth assay could

demonstrate differences in the functional impact of PSAT1 variants,

which were in agreement with phenotype annotations. For example,

normalized growth estimates were lowest for some NLS‐associated
variants, such as p.Ser179Leu and p.Cys245Arg (<0.10), intermediate

for the variant p.Ala99Val (0.60) associated with a less severe ex-

pression of NLS, and mildly impaired for p.Ser43Arg (0.75) reported

with a severe form of nonlethal PSAT1 deficiency. The highest level,

still significantly below the normal, was calculated for p.Asp100Ala, a

variant known to be associated with nonlethal PSAT1 deficiency (Sirr

et al., 2020).

When comparing the genotypes observed in serine deficiency

disorders and NLS, we noticed that the variants were distributed

along the PHGDH gene (Figure 1a), but interestingly more than half of
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the variants identified with nonlethal PHGDH deficiency disorder

resided in the regulatory domain of PHGDH. In contrast, the majority

of NLS‐associated variants were located in the nucleotide binding

domain of PHGDH (Figure 1a). It was previously suggested that al-

teration of the C‐terminal domain of mammalian PHGDH had less

impact on the enzymatic activity (Klomp et al., 2000). It was also

noted that the presumed regulatory domain had poor conservation

across species (Achouri, Rider, Schaftingen, & Robbi, 1997). In the

latter study, it was shown that the removal of the carboxyl‐terminal

209 amino acids from the rat enzyme lowered but did not abolish the

enzyme activity (Achouri et al., 1997). However, differential effects

of variants in those genes are not strictly related to the affected

protein domains, they may also occur within the same domain, even

with mutations at closely neighboring codons. This is exemplified by

PSAT1 mutations p.Asp100Ala and p.Ala99Val, which are known to

cause nonlethal PSAT1 deficiency and NLS, respectively (Figures 1b

and S3).

In conclusion, this study and a literature review show that pa-

thogenic PHGDH and PSAT1 variants lead to a spectrum of human

disorders and that NLS per se has varying degrees of phenotypic

expression likely representing the extreme end of a continuum. We

postulate that the individual residual enzyme activity of mutant

proteins is the major determinant of the phenotypic variability, but

other genetic and nongenetic modifiers cannot be excluded. Further

functional studies and modeling of PHGDH and PSAT1 defects are

needed to explore in detail the functional basis of the phenotypic

variability.
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