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A B S T R A C T

Dark deposits visible from orbit appear in the Martian south polar region during the springtime. These are
thought to form from explosive jets of carbon dioxide gas breaking through the thawing seasonal ice cap,
carrying dust and dirt which is then deposited onto the ice as dark ‘blotches’, or blown by the surface
winds into streaks or ‘fans’. We investigate machine learning (ML) methods for automatically identifying these
seasonal features in High Resolution Imaging Science Experiment (HiRISE) satellite imagery. We designed deep
Convolutional Neural Networks (CNNs) that were trained and tested using the catalog generated by Planet
Four, an online citizen science project mapping the south polar seasonal deposits. We validated the CNNs by
comparing their results with those of ISODATA (Iterative Self-Organizing Data Analysis Technique) clustering
and as expected, the CNNs were significantly better at predicting the results found by Planet Four, in both
the area of predicted seasonal deposits and in delineating their boundaries. We found neither the CNNs or
ISODATA were suited to predicting the source point and directions of seasonal fans, which is a strength of
the citizen science approach. The CNNs showed good agreement with Planet Four in cross-validation metrics
and detected some seasonal deposits in the HiRISE images missed in the Planet Four catalog; the total area of
seasonal deposits predicted by the CNNs was 27% larger than that of the Planet Four catalog, but this aspect
varied considerably on a per-image basis.
1. Introduction

Springtime on the Martian south polar region is marked by the
appearance of dark streaks dotting the surface of the thawing carbon
dioxide seasonal ice cap. The prevailing winds and explosive carbon
dioxide (CO2) gas jets that are breaking through the seasonal ice are
thought to be jointly responsible for these surface features (Kieffer,
2000; Piqueux et al., 2003; Kieffer et al., 2006; Kieffer, 2007; Piqueux
and Christensen, 2008; Thomas et al., 2010; Portyankina et al., 2010;
Pilorget et al., 2013). In this currently favored model, first proposed
by Kieffer (2000), the jets transport dust and dirt from below the
semi-translucent seasonal ice sheet up to the surface where it is then
distributed by the local surface winds and deposited back onto the ice
as the dark seasonal fans visible from orbit (see Fig. 1). Laboratory
experiments have been able to trigger dust eruptions from a layer
of dust inside a carbon dioxide slab ice under Martian conditions,
supporting this argument (Kaufmann and Hagermann, 2017).

∗ Corresponding author.
E-mail address: m.schwamb@qub.ac.uk (M.E. Schwamb).

1 http://www.planetfour.org

Exploring the distribution of the seasonal fans provides valuable
insights into surface wind patterns, the CO2 jet process, and the cli-
mate cycles of Mars. This necessitates mapping the observable dark
deposits, examining their recurrence over successive spring-times, and
monitoring for the detection of newly emerged fans over an area of
1000s of square kilometers and hundreds of high-resolution satellite
images. The flotilla of spacecraft in orbit around Mars have captured
the appearance and evolution of these springtime seasonal deposits.
Hundreds to thousands or more seasonal fans are visible in high-
resolution imagery taken during the southern spring (Piqueux et al.,
2003; Hansen et al., 2010; Thomas et al., 2010; Aye et al., 2019).
Identifying and mapping these seasonal fans is a difficult task, and no
automated routine for doing so exists (Piqueux and Christensen, 2008;
Aye et al., 2019).

To this end, the Planet Four1 citizen science project has crowd-
sourced the identification and labeling of these spring-time seasonal
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Fig. 1. Example tiles (HiRISE subimages) reviewed by the Planet Four project, on the left. On the right, the resulting Planet Four fan (green) and blotch (magenta) catalog derived
from the volunteer classifications are overlaid on the tile. Each tile is 648 pixels high and 840 pixels wide, but its ground resolution varies with HiRISE binning modes. These tiles
are derived from HiRISE images ESP_012008_0975 (P4 tile APF00006tp), ESP_012889_0985 (APF000018t), ESP_020780_0930 (APF0000tld), and ESP_021491_0950 (APF0000p90).
Note an example of overlap between a fan and two blotches in the lower right image, on its right hand side, above center. The primary purpose of this figure is to illustrate
the two types of markings that humans could label for Planet Four, and the difference between them, namely fans and blotches. It should be noted that not all source data and
volunteer markings are as well delineated as shown here—see, e.g. Figs. 5 and 12. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
deposits in over 200 High Resolution Imaging Science Experiment
(HiRISE) (McEwen et al., 2007) camera images to create a catalog
of ∼400,000 south polar seasonal fan deposits (Aye et al., 2019) (see
Fig. 1). Although a success, it can take a long time before sufficient
numbers of annotations from volunteers are generated. A potential
alternative or complement to crowd-sourced annotations that would
speed up mapping considerably is the use of machine learning. In
particular, tremendous advances have been made in recent years using
supervised learning in the form of deep Convolutional Neural Networks
(CNNs) applied to imagery. In supervised learning, a model is created
2

by a training algorithm that learns to associate data samples with labels
for those samples. Subsequently, the trained model is applied to the task
of predicting labels for new data for which no pre-existing labels are
available. Some examples of the use of deep CNNs in the planetary and
space sciences includes crater detection/counting on the moon (Silburt
et al., 2019; Yang et al., 2020) and Mars (Lee, 2019), detection of
galaxies (Wu et al., 2018; Walmsley et al., 2019), galaxy morphology
classification (Walmsley et al., 2019), detection and classification of
lunar rockfalls (Bickel et al., 2019), classification of terrain features on
Mars (Wagstaff et al., 2018, 2021), and detection of changes that have
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occurred in images of the same surface location taken at two different
times (Kerner et al., 2019). A recent study brought together citizen
science and machine learning (Jones et al., 2020), as we also do in
this paper.

For supervised learning methods to generalize effectively to new
data, ideally both high volume and high diversity of data is available
for training. However, a barrier to achieving this ideal is that human-
labeling of large datasets can often be very costly to acquire. The
publicly available dataset represented by the (Aye et al., 2019) Planet
Four catalog matches both of these conditions, while already having
been labeled by humans. Therefore, we set out to design supervised
machine learning methods that learn from the catalog, and hence
enable automated detections of the presence and location of seasonal
fan deposits in new Mars polar imagery from HiRISE. As a step towards
automating the mapping of seasonal fans, in this paper we present
results from algorithms that aim to identify which specific pixels in
images of the Mars surface belong to seasonal fans. To validate that
our methods were well designed and that sophisticated methods such
as CNN are warranted, we compare their predictions with those of
the long-existing and still widely applied Iterative Self-Organizing Data
Analysis Technique (ISODATA) clustering method (Ball and Hall, 1965)
applied to the same target, i.e. directly to the HiRISE imagery. We do
not attempt to separate the predicted pixels into separated shapes nor
to identify directionality. As would be expected given the success of
deep CNNs on similar tasks, we found that the deep CNN we trained
resulted in much better agreement with the Planet Four catalog than
ISODATA clustering, and was capable of making predictions for some
image portions missed by the Planet Four catalog.

As a secondary study using supervised machine learning, we trained
a model that aimed to determine if any CO2 jet seasonal deposits exist
n the ‘‘tiles’’ (640 × 824 pixel overlapping crops extracted from full
iRISE images) that were inspected by human volunteers for Planet
our. This binary classification model achieved a high degree of accu-
acy, meaning that this approach has strong potential for narrowing
own which tiles human volunteers are asked to look at, by omitting
large percentage of those predicted to show no CO2 jet seasonal

eposits, or at least prioritizing the ones that do.
Our two types of models together suggest there is strong potential

or using machine learning to maximize the effort of the volunteers
erforming the human review of Mars imagery. Moreover, the fact that
e did not identify an accurate way for machine learning to identify
irectionality of CO2 jet seasonal deposits indicates that the collective
ffort of human volunteers remains as a vital resource.

The paper is organized as follows. In Sections 2 and 3 we outline the
ata that we used, and overviews our primary approach – semantic seg-
entation – and measures for assessing its accuracy. Next, in Section 4
e describe the baseline ISODATA method, and then Section 5 presents
ur primary methods and results, i.e. use of supervised learning to train
deep CNN to semantically segment markings in HiRISE images. This

irstly includes explanation of our design for each of the primary sub-
asks required by a supervised learning investigation, i.e. how we split
ata into training and validation sets, how we trained an algorithm
n the training set, and how inference is carried out using the trained
odel applied to validation data. The section then presents our results.
ext, Section 6 describes methods and results for a secondary study

n which we train CNNs as binary classifiers that identify whether
ark seasonal fans or blotches are present within a HiRISE image or
ubimage. This differs from the semantic segmentation approach in
hat it does not aim to identify the image pixels that belonged to fans
nd blotches. Finally, Section 7 presents discussion of our results and
onclusions. Our python code for training and validating our models,
nd producing Figs. 6–14 in this paper, is available on Zenodo: doi:
3

0.5281/zenodo.4292195.
2. Data

2.1. HiRISE images

The imagery used in this paper was sourced from 221 publicly
available2 full color (RGB) images, acquired by the Mars Reconnais-
sance Orbiter’s HiRISE (McEwen et al., 2007) camera in southern spring
during Mars Years 29 and 30, the same as listed in Tables 1 and 2 in Aye
et al. (2019). These 221 images have pixel sampling scales of either
25, 50, or 100 cm per pixel. The size of the original 221 images were
all either 1012 (pixel scale 100 cm), 2024 (pixel scale 50 cm) or 4048
pixels wide (pixel scale 25 cm). The heights vary in each image, ranging
from a minimum of 10 000 to a maximum of 80 000 pixels. See Fig. 2
for two example full size HiRISE images (left quarter of each example).

The 221 images can be grouped into subsets in various ways such
that images in a group share similarities. We chose to group by region
s defined in Table 1 of Aye et al. (2019); each region is indicative
f a particular range of polar latitudes and longitudes that has been
argeted for imaging multiple times by HiRISE. There are 28 distinct
egions covering our data. The number of images in a region varied
rom 1 (5 instances) to 18.

.2. The Planet Four catalog: Crowd-sourced identification of seasonal fans

The Planet Four citizen science project has reviewed the set of
IRISE images that comprise our sample. It was decided that there
as no need to compensate for directional bias, due to several reasons:
. Due to natural orbit progression of the spacecraft, the angle of the
maging scan on the surface changes over time; 2. in most locations,
ocal topography is dominating local wind direction, and is variable
ver the season, but to varying degree between regions of interest; 3.
s the season progresses, the sun angles also change for the given local
ime at which most images are taken due to the spacecraft’s orbit. These
ariations randomize the final appearance of fan directions in image
iles of the Citizen Science display system. Combining the multiple
olunteer assessments together, Aye et al. (2019) has produced a cat-
log of carbon-dioxide jet produced markings in our sample of HiRISE
mages. We use this catalog of marking locations, shape, and sizes as
ur supervised learning labels for training and testing the ML deep
NNs, and we then compare various metrics of agreement between
atalog and predictions made by the CNNs and ISODATA clustering.
t should be noted that there are non-idealities in using the catalog
s labels for supervised learning, which we detail in Section 7.3. The
lanet Four data is previously published as downloadable Supporting
nformation (Aye et al., 2019).3

Planet Four volunteers reviewed ‘‘tiles’’, 648 pixels high and 840
ixels wide subframes that were cropped from the 221 HiRISE images,
ith adjacent tiles sharing 100 pixels of overlap, as detailed previ-
usly (Aye et al., 2019). In this tiling scheme, a tile had to fit entirely
ithin the bounds of the original image. Consequently, a strip of pixels
own the right hand side and at the base of the HiRISE image were not
art of any tile and were never labeled by the Planet Four project. We
emoved these unlabeled areas of the original images by cropping, and
hereby they did not contribute to any results reported in this paper.
ee Fig. 1 (left) for example tiles cropped out of full-size HiRISE, to
his size of 648 × 840 pixels, as viewed by human labelers. For the
ample of HiRISE images used in this work, 42,904 tiles were searched
or seasonal fans by the Planet Four project. For further details, the
eader is referred to Aye et al. (2019).

Visitors to the Planet Four website were tasked with identifying and
arking any seasonal features present in the HiRISE subframes with
rawing tools in the web interface. Human annotations were collected

2 https://www.uahirise.org/catalog/
3 Also available online: Link to Fan catalog, Link to Blotch catalog.
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Fig. 2. Examples (left: HiRISE Image ID ESP_012008_0975, right: HiRISE Image ID ESP_020954_0935) from the set of 221 HiRISE images used. This figure qualitatively shows the
nature of the full HiRISE images, the Planet Four catalog, and the variability of our methods’ performance even within a single image. Each example shows the original image (left)
with binary feature masks created from the P4 catalog, that we used for supervised learning (center-left), the binary result from our trained CNN’s prediction in cross-validation
(center-right), and the binary result from ISODATA clustering (right).
by Planet Four: blotches and fans—see Fig. 1. Blotches are ellipses
represented with five parameters: a pixel height and width location
for the center of the ellipse, a minor axis radius, a major axis radius,
and an angle from horizontal. Fans are comprised from a semi-circle
joined to an isosceles triangle. They are represented by an ice-cream-
cone shape with five parameters: a pixel height and width location for
the apex of the triangle, the vertex angle of the triangle, the angle
between the horizontal and the line segment from the apex to the center
of the triangle’s base, and the distance from the apex to the center of
the base. For a diagram of these parameters, see Fig. 12 in Aye et al.
(2019). Volunteers were encouraged to draw with the fan tool, if clear
directionality and a starting point is visible. Otherwise, Planet Four
labelers were encouraged to use the blotch drawing tool.

The human annotations collected by Planet Four were combined
together for each tile to identify the seasonal features present. A
minimum of 30 up to 100 reviews per image tile were required before
retiring an image tile. A clustering algorithm was employed to take the
independent markings drawn by each volunteer and produce locations
4

(mid-point for the blotches and starting point for fans) and outlines of
the seasonal features based on the fan or blotch shape. A minimum
of 3 markings within variable pixel distances were required for the
density-based clustering scheme to have them entered into the final
pool for averaging and catalog entry. Sources where 50% or more of the
volunteer-drawn markings were made with the fan tool were deemed
to be fans, with the ice cream cone shape generated; otherwise an
ellipse (a blotch is generated). Details of the clustering algorithm and
validation of the resulting catalog are described in Aye et al. (2019).
For our sample of HiRISE images, the Planet Four project has produced
a catalog of 159,558 fans and 250,164 blotches (ellipses), identifying
locations of seasonal surface deposits produced by the CO2 jet processes
occurring during spring in the Martian south polar region (Aye et al.,
2019). For this work, we utilize both the Planet Four fan and blotch
catalogs, subsequently referring to these collectively as the Planet Four
catalog. Example fans and ellipses from the Planet Four catalog can be
seen in the right hand column of Fig. 1. CO2 jet seasonal deposits also
can be seen in the center left strips in Fig. 2, but the scale of that figure
is not designed to clearly show individual fan/blotch shapes.
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2.3. Data preprocessing

The original 221 images are stored in RGB JPEG2000 format. Al-
though this standard uses 16 bits per pixel per channel, the HiRISE
image pixel values had a maximum value requiring only 10 bits per
pixel per channel. For ease of use with training algorithms and to
reduce RAM usage, we converted all images to 8 bits per pixel per chan-
nel by casting all pixel values to 32 bit floating point representations,
multiplying by 255∕210 and then casting to 8-bit unsigned integers.
While this changes the maximum value of the data by a factor of four,
a linear rescaling will result in the same image dynamic range, but
with four times fewer discrete pixel values. We found that this process
does not typically affect the shape of the histograms of pixel values for
each color when applied to HiRISE images. Moreover, the rescaling is
justified by the fact that Planet Four also used HiRISE images converted
to 8-bit per channel PNG images for human inspection.

3. Separating CO𝟐 jet seasonal deposits from background

.1. Semantic segmentation

As mentioned, recent work has used deep CNNs to identify craters
n the moon (Silburt et al., 2019; Yang et al., 2020) and Mars (Lee,
019). Our focus here is similar in the sense of aiming to automatically
dentify surface features. However, there is a crucial difference in the
ata available to us; the mentioned papers all benefit from elevation
ata, whereas our data source is high resolution color satellite imagery.
n particular, the Mars Digital Terrain Model of Lee (2019) has a
esolution of 200 m, and hence its pixel size is two orders of magnitude
arger than our data. Even if the markings in the P4 catalog exhibited
levation differences, 200 m pixel sizes would be insufficient to resolve
he majority of the catalog. As will be discussed, as well as the absence
f elevation data, other non-idealities in the data results in a more
hallenging task for a deep CNN to learn than identification of craters
ased on elevation data.

There are different ways in which the Planet Four catalog4 might
e used for providing labels for supervised learning. The data in the
atalog includes location of fans, their size, and their orientation.
onsidering that the overarching scientific questions relate to wind
peed and direction, in our preliminary exploratory data analysis we at-
empted to train mask-RCNN models (He et al., 2017) to segment each
ndividual instance of fans and masks, hoping that the results could be
sed to predict the extent of directionality and size of fans. However,
he accuracy achieved was considered to be inadequate; validation
redictions suggests the model was unable to learn the difference
etween fans that were highly directional, and CO2 jet seasonal deposits
f similar appearance with no directional features. The mask-RCNN
odels also struggled with cases where fans in the catalog overlapped

in some cases smaller fans are entirely located inside larger fans).
oreover, some imagery shows darkish features that are clearly not fan

haped, and the model was unable to be trained to agree with human
abelers in these cases. We concluded that while humans are readily
ble to search for particular CO2 jet seasonal deposits that conform
ith a designated shape, this task does not yet align well with the

omputer vision problems that supervised machine learning excels at.
evertheless, it is anticipated that new supervised learning methods
an be developed that do much better than we were able so far.

For this paper, we focus on predicting the locations or presence
f CO2 jet seasonal deposits in HiRISE images by use of semantic
egmentation (Long et al., 2015). This is a computer vision approach
n which different features of an image are delineated, i.e. segmented,
y automatically considering every individual pixel, and classifying it

4 https://www.zooniverse.org/projects/mschwamb/planet-four/about/
esults
5

as belonging to exactly one category, out of a set of mutually exclusive
categories. In our application in this paper, the semantic segmentation
task is binary, since each pixel needs to be categorized as belonging
to a seasonal fan or blotch, or belonging to a background class. In this
Section, we introduce the metrics we used for comparing the extent of
agreement between algorithmically generated semantic segmentations
of an image with either a ‘‘ground-truth’’ or alternative segmentation
generated by other methods, in this case the Planet Four catalog.

3.2. Metrics for semantic segmentation accuracy

Since the aim is binary classification of pixels, there are two types
of disagreement that can occur when using semantic segmentation.
We emphasize disagreement here rather than error, because although
we want our methods to predict seasonal fans/blotches at least as
well as the Planet Four volunteers, there are known ways in which
different human labelers disagree, and some image features in which
the presence of a fan or blotch is subjective. We discuss this further
later in the paper. Irrespective, because the segmentation task is binary,
standard metrics for any binary classification task are relevant. It is
worth noting that some of the metrics we use have previously been used
for another citizen science project, in which craters were identified on
Mars (Sprinks et al., 2019). Here, we use recall (also known as sensitiv-
ity), precision, specificity and balanced accuracy; these are defined in
terms of True Positives (TP), False Positives (FP), False Negatives (FN)
and True Negatives (TN) as follows.

We have

Recall = TP
TP + FN

, (1)

Precision = TP
TP + FP

, (2)

Specif icity = TN
TN + FP

, (3)

and

Balanced Accuracy =
Recall + Specif icity

2
. (4)

Balanced accuracy is preferred to overall accuracy when the number of
samples in each class is unequal, as is the case for our data, for which
the two classes are ‘‘background’’ and ‘‘CO2 jet seasonal deposits’’.

In our context, recall can be thought of as measuring the fraction of
Planet Four catalog fan or blotch pixels that our semantic segmentation
models agreed with, whereas precision can be thought of as the fraction
of pixels the models predicted to be CO2 jet seasonal deposits, that were
also labeled as fans or blotches in the Planet Four catalog. Specificity
measures the fraction of pixels not in the Planet Four catalog that were
also not predicted as CO2 jet seasonal deposits by the models. Figs. 3
and 4 illustrate two typical situations that result in precision and recall
each having values of 0.5, for different reasons, as explained in the
caption of Fig. 4.

Semantic segmentation methods are also typically assessed using
single number metrics that take into account both recall and precision,
in the sense that both need to be high for the metric to be high.
One commonly used metric is known as Jaccard Index (JI) or IOU
(Intersection Over Union) (Rahman and Wang, 2016); it measures the
amount of overlap between two areas, as given by the intersection
between the two areas divided by their union. As described later,
JI is relevant for how we train our CNN. However, for measuring
semantic segmentation performance, we use another popular metric,
the harmonic mean of precision and recall, also known as the Dice
Coefficient (DC), or F1-score (Jadon, 2020). The reason for preferring
DC is that it tends to have a numeric value comparable to both recall
and precision when both are similar.

Formally, DC must be defined relative to a designated ‘positive’
class. In this case, the positive class is pixels that are included in
fan/blotch markings in the Planet Four catalog. Hence, DC can be

https://www.zooniverse.org/projects/mschwamb/planet-four/about/results
https://www.zooniverse.org/projects/mschwamb/planet-four/about/results
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Fig. 3. Example 1 of Dice Coefficient (DC) with value of 0.5. ‘‘Actual marking’’ refers to the Planet Four catalog. ‘‘Predicted marking’’ refers to the output of an algorithm and is
exactly misaligned by half of the actual marking. Cross hatching in the color-coded lower figure indicates the position of the ‘‘Actual marking’’. The larger green box in the DC
equation illustrates that Dice Coefficient weights True Positives by a factor of 2. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
expressed as the ratio of twice the number of correctly predicted pixels
that are in fan/blotch markings in the Planet Four catalog, TP, to the
sum of the pixels in fans/blotches in the Planet Four catalog and those
predicted by the algorithm to be in fans/blotches. The latter is equal to
the sum of 2TP, FP and FN. Hence,

DC = 2 ⋅ TP
2 ⋅ TP + FP + FN

. (5)

To illustrate, Figs. 3 and 4 show two examples where TP = FP = FN,
resulting in DC = 0.5. In Fig. 3, the prediction is misaligned with
the actual area by half the actual marking area’s width. In Fig. 4, an
actual marking is correctly predicted for all pixels, another is entirely
missed, and a mistakenly predicted area of the same size produces false
positives. We also use

log area ratio = log
(TP + FN
TP + FP

)

, (6)

i.e. the log ratio of the total number of pixels in the positive class
according to the Planet Four catalog to the total number of pixels
predicted by a model to be in the positive class. A positive value of
6

this metric means that less total area of fans and blotches was predicted
by the model than by the Planet Four catalog; a negative value is the
opposite. This metric can, by itself, be misleading, since it can have a
perfect value of 0.0 despite no overlap in actuals and predictions; hence
log-area-ratio is useful only when considered in combination with a
metric that takes into account both recall and precision, such as Dice
coefficient.

The final metric we consider is one that measures whether our
semantic segmentation methods agree with the Planet Four catalog as
to whether the center pixel of Planet Four catalog fans or blotches
should be predicted as a CO2 jet seasonal deposits. We call this metric
Center-Overlap; it is defined analogously to recall, i.e. it is the fraction
of Planet Four catalog fan or blotch shape center pixels (‘P4 Centers’ —
PC) that our algorithms correctly predicted (‘Matching Centers’ — MC)
as belonging to a marking. This can be expressed as

Center Overlap = MC
PC

. (7)

The value of Center-Overlap is that it provides an indication of whether
the machine learning method agrees with the Planet Four catalog on
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Fig. 4. Example 2 of Dice Coefficient (DC) with value of 0.5. ‘‘Actual marking’’ refers to the Planet Four catalog. ‘‘Predicted marking’’ refers to the output of an algorithm. Cross
hatching in the color-coded lower figure indicates the position of the ‘‘Actual marking’’. Unlike Fig. 3 where the prediction is partially aligned with the actual marking, this figure
shows the two extreme cases of disagreement, i.e. the cases where an entire actual marking is missed in the predictions, and where a marking not present at all in the actuals is
predicted. The larger green box in the DC equation illustrates that Dice Coefficient weights True Positives by a factor of 2. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
whether a marking should be present where a human says it should
be.

3.3. Masks for planet four catalog markings

For comparison of all model results with the Planet Four catalog,
we constructed binary mask images of the same size as the original
HiRISE images by constructing filled polygons corresponding to the
pixels interior to the parameterized cones and ellipses in the P4 catalog
designating each fan and blotch marking. Many fans and blotches
overlapped. As our primary machine learning aim was binary image
segmentation, we ignored whether polygons were blotches or fans, and
simply set a pixel value to one in the mask if it was contained in any
fan or blotch. See Fig. 2 (center-left of each example) and Section 5.2
for example mask images. Its worth noting that binary statistics have
been used before for citizen science projects regarding Mars, namely
identification of craters (Sprinks et al., 2019).
7

4. ISODATA clustering baseline

To motivate the need for a CNN and validate the effectiveness
of our CNN design we sought baseline results using a traditional
method for semantic segmentation, namely ISODATA (Ball and Hall,
1965). This is an unsupervised clustering algorithm similar to, but
more advanced than, k-means clustering. ISODATA is widely used in
multi- and hyperspectral satellite remote sensing for the separation of
spectral features and is applied to feature detection and mapping tasks
across a wide array of applications, including detection of ecosystem
degradation (Abdollahzadeh et al., 2021), mineral mapping (Mahboob
and Genc, 2019), and weed detection (Stroppiana et al., 2019). In
our current context, ISODATA performs an unsupervised clustering
and classification of the 3 spectral band HiRISE images, and then the
cluster with the lowest red brightness is used as the potential feature
detection and provides a segmentation of the darkest features in the
HiRISE images. The aim in ISODATA is to approximate the natural
structure of a multidimensional dataset by iteratively passing it over
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Fig. 5. Each row shows an example of a Planet Four tile cropped from a HiRiSE image (column A), alongside the label masks (column B), created from the Planet Four catalog, the
predictions of the trained CNNs from cross-validation (column C), and the predictions of ISODATA clustering, (column D). From the top, the HiRISE images are ESP_022699_0985,
ESP_022379_0930, ESP_020146_0950, ESP_011370_0980, ESP_011351_0945, ESP_011350_0945, ESP_011348_0950, ESP_011341_0980. The gray bands are not part of the images.
the data and defining classes by minimizing pixel separation values.
The detection of features is independent of the spatial relationships
between pixels, and does not incorporate any a priori knowledge of
the spectral character of the features (other than that they are darker
than the landscape). The ISODATA algorithm makes no assumptions on
8

the underlying probability distribution of the datasets. By selecting the
darkest class partitioned by ISODATA, the output is a binary prediction
for whether each individual pixel is a part of a CO2 jet seasonal deposit,
or part of background. Therefore ISODATA in this application can be
considered to produce semantic segmentation, just like our CNN does.
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Fig. 6. Planet Four pipeline for image tile APF0000q3k, using a density-based clustering pipeline as described in Aye et al. (2019). The min_samples parameter indicates how
many markings need to fall within a set of given pixel distances, and it was found that a value of 3 suppresses false positives efficiently, which was the goal of that pipeline. The
parameter n_(blotch|fan) classif indicates how many review submissions actually contained actual markings. In this case, 15 submissions out of the standard 30 required reviews
contained markings, indicating that the complexity of the image tile has made 50% of the volunteers skip trying Upper left: The HiRISE input tile to be marked by volunteers;
upper middle: the fan markings of 30 volunteers; upper right: the blotch markings of 30 volunteers; lower right: resulting blotches after applying density-based clustering and
averaging; lower middle: resulting fans after applying density-based clustering and averaging; lower left: the markings entering the catalog after a location-base >50%-voting
between coinciding fan and blotch markings.
4.1. Design

The automated ISODATA spectral clustering was implemented
through an IDL (Interactive Data Language) programmatic workflow
(Didriksen et al., 1987), utilizing ENVI (Environment for Visualizing
Images) software custom tasks (L3Harris, 2020). As ISODATA clus-
tering is based on the underlying statistics of the image, no training
data is required. The following parameters can be tuned to adjust
the performance of the ISODATA algorithm: number of iterations (I),
number of classes (N) and the convergence threshold (C). The number
of iterations was set high enough that it became redundant and did not
determine the exit condition of the algorithm (I = 200). Instead, the
algorithm exit was determined by the convergence threshold, which
was set to 99.99% and was achieved on all images. A range of values
of N were tested to gauge the sensitivity of the clustering to this
parameter. A slight performance improvement in feature segmentation
was observed with increasing N from 2 to 5. In particular, the number
of false positives was slightly reduced in images where a substantial
fraction of non-feature dark pixels existed, for example, shadows from
topographic variation, and so-called ‘‘spider channels’’ (Piqueux et al.,
2003). When assessed over a large number of images however, values
of N > 5 provided no substantial improvement in accuracy metrics,
but substantially increased computational time. A value of N = 5
was selected to balance computational time, with spectral sensitivity.
The class with the lowest brightness values (darkest in the red band)
was then selected and the 5 classes collapsed to 2, with the darkest
class representing the potential feature detection and pixels belonging
to all other classes representing background. This provided a binary
segmentation for direct comparison with the Planet Four masks and
the output of the CNN. Basic post-processing cleaning of the ISODATA
clustering output was undertaken to remove small isolated areas of
false-positives which were observed particularly in HiRISE images with
a poor signal-to-noise ratio. A region size threshold (R) was utilized
to remove all isolated areas below a certain size (number of pixels)
through application of the ’label region’ IDL code (L3Harris, 2022). This
procedure consecutively labels all of the regions, or distinct groups,
9

in a binary image with a unique region index, allowing the number
of features and their size (number of pixels) to be determined. A
range of R values were tested, with a final selection of R = 150
chosen to optimally balance (i) minimization of false positives, which
were higher in images of poor signal-to-noise, small scale elevation
change (resulting in shadow pixels), and featureless images; and (ii)
minimization of misses (real features that are not detected). Thus all
feature areas smaller than 150 contiguous pixels were removed from
the feature detection class and assigned to the background class. All
images shown have had the small feature filtering applied. Unlike
supervised learning, it is not necessary to use a cross-validation method
for ISODATA. Instead, the same algorithm is applied to all images, and
the results reported.

4.2. Results

We report results from ISODATA in Figs. 7–11 and Fig. 13, alongside
results from our trained CNNs (described in the following Section). As
can be expected from the known effectiveness of deep CNNs for seman-
tic segmentation (Minaee et al., 2021; Yuan et al., 2021), we generally
achieve better results using CNNs. Regardless of the performance of
ISODATA clustering when compared with the CNN, the method has
clear limitations. ISODATA relies on manual parameter selection to
identify which spectral class relates to the feature of interest. Thus
the model developed is specific to the problem of identifying spectral
features darker than image background, and would not be generalizable
to a different image segmentation context. Generalization capability is,
however, a strength of CNN architectures.

5. Supervised learning for semantic segmentation

We now present our primary approach to using semantic segmenta-
tion to identify CO2 jet seasonal deposits on HiRISE images, i.e. deep
CNNs trained by supervised learning. Such use of CNNs for semantic
segmentation has proliferated for both remote sensing (Yuan et al.,
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Fig. 7. Overall summary. Summary metrics for area coverage of the Planet Four catalog compared with the CNN and ISODATA clustering (upper) and summary performance
metrics (each metric treats the Planet Four catalog as ‘‘truth’’ data) for the two algorithms (lower). The statistics in this figure are aggregated over the entire dataset, i.e. not on
a per-region or per-image basis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2021) and more generally (Minaee et al., 2021), following the intro-
duction of the U-net CNN form in 2015 (Ronneberger et al., 2015).
Regardless of exact architecture, CNNs are ideally suited to taking into
account the context of other pixels in an image when classifying each
individual pixel. The specific form of CNN we use is a very recently
developed CNN called a HRNet (Wang et al., 2020).

5.1. Design

5.1.1. Training and validation design
In order to ensure that we trained a model with maximum gen-

eralizability, and that did not overfit to the physical appearance of a
specific location on Mars, we used a version of Leave-One-Out (LOO)
cross-validation (Sammut and Webb, 2010). The idea in LOO is to train
a model on all 𝑁 available samples apart from one (which is ‘left
out’) and then test the model’s performance on that remaining sample.
The process is then repeated such that every sample is left out once,
resulting in 𝑁 models being trained.

We chose to treat each polar Mars region (see Section 2.1) as a
ample, i.e. 𝑁 = 28. The reason for this was twofold. First, this choice

was expected to produce a more robust machine learning model than,
for example, treating each individual image as a sample, whereby
because spatially nearby images are expected to be more similar than
those further apart, a left-out image for model testing would often be
similar to images used during training. Hence test performance would
10

not be as indicative of actual model generalizability. Second, an even d
more important situation to avoid was splitting of images that showed
the same location into both the training set and a validation set. This
situation is relevant because the HiRISE images we used were acquired
in two consecutive Martian years, and there were many cases of image
pairs amongst the 221 images that were of the same location from two
consecutive years. Given that fans and blotches and their directions
may repeat each year, treating each region as a sample in this way
ensured that any images of the same location from both years were
either both in the training set, or both in the left-out validation region.

5.1.2. Deep Convolutional Neural Network architecture and training
Our HRNet design closely followed that of Wang et al. (2020).

We trained our HRNets (implemented in TensorFlow 2.1) from scratch
(i.e. random initial values for all parameters) using stochastic gradient
descent (SGD), (with momentum parameter equal to 0.9 and weight
decay parameter equal to 10−4 on all weights) and the soft-Jaccard
ndex loss function (also known as IOU loss) (Rahman and Wang,
016). The input data for SGD were patches extracted from the large
iRISE images of size 512 × 512 pixels, with a total batch size of 20,
sing 4 parallel GPUs, each with a sub-batch of size 5. This relatively
mall batch size is required to ensure our GPUs did not run out of RAM
hen using this large input patch size. Training followed a stepped

earning rate schedule for 80 epochs, where one epoch is equal to
he number of batches required before all training images are sampled
rom once without repetition; hence the total number of patches used

uring training was 80 times the number of training images. The total
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number of patches learned from during training differs depending on
which region is left out, but is in the order of 220 HiRISE images times
80 epochs, i.e. ∼ 17000 patches for each model. Given the semantic
segmentation task we use, this equates to supervised learning from over
4.4 billion pixels. The learning rate was 0.03 for 40 epochs, 0.003 for
another 30, and 0.0003 for the final 10 epochs.

The order in which images were used in each epoch was randomly
shuffled for each epoch. To ensure robustness of the model to the
three map scales, the 20 selected HiRISE images for each batch were
independently randomly chosen to be scaled at 25 cm, 50 cm or 100 cm
map scale, and if the scale did not match its original scale, resized
accordingly using bicubic interpolation. Next, a random location within
each image was chosen for cropping of the 512 × 512 color patch. We
used spatial data augmentation such that each tile chosen in a batch
was flipped vertically with probability 0.5, horizontally with proba-
bility 0.5, and rotated 90 degrees with probability 0.5. To mitigate
image-edge effects due to the implicit use of black pixels on borders
of images by ‘‘same’’ mode convolution operations, before cropping a
patch each image was padded with gray pixels. For map scale 100 cm,
the padding was 16 pixels on all sides; for map scale 50 cm, with 32
pixels; and for map scale 25 cm with 64 pixels.

5.1.3. Inference
In machine learning, ‘inference’ refers to the application of a trained

model to data that was not used during training; learning is disabled
at this point. For evaluation of our trained HRNets, each model was
run in inference mode on each image in the corresponding left out
region. Our HRNets were specifically designed to enable input patches
for inference (which we call ‘‘chunks’’) to be larger than patches used
for training, as larger patches minimize artifacts due to image-edge
effects. We used the maximum chunk size for inference supported by
our GPU: 4096 × 4096. As most images were far less wide than this,
we padded with gray pixels on the left and right of the image when
necessary. We additionally padded the top and bottom of the images by
128 pixels. This padding matched padding used on image boundaries
during training; the intent was that the model would learn that a
contiguous gray region is ‘‘image border’’, rather than a marking. This
was also why our padding was gray pixel values rather than black, since
markings tend to be close to black (and much darker than gray pixels)
in the HiRISE images.

Following tiling of each validation image into 4096 × 4096 chunks,
each chunk was passed to the HRNet to predict a binary segmentation
mask output. The resulting chunks were concatenated together, and
padding removed, to construct a mask of the same size as the original
image. Images with tiling that left an unused strip of image down the
right hand side then had that strip removed for calculation of metrics.
All resulting masks were saved and used to generate the results reported
in this paper.

5.2. Results

Fig. 2 shows two example full size HiRISE images (left quarter of
each example) alongside masks created from the Planet Four catalog
(center left), cross-validation predictions from the CNN (center right)
and predictions from ISODATA clustering (right). The first example
illustrates a case where the CNN matched the Planet Four catalog well,
and the second a case where the CNN’s weakness is evident: it tends
to predict dark pixels when there is no clear ellipses or fan shape. The
model’s task is harder in cases like this where the overall image is low
in brightness and contrast, and/or showing a lot of shadows. Fig. 5 (left
column) shows example tiles cropped out of full-size images, as seen by
Planet Four human labelers (680 pixels high × 840 wide).

One thing to note is the sometimes apparent lack of Planet Four
labels, e.g. in the third row of Fig. 5 or as evident by the two almost
empty tiles in the top of Fig. 12. There are two rare instances where
11

the pipeline developed in Aye et al. (2019) is under-performing by
Table 1
Overall Summary in Table Form. The area coverage for the Planet
Four Catalog is omitted; see Fig. 7 (top).

CNN Clustering

Area coverage 6.8% 11.2%
Dice coefficient 61.5% 39.4%
Recall 67.8% 58.5%
Precision 56.3% 29.7%
Centre overlap 73.8% 57.7%
Specificity 96.8% 91.7%

creating false negatives because it was designed to be trustworthy in
terms of preventing false positives. The first case is when an image tile
would contain a large amount of objects. What happens then is two-
fold: (a) volunteers either would simply not even start the daunting task
of marking so many objects, and (b), even the ones that go through
with it will have trouble in aligning the markings well with surface
features, because they start to overlap a lot, as shown in Fig. 6. In that
figure, the parameter n_(blotch|fan) classif being 15 indicates that half
of volunteers have not submitted any markings, as the usual retirement
requirement was a count of 30 classifications per image tile. The second
scenario where the pipeline seemingly would underperform is when the
surface features have not the shape that the volunteers were asked to
mark, as it is happening in Fig. 12. There the fans erupt from linear
cracks in the seasonal ice and can be (1) very small, making it difficult
to be marked by the offered tools, and (2) show rather a ‘‘curtain-like’’
shape than the ‘‘ice-cone’’ shape the volunteers were asked to mark. It
was, however, shown in Aye et al. (2019) that these incidences are rare,
by comparing the volunteers results with a large randomly selected set
of example tiles (1% of all data) that were reviewed by the science
team, the so called ‘‘gold standard data set’’.

It was always the plan to revisit the efficiency of the Planet Four
catalog pipeline (Aye et al., 2019) by combining image-focused ML
techniques with the citizen science based labeling efforts, and we think
that this paper is a first step towards that goal. We emphasize that the
semantic segmentation method we used is not able to determine fan
and blotch shapes; the models are trained to classify individual pixels.
It is an open problem in machine learning to address the much harder
problem to force a deep CNN to fit image regions to constrained shapes
such as ellipses or fans. The remainder of this section quantifies our
results overall, by region, by image and by tile.

5.2.1. Semantic segmentation aggregated over all images
Fig. 7 provides an overall summary of the performance of the two

algorithms we used for semantic segmentation, in comparison with the
crowdsourced Planet Four catalog. The comparison is also summarized
in Table 1. Data in Fig. 7 was produced by summing all pixel-wise
TPs, FPs, FNs, FPs, and Center-Overlap over all 221 images, and then
calculating aggregate metrics. First, we see from the blue bars that
both the CNN and ISODATA clustering methods predict more total area
than the Planet Four catalog did (5.7% coverage), but the ISODATA
clustering (11.2% coverage) overestimates in comparison with Planet
Four by a substantially greater amount than the CNN (6.8% coverage).
These findings alone do not enable a conclusion to be reached about
which method has better agreement with the Planet Four catalog.
However, Fig. 7 shows that the CNN had overall higher Dice Coeffi-
cient, Recall, Precision, Center-Overlap and specificity than ISODATA
clustering, from which we conclude that the CNN is substantially more
accurate than ISODATA clustering. Both methods had a higher recall
than precision, consistent with predicting more area than in the Planet
Four catalog.

5.2.2. Semantic segmentation by region, image and tile
These overall trends do not hold for all individual regions or images,

due to substantial heterogeneity in topography, both between regions,
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Fig. 8. Per-region: Performance of CNN and ISODATA Clustering methods. All HiRISE images for a region were aggregated and metrics calculated from the aggregated pixels. The
ordering of regions on the 𝑥-axis is by increasing latitude for each region.
nd locally within them. For the machine learning approach, such di-
ersity makes it likely that certain patterns of image features represent
utliers that are very difficult to model using supervised learning. For
xample, as now illustrated, in some cases precision outperforms recall,
nd in some cases ISODATA clustering outperforms the CNN. Fig. 8
hows metrics broken down to aggregates over regions. The upper
ubplot shows that the CNN method outperforms ISODATA clustering
n all but one region, with a median value of 0.55 compared with
.37. The middle subplot shows that the CNN method also outper-
orms ISODATA clustering in Center-Overlap overall, but only in 17
f 28 regions. However, this is in part likely to be because ISODATA
lustering is much lower in its precision than the CNN, as shown
n Fig. 7, meaning that it tends to falsely predict pixels in the CO2
et seasonal deposits class more than the CNN. The lower subplot of
ig. 8 shows that the predicted area of the CNN method typically is
ery close to the Planet Four catalog predictions, whereas ISODATA
lustering frequently predicts significantly greater area, consistent with
he trend shown by blue bars in Fig. 7. Fig. 9 indicates that for ISODATA
lustering, recall varies much more than precision. For many regions,
ecall is less than 0.3, suggesting that ISODATA clustering has a greater
endency to omit predictions of pixels in the Planet Four catalog than
12
did supervised machine learning. In order to highlight the impact of
more localized topography differences, Fig. 10 illustrates our results
broken down to per-image and per-tile metrics, and Fig. 11 on a per-
image basis. Fig. 10 illustrates again that ISODATA clustering has
greater variability in area ratio, and with many more images and tiles
with negative values, meaning ISODATA produces many more tiles with
high numbers of FPs than the CNN. This is consistent with the coverage
shown for ISODATA in comparison with the Planet Four catalog and the
CNN in Fig. 7 (top). Fig. 10 also shows that variation in Dice Coefficient
is more pronounced on a tile basis than an image basis.

Finally, Fig. 12 shows an example of how our metrics of perfor-
mance are affected by inconsistencies in the Planet Four catalog. The
figure shows a case where two tiles within a HiRISE image appear to
have not been reviewed by sufficiently many human volunteers. As
discussed in Section 7, one application of our machine learning model
could be to help identify such occurrences in human image labeling.

5.2.3. Impact of solar longitude on semantic segmentation results
The HiRISE images each year were acquired during the Martian

spring and early summer. At some point in this interval, the ice sheet
sublimates fully away. It is possible that for images acquired when the
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Fig. 9. Per-region: tradeoff between recall and precision. Each marker is a result from
one region (all HiRISE images for a region were aggregated and metrics calculate from
the aggregated pixels). The background shading lightness represents the value of the
Dice Coefficient corresponding to each Recall–Precision pair defined.

ice sheet is close to fully sublimating that it is harder for Planet Four
volunteers to identify CO2 jet seasonal deposits than for the algorithms.
To try to understand this, Fig. 13 (left) shows how Dice coefficient and
total area predicted per HiRISE image varies with solar longitude for
each of the 221 HiRISE images, from cross-validation results. There
is a statistical negative correlation between Dice coefficient and solar
longitude (Pearson correlation −0.22 for CNN and −0.31 for ISODATA
clustering, with p values 0.0009 and 0.000001 respectively). In com-
parison any correlation with latitude is very low (Pearson correlation
0.08 for CNN and −0.001 for ISODATA clustering, with p values 0.25
and 0.98 respectively). Fig. 13 shows, for example, that no image with
a solar longitude above 280 (relating to Mars south polar summer
solstice) has a Dice Coefficient above 0.2. This suggests the algorithms
agree less with the P4 catalog at high solar longitudes. Fig. 13 (right)
shows how the total area predicted per HiRISE Image (normalized by
the total number of pixels in each image) varies with solar longitude.
This data indicates that the total fraction predicted per image is lower
at higher solar longitude, which would be consistent with Planet Four
volunteers and algorithms finding labeling harder due to the near
absence of ice at high longitudes. However, it should be noted that
because there are fewer fans/blotches labeled in the P4 catalogs for
high solar longitudes, due to a lot less ice and hence CO2 jets. There
are also shadows in such images, which make it harder for human
volunteers to determine markings.

6. Supervised learning for binary classification of tiles

For this secondary investigation, we designed a simpler supervised
deep CNN for binary tile classification. The objective of this was to
identify Planet Four tiles that were ‘empty’, i.e., which did not contain
any pixels that represent CO2 jet seasonal deposits. For this purpose,
instead of aiming to segment features, the CNN’s input was an image
tile of the same size as seen by human labelers, and its output was
a binary prediction that either the tile contained no features at all,
or otherwise. Although an alternative method might involve applying
the semantic segmenter to each tile, this would mean that an adhoc
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post-processing algorithm would need to be designed and optimized
to account for small numbers of false positives in empty tiles. The
advantage of designing a classifier is that it learns what the best
prediction is for a tile in its entirety.

6.1. Design

The training design for the CNN was very similar to the semantic
segmenter. We used Leave-one-region-out cross-validation, and hence
trained 28 models that were validated on all data from a single left-
out region. Data augmentation during training was used, including
images rescaled to all 3 map scales, random horizontal and vertical
flips, and 90 degree rotations. Such augmentation artificially increases
the size of the training set; it is routinely carried out when training
CNNs for computer vision tasks, as it helps combat overfitting. This data
augmentation was not required for the Planet Four system as explained
in Section 2.2.

Unlike our semantic segmentation approach, we made use of a pre-
trained model and transfer learning using the fine-tuning method (Ko-
rnblith et al., 2018). We started with a ResNet-50 (He et al., 2015)
pretrained on ImageNet (Russakovsky et al., 2015) (available within
tensorflow), and following typical practice for such a task, replaced its
head with global average pooling and 2-class softmax layers (Goodfel-
low et al., 2016; Kornblith et al., 2018). The resulting network was fine
tuned using stochastic gradient descent and cross-entropy loss, with
a learning rate of 0.001 and momentum of 0.9, for ten epochs. We
trained three independently initialized networks, and for inference we
averaged the classifier confidences produced for the positive class prior
to calculating metrics.

For our binary tile classifiers, we additionally report results using
the well known AUC (‘Area Under the Curve’) metric for binary classi-
fication (Ling et al., 2003). This metric can be used for binary classifiers
that provide confidence values for each class for a given sample. AUC
assesses how well the classifier performs on a validation dataset for
each possible value of a decision threshold applied to the confidence
value for the positive class. Ideally, all threshold values would provide
a recall of 1.0 and a specificity of 1.0 (i.e. no false negatives and no
false positives). In this case, a plot of recall versus sensitivity for each
threshold value will have all data points at the coordinate (1, 1), which
defines a shape with an area of 1.0. In reality, as the threshold changes,
recall will increase as specificity increases, and a changing threshold
will define a curve starting at (1, 0) and ending at (0, 1), with an area
less than 1. The AUC metric is a calculation of this area for a specific
classifier applied to a specific validation dataset.

6.2. Results

In total, 42,904 tiles were classified in our leave-one-region-out
cross-validation scheme for empty tile detection. The CNN we trained
provides confidence values for each class as outputs, and hence we can
evaluate it using AUC (see Section 6); the AUC aggregated across all
tiles was 0.93. The relevant curve of recall vs specificity is shown in
Fig. 14.

We determined the binary classification threshold that would
achieve 95% recall (sensitivity) in our cross-validation data, i.e. this
target meant that 95% of tiles with P4 catalog markings were correctly
predicted by the classifier as having CO2 jet seasonal deposits. This
required a decision threshold of 0.24 to be applied to the classifier
output’s confidence for the CO2 jet seasonal deposits class. At this value,
the corresponding specificity was 0.54 (which means 54% of tiles with
no markings were correctly classified as having no CO2 jet seasonal
deposits) the balanced accuracy was 0.75 (this is equivalent to the
average of recall and specificity), and the precision was 0.87 (which
means that 87% of the tiles predicted to have CO2 jet seasonal deposits
by the classifier actually did have P4 catalog markings). All these values
can be confirmed by calculations on the Confusion Matrix (CM) at
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Fig. 10. Per-HiRISE-image and Per-tile: Performance of CNN and ISODATA Clustering. The upper subplot shows density estimates of the per-image and per-tile Dice coefficient.
The middle subplot shows density estimates for the Center-Overlap for per-image only (due to the relatively large number of tiles with no markings) and the lower subplot shows
density estimates for log area ratio.
Table 2
Confusion Matrix for binary tile classifier at Recall = 0.95. This data aggregates all
tiles following our leave-one-region out cross-validation procedure.

Predicted No CO2 Predicted CO2
jet seasonal deposits jet seasonal deposits

Planet Four catalog No Markings 5388 4513
Planet Four catalog Markings 1661 31342

this decision point, which here we write in tabular form in Table 2.
If our trained classifier was used in practice, and a higher recall or a
higher specificity is required, the decision threshold can be changed
accordingly.

To illustrate per-region performance, Fig. 15 shows the recall and
precision results for a decision threshold of 0.24, when running our
trained tile binary classifiers in leave-one-region-out cross-validation on
tiles as seen by human labelers. The minimum recall is 0.84. However,
the precision varies considerably by region, which suggests a need
for more targeted filtering, such as by using different thresholds for
14

different regions.
7. Discussion and conclusions

7.1. Using our methods to optimize human labeling

Currently, all Planet Four tiles are reviewed by human volunteers,
since its not known in advance which tiles have no CO2 jet seasonal
deposits in them. Therefore, a potential future use case for our binary
tile classifier is to prioritize which tiles get shown to human labelers
first, so as to minimize how often the Planet Four volunteers are asked
to annotate tiles that have no features. It would likely be desirable to
have a high sensitivity while allowing a relatively high false positive
rate. For example, in our results, we achieved a specificity value of
0.54 at the chosen recall of 0.95. Hence, if only the model’s predictions
determine what images to show to volunteers, this would mean our
models could be used to ‘filter’ approximately half of the tiles with no
CO2 jet seasonal deposits from the need for human inspection, while
missing only 5% of tiles that should have been labeled. The algorithm
developed by Aye et al. (2019) to generate the Planet Four fan and
blotch catalog treats all the human volunteer assessments equally.
The binary classifier and HRNet CNN results can be compared to the
human volunteer classifications in order to identify the people who are

particularly good at spotting that there are fans and blotches present
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Fig. 11. Per-HiRISE-image: tradeoff between recall and precision. Each marker is a
result from one image. The background shading lightness represents the value of the
Dice Coefficient corresponding to each Recall–Precision pair defined.

in the HiRISE tiles. Then the classifications from these individuals
could be weighted more heavily when the volunteer markings are
combined together to produce the next edition of the Planet Four
catalog. The latest version of the Planet Four project is now hosted on
the Zooniverse’s Project Builder Platform.5 The platform provides the
functionality for easily combining the binary classifier with Planet Four
human-generated classifications in real-time. The aggregated volunteer
markings for Planet Four tiles under active review on the website could
be compared to the binary classifier’s label in order to identify which
tiles need further volunteer review beyond the project’s standard 30
independent reviews to more accurately map the positions and shapes
of fans and blotches. We discuss this in further detail in Section 7.4.

7.2. CNN design optimization

In future work, it would be possible to improve on the performance
of our HRNet by adding additional data augmentation (especially color,
contrast and brightness augmentation), and possibly by enhancing low-
contrast validation images. However, our intent in this paper was not
to design the very best semantic segmentation model. Rather, we aimed
to use a design that we knew from previous work performed well
on binary segmentation in satellite imagery, and incorporated best
practice machine learning principles used by default for mitigating
the risk of overfitting. Hence, while we experimented briefly with
various hyperparameters in the model, and adjusted until it was hard to
improve performance, we did not seek to optimize them, nor to design
the very best architecture.

7.3. Challenges for supervised learning with ambiguous and inconsistent
labels

It needs to always be remembered that our HRNets are trained
to try to replicate the Planet Four catalog’s markings, and that our
metrics are a comparison with the agreement with aggregated human

5 https://www.zooniverse.org/lab
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labelers, rather than to an objective ground-truth. This was the main
reason for not attempting to optimize the model to get better results
than presented in this paper. Put another way the model was designed
to predict what can be considered in a supervised learning context to
be noisy and ambiguous labels (Algan and Ulusoy, 2020). The Planet
Four catalog’s fans and blotches have several known nonidealities from
the supervised learning perspective, as follows. First, the choice of what
image features to designate as a CO2 jet seasonal deposits is subjective
to an extent; the Planet Four catalog we used for training the HRNet is
the result of aggregating labels from a varying number of humans, and
required an algorithm to decide what the final catalog would contain
in the event of human disagreement. Second, even when many humans
agree a feature should be a CO2 jet seasonal deposit, the exact border
around those deposits that different humans make is inconsistent. In
particular, the border between CO2 seasonal jets and ‘‘background’’
in HiRISE images is not sharp, i.e. contrast in pixel values between
the two categories can vary slowly spatially at boundaries. Moreover,
humans were required to fit constrained ellipse and fan shapes to
CO2 seasonal jets, and this frequently introduces further inconsistency
between which pixels are marked as belonging to which class. Third,
some of the HiRISE image tiles were not completely annotated, and this
would be a source of ‘confusion’ to any supervised learning model. The
third aspect is one possible reason why the HRNet detected more total
area than the P4 catalog. Compounding these challenges, our results
for the center-overlap metric show that over 26% of the centers of
Planet Four catalog markings are missed by the CNN. Hence, our CNN
model over-predicts total area relative to the Planet Four catalog, but
under-predicts the total number of markings.

It should be noted that the training of the HRNet could easily be
modified so its results are biased to prefer fewer false positives, and
hence more closely match the total area of the P4 catalog overall, or to
prefer fewer false negatives, and hence achieve a higher center-overlap.
Either approach is likely, however, to reduce the overall Dice Coeffi-
cient, due to additional false negatives/positives created respectively.
Moreover, our results also found substantial heterogeneity in log-area-
ratio when this metric is broken down into per-region and per-image
statistics, which suggests there is no one simple explanation for why
the overall area predicted by the HRNet is larger than that of the P4
catalog.

From a machine learning perspective, all these reasons result in
inconsistent pixel labels being provided during training for otherwise
similar input features, which magnifies the degree of difficulty in
learning to automatically identify CO2 seasonal jets.

7.4. Conclusions

We examined computer-aided automated approaches to identifying
wind-blown seasonal fans in the high-resolution imagery of the Martian
south polar region. Leveraging the crowd-sourced catalog from the
Planet Four project (Aye et al., 2019), we successfully trained two
types of deep CNN, a HRNet for semantic segmentation, and a binary
per-image classifier. The HRNet was quite successful at identifying
the darkened pixels that comprise seasonal fans and blotches within
the HiRISE images, enabling accurate measurements of the changing
surface area covered by seasonal fan and blotch material over time.
The ISODATA clustering technique applied to the same task was less
successful. It was able to identify some seasonal fans and blotches,
but depending on the threshold selected, a visual inspection revealed
the algorithm would often confuse some topographic features as being
seasonal fans.

A key aim of the Planet Four project is to measure the wind direc-
tion, inferred from the directions the fans are pointed in. The machine
learning approaches we employed were not able to identify directions
of the seasonal features. This remains an area where the crowd-sourced
identifications excel compared to the automated algorithms. Future
work will be focused on the automatic categorization of fans and

https://www.zooniverse.org/lab
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Fig. 12. One source of error. This figure shows 18 of the overlapping Planet Four tiles cropped from HiRISE Image ESP_012461_0925 (top), the corresponding masks we created
from the Planet Four catalog (center) and the cross-validation results from our HRNet applied to the HiRISE image (bottom). In the HRNet image, green indicates true positives,
yellow false positives and orange false negatives. Red lines indicate the tile boundaries—note the 100 pixel overlap. This data suggests that two of the tiles shown to HiRISE
volunteers did not receive enough, if any, markings. Consequently, this will have reduced the Dice Coefficient and other metrics of HRNet success on this image, due to the false
positives caused by missed labels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
blotches and measuring the directionality of these seasonal fans present
in HiRISE images. Applying alternative deep CNNs and active learning
techniques (Yang et al., 2017) with improved training and validation
datasets may be able to succeed on this front.

There is no objective ground-truth dataset of fans and blotches
produced by carbon dioxide jets within the HiRISE images searched by
the HRNet CNN. The Planet Four catalog has its own detection biases,
and thus this work also serves as another validation of the (Aye et al.,
2019) Planet Four seasonal fan and blotch catalog. The total number
of pixels predicted by the HRNet CNN to belong to the markings class
was 27% larger than the total number of pixels in fans/blotches in
the Planet Four catalog, but this aspect varied considerably on a per-
image basis. The majority of the discrepancies between the Planet
Four catalog and the HRNet identifications occur within regions of the
HiRISE frames where there are extremely high densities of seasonal
fans and blotches (over 100 sources per Planet Four tile or HiRISE
subframe). In these cases, the volunteers marked different regions of
the Planet Four tile or did not mark at all. The true fraction of tiles with
such high densities is likely small; 1.51% of the tiles have more than
100 fans and blotches recorded in the P4 catalog. Thus, the Planet Four
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catalog likely contains more than 70% of the seasonal CO2 jet deposits
visible in the majority of the HiRISE subframes.

7.5. Future work

Although Dice Coefficient, precision and recall are sensible mea-
sures for comparing outcomes from different machine learning algo-
rithms, and the process of selecting the best algorithm, the underlying
scientific question in the Planet Four project was to identify aspects
such as wind direction and speed. For these questions, it is not neces-
sarily important to measure the extent of agreement between the Planet
Four catalog and machine learning. In the ideal case, predicted CO2 jet
seasonal deposits from machine learning algorithms would be able to
directly measure wind direction locally at all points in an image, using
labeled fans as cues. Achieving this potentially requires new machine
learning methods to be developed, as mentioned in the introduction.

For the task of calculating the total area covered by fans or blotches,
an alternative to the semantic segmentation approach used here could
be to use CNNs trained as object detectors. One challenge for a detector
is the need to define thresholds during inference, in order to decide
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Fig. 13. Per-HiRISE-image: Dice coefficient and area predicted as solar longitude varies. Each marker shows a result from one of the 221 HiRISE images. The thick dashed black
line shows the solar longitude at which the ice-free transition occurs. The left-hand plot indicates that Dice coefficient tends to be low for all images at a high solar longitude. The
right-hand plot shows the fraction of the number of pixels in each image predicted as CO2 jet seasonal deposits. That this is lower for higher solar longitudes suggests that poorer
Dice coefficient may be attributable to both algorithm and Planet Four volunteers finding it harder to identify CO2 jet seasonal deposits in nearly ice free images that consequently
have fewer actual CO2 jets. Both plots indicate that the CNN performs better than ISODATA clustering, with the right-hand plot suggesting ISODATA clustering over-predicts the
area relative to the Planet Four volunteers.

Fig. 14. Tradeoff between recall and specificity for binary empty image detection. The AUC of our binary classification CNN is 0.93. The green circular marker indicates the
operating point at which Recall = 0.95. At this point, Specificity = 0.54, i.e. 54%.
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Fig. 15. Empty image detection by region. Per-region recall and precision from leave-one-region-out cross validation, for a decision threshold of 0.24 (the value for which the
overall recall is 0.95).
whether candidate detections should be retained as model outputs. For
the dataset used in this paper, we would expect some difficulty in
calibrating thresholds to work generally across regions. Another down-
side is that in some of the more densely populated images, detections
would cover close to 100% of the pixels in a large part of an image.
Nevertheless, it would be interesting to attempt such an approach in
future work.

There is also the potential for combining the machine learning
developed here and crowd-sourced techniques, to maximize the effort
of the volunteers performing the human review of high-resolution or-
bital imagery. For example, our machine learning algorithms detected
some features missed in the hand-labeled dataset, and could provide
an effective first pass over satellite images to determine whether any
features are present, thereby potentially streamlining future delivery
of images to citizen science projects, such as the Planet Four online
platform. A total of 29.6% (12,693) of the image tiles or HiRISE sub-
frames that Planet Four volunteers spent time examining were found to
be devoid of sources when the classifications were combined to create
the Planet Four catalog (Aye et al., 2019). The binary classifier CNN
could be deployed with the Planet Four project to significantly reduce
the volunteer effort spent reviewing blank images with no seasonal
fans or blotches. However, we note that removing all the blank images
from the Planet Four project may also not be ideal, as Bowyer et al.
(2015) found that volunteer engagement decreased with the removal
of blank images, with no animals present, from the Snapshot Serengeti
project; see also (Jones et al., 2020). Hence, as mentioned, it would be
preferable to use the method not to remove all predicted blank images,
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but instead use it in a way that prioritizes images that are predicted to
contain markings, and/or reduce the number of images predicted to be
blank.

As shown in Fig. 12, there is a small subset of Planet Four tiles
where fans and blotches have been completely missed because there
was no consensus amongst the human classifiers. This tends to be seen
in images with a very large number of seasonal fans and blotches to
individually mark. Volunteers do not mark all the features and either
map a small number of the visible fans and blotches or skip over
marking completely. The Planet Four catalog is generated by finding
where there is consensus amongst the volunteer markings in each tile. If
the majority of human volunteers do not mark the same features visible
in the tile, then those fans and blotches will not be incorporated into
the catalog. The binary classifier and/or the trained HRNet could be
utilized to identify which tiles are in need of additional human review.
The output from the CNNs could be compared to the output from the
aggregated human classifications. Tiles fans and blotches that come
up as empty from the human-generated labels could be identified and
made to receive additional human classifications on the Planet Four
website until consensus is reached amongst the human reviewers.

User weighting schemes has proven fruitful in a variety of crowd-
sourced astronomy projects with drawing tasks (e.g., Simpson et al.,
2012; Johnson et al., 2015; Eisner et al., 2021; Johnson et al., 2022).
Instead of treating all the human-derived marks/drawing as equal, as
is currently the case for the Aye et al. (2019) Planet Four catalog,
the assessments from some volunteers are prioritized when the human-
generated classifications are combined together to identify the features
of interest. Clear criteria and information is needed to determine which

human volunteers are excelling at the task and should be listened to
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more closely with increased user weights. The more information avail-
able to assess the skill of the human volunteers, the bigger the expected
impact a user weighting scheme will have on the aggregated results.
The work presented here has potential applications in developing a user
weighting scheme for Planet Four. The CNN results could be treated as
ground truth to better identify those volunteers who are more adept at
spotting the dark seasonal fans and blotches and outlining their shapes
with the marking tools for future development of a user weighting
scheme.

Data availability

Our python code for training and validating our models, and pro-
ducing Figs. 6–14 in this paper, is available on Zenodo: doi:10.5281/
zenodo.4292195. Information about accessing the Planet Four clas-
sification data, catalog, and associated HiRISE image information is
discussed in Aye et al. (2019).
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