
Entanglement transfer via chiral and continuous-time quantum walks
on a triangular chain

Sağlam, U., Paternostro, M., & Müstecaplıoğlu, Ö. E. (2023). Entanglement transfer via chiral and continuous-
time quantum walks on a triangular chain. Physica A: Statistical Mechanics and its Applications, Article 128480.
Advance online publication. https://doi.org/10.1016/j.physa.2023.128480

Published in:
Physica A: Statistical Mechanics and its Applications

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2023 Elsevier.
This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License
(https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the
author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:11. Jun. 2024

https://doi.org/10.1016/j.physa.2023.128480
https://pure.qub.ac.uk/en/publications/915e1346-4e79-47bf-9110-79b7bebc466a


Journal Pre-proof

Entanglement transfer via chiral and continuous-time quantum walks on a
triangular chain

Utku Sağlam, Mauro Paternostro, Özgür E. Müstecaplıoğlu
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Abstract

We investigate the chiral quantum walk (CQW) as a mechanism for an entangle-
ment transfer on a triangular chain structure. We specifically consider two-site
spatially entangled cases in short-time and long-time regimes. Using the concur-
rence as an entanglement measure; fidelity, and the Bures distance as the measure
of the quality of the state transfer, we evaluate the success of the entanglement
transfer. We compare the entangled state transfer time and quality in CQW against
a continuous-time quantum random walk. We also observe the effect of mixed
states on the entanglement transfer quality.
Keywords: Quantum Walks, Chiral Quantum Walks, Entanglement Transfer

1. Introduction

Fast and accurate transmission of quantum states through communication or
computation networks is a critical objective for quantum technologies [1, 2, 3].

Email addresses: usaglam@wisc.edu (Utku Sağlam),
m.paternostro@qub.ac.uk (Mauro Paternostro), omustecap@ku.edu.tr (Özgür E.
Müstecaplıoğlu)
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Proposed schemes to achieve this goal consider engineered couplings between
the network sites [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], external fields [14, 15, 16, 17],
weak measurements [18, 19], or transport in noisy environments of biological or
synthetic systems [20, 21, 22, 23, 24]. Such methods are challenging to implement
in practice for quantum entanglement transfer, due to quantum decoherence and
disorder [25, 26].

Pretty-good State Transfer (PGST) can be achieved on dual-spin chains [27],
spin chains with weakly coupled endpoints [7, 28, 29, 30, 31], and projective
measurements [32] with Quantum Walk (QW) schemes. Continuous time quan-
tum walk (CTQW) is a paradigmatic model of quantum transport [33, 34]. Both
discrete- [35, 36] and continuous-time [37, 38, 39, 40] quantum walks have been
discussed for PGST. CTQW can be made one way by taking complex-valued
couplings, which is called a chiral quantum walk (CQW) [41, 42, 43]. Chiral-
ity emerges due to the breaking of time-reversal symmetry (TRS) [44], and it
provides a significant boost to transport speed [41].

High-dimensional entanglement (entanglement in high-dimensional degrees
of freedom, such as spatial path modes) is advantageous in quantum commu-
nication [45] and quantum superdense coding [46, 47, 48]. The perfect state
transfer (PST) in spin chains paves the way for the creation of required entangled
states and logic gate structures for quantum computation and quantum informa-
tion [49, 50]. High-dimensional entangled states can be produced by repeatedly
generating the entanglement in a low-dimensional system and transferring these
to a higher dimensional one [51]. Our first goal is to explore if CQW can be
used to transmit two-dimensional quantum entangled states; what are the possible
advantages it may offer? In addition, we ask if and to which extent CTQW can
be used in place of CQW with the same chiral properties. CTQW can be easier
to implement than CQW. For that aim, we identify the underlying physics of
the chiral nature of QW in terms of quantum path interference, which can be
controlled either via the phase in the initial state for CTQW or via the phase in
complex hopping coefficients in CQW.

We specifically consider CQW on a linear spin chain of equilateral triangles,
as shown in Fig. 1, which is the simplest graph that allows for so-called probability
time symmetry (PTS) breaking [42]. A walker can transfer from one node to
any other neighboring site on the triangular plaquette by passing through either
one or two edges. We consider a uniform complex coupling between the nearest-
neighbor sites. Due to the path length difference between the odd and even
number of edges traveled, and phases of the complex couplings, interference can
enhance the transfer rate. Path interference in the context of quantum walk means
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that the relative phase between different trajectories the particle can traverse
from one site to another one can give constructive or destructive interference
effects in the site-to-site probability transfer. By using special graph topologies,
complex-valued site-to-site couplings, or specific initial states, one can use path
interference to break the PTS. CTQW can only utilize the latter, initial states
with specific phases to exploit quantum interference while CQW can use both
the freedom to choose the initial state and complex hopping coefficients to break
PTS.

The spatial entanglement can be defined in the site basis for quantum walks
[52, 53]. We assume a particle (we call a spin excitation as a particle) in a
Bell-like spatially entangled state of two sites injected into the chain from the
left. The quality of the transfer is examined by calculating the density matrix,
concurrence [54], fidelity, and Bures distances explicitly [55, 56, 57]. We have
also numerically confirmed that the entanglement state transfer time linearly
scales with the chain size [58, 59, 60].

The triangular chain lattice can be realized in superconducting circuits [61, 62],
trapped ions [63], NMR systems [42], photonic and spin waveguides [64], and
in optical lattices [65]. In the case of optical lattices, complex edge weights
could be introduced with the help of artificial gauge fields [66, 67], nitrogen-
vacancy centers in diamonds [68] or with plasmonic non-Hermitian coupled
waveguides [69].

This paper is organized as follows. We introduce the CQW on a triangular
chain model by presenting the adjacency matrix and present the associated Hamil-
tonian model with complex hopping rates in Sec. 2. Our results are given in Sec. 3
in five subsections. PTS breaking and entanglement transfer in CTQW and CQW
on a triangular chain are discussed in Sec. 3.1 and Sec. 3.2, respectively. We
conclude in Sec. 4.

2. CQW on a triangular chain

Typical quantum walks exhibit time-reversal symmetry (TRS) in transfer
probabilities between sites n and m in forward (t) and backward (−t) times
such that Pnm(t) = Pnm(−t). CQWs break the TRS and allow for so-called
“directionally biased” transport, Pnm(t) ̸= Pmn(t), in certain graph structures [42].
We consider CQW on a triangular chain of N vertices as shown in Fig. 1, which is
a minimal configuration with PTS breaking for a quantum walk with a directional
bias [42].

We will use the site basis {|i⟩}, with i = 1, ...,N indicating which site is
occupied such that |i⟩ := |01, 02, .., 1i, ..0N⟩. The set of coupled sites in a graph

3
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Figure 1: Graph of a linear chain with N vertices arranged in triangular plaquettes. Initially, the
pair of sites 1 and 2 at the left end of the chain are entangled. The entangled state is transported to
the rightmost pair of vertices (N − 1 and N ) after a chiral quantum walk. Arrows indicate the
directed edges with complex weight factors, taken to be +i. In the opposite direction, the weight
factors change phase and become −i. We have also examined transferring three-site entanglement
from the leftmost plaquette (1, 2 and 3) to the right end of the chain.

determines the edges e = (i, j), which can be described by the so-called adjacency
matrix A [70, 71, 72, 73]. For a triangular chain of N = 5 sites, A is given by

A =




0 1 1 0 0
1 0 1 1 0
1 1 0 1 1
0 1 1 0 1
0 0 1 1 0



. (1)

Together with the degree matrix (For definitions of some graph theory terms
see Appendix C) D for the self edges (i,i), A, determines the graph Laplacian
L = D−A. Hamiltonian of the walk is given by the Hadamard product mentioned
in the Appendix C, H = J ◦ L, where J is the matrix of hopping rates (edge
weights). We neglect the self energies; therefore, we will take D = 0 and write
the Hamiltonian as

H =
∑

nm

(JnmAnm|n⟩⟨m| + JmnAmn|m⟩⟨n|). (2)

In contrast to CTQW where every Jnm is real-valued, CQW allows for complex
edge weights, subject to Jmn = J∗

nm, so that the support graph of the walk
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becomes a directed one (cf. Fig. 1). Specifically, we take

H =




0 −i −i 0 0
i 0 −i −i 0
i i 0 −i −i
0 i i 0 −i
0 0 i i 0




(3)

The choice of the phase θnm = θ = π/2 of complex hopping weights
Jnm = |Jnm| exp(iθnm) (with n > m) is based upon the general investigations of
CQW [41] for a triangular plaquette. It is found that maximum bias in time asym-
metry can be obtained at θ = π/2 [41]. Remarkably, the spectrum of Hamiltonian
with a phase of π/2 has an anti-symmetric structure

Λ1,2,3,4,5 = (−
√

1
2(7 +

√
37),−

√
1
2(7 −

√
37), 0,

√
1
2(7 −

√
37),

√
1
2(7 +

√
37)).

(4)

We intuitively assume that a similar choice should yield efficient entanglement
transfer along a linear chain of equilateral triangles, too. We numerically examined
different choices and verified that our intuition is correct (Some typical results
will be given in Sec. 3). The eigenstates corresponding to θ = π/2 are given in
Appendix B.

The evolution of the initial state of the system ρ(0) is given by ρ(t) =
Uρ(0)U † where U := exp(-iHt). We define the site states of the chain as
|1⟩ , ... |i⟩, where i’s are the site numbers. Therefore, as the initial state, we con-
sider a spatially entangled state |ψspatial⟩ = (|1⟩ − exp(iϕ) |2⟩)/

√
2 with the phase

ϕ, of the leftmost sites of the chain and we aim to transfer the state to the right
end of the chain.

Remarkably, even with initial superposition states on our linear triangular
chain, could not yield PST (cf. Fig. 2). The graphs that can support PST require to
be hermitian, circulant (C), and to have a non-degenerate spectrum, together with
a flat eigenbasis [39]. Definitions of the graph theory terms we use are given in
Appendix C. Alternatively, PST can still be achieved with a non-circulant graph
that contains non-zero values on certain off-diagonal elements of its adjacency
matrix [40]. From a practical point of view, implementing graph structures
that have PST is challenging because of the sophisticated and usually numerous
special connectivities of these graphs. Therefore, creating a simpler graph with
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PGST can be more feasible in practice than using a graph with a PST. Since
our proposed adjacency matrix is neither circulant nor has required non-zero
off-diagonal elements, we do not expect any PST.

A fundamental difference between CQW and CTQW regarding the directional
bias lies in how the transport bias is introduced. In CQW, the directional bias
emerges by the differences in transition probabilities depending on the Hamil-
tonian regardless of the initial states to be transported. In CTQW, directional
symmetry breaking is sensitive to the phase differences in the initial particle state
in the (spatial) site basis. Intuitively, there is an interplay of path interference and
the initial phase in CTQW in breaking PTS. The significance of the difference be-
tween the CQW and CTQW in such a directionally biased entanglement transfer
is the ability of CQW to break PTS for any initial condition, while directionally
biased entanglement transfer in CTQW happens only for certain initial states.

In this paper, we consider two time ranges to investigate the entanglement
transfer dynamics. The first one, which we call the short-time regime, is to probe
the first maximum of the entanglement measure (concurrence) or success fidelity
of the state transfer. The second case is called the long-time regime, allowing
multiple scatterings of the particle at the ends of the chain. The latter case is used
to probe if more successful entanglement transfer is possible or not, at the cost of
longer transfer times.

3. Results and Discussion

We will start with an examination of PTS-breaking in CTQW on the triangular
chain. We do not need complex edge weights to break PTS in general. The essen-
tial physical mechanism behind PTS breaking is the quantum path interference,
for which the required phase difference, or quantum coherence, can be injected
into the initial state instead of the edges. Specifically, we consider a particle that
is a pure coherent superposition state in the site basis,

|ψ(0)⟩ = 1√
2

(|1⟩ − eiϕ |2⟩). (5)

An extended 2-dimensional Hilbert space of each site in terms of the site occupa-
tion number in second quantization is defined by {|0⟩i , |1⟩i} [52, 74]. Here, the
empty (occupied by a single particle) site is represented by |0⟩i (|1⟩i).

A deeper insight into the difference between spatial site and site-occupation
number representations can be obtained in Ref. [74], where the authors illustrated
that the spatial entanglement must be understood in the second quantization,
not in the first quantization. In the first quantization, one considers a particle

6
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Figure 2: Time dependence of the occupation probabilities P1,5(t) of sites 1 and 5 of a triangular
chain with 5 sites, where a particle makes CTQW. For an initially localized particle with an initial
state |1⟩, P1(t) and P5(t) are indicated by black, solid, and dotted, red curves, respectively. For a
particle initially in a superposition state |ψ(0)⟩ = (|1⟩ − exp(iϕ) |2⟩)/

√
2 with ϕ = 3π/4, P1(t)

and P5(t) are shown as dashed, blue and dot-dashed, orange curves, respectively.

entanglement, while in the second quantization, one considers a spatial mode
entanglement (see, for example, Fig. 1 in Ref. [74]). In the second quantization,
different spatial regions of space are identified as spatial modes occupied with
some number of particles (or quanta). In our case, we have only a single walker;
hence each spatial mode (site) is spanned by a 2D Hilbert space, allowing us to
make a spin-1/2 analogy for each site. The tensor product of different spatial mode
(site) Hilbert spaces defines an extended Hilbert space of the system, which can
host quantum entanglement-type correlations among the modes (sites). Summing
up, spatial entanglement refers to a non-local particle-number correlation between
different spatial modes (sites) in second quantization. The concept is applicable to
both discrete and continuous-time quantum walks. Discrete-time quantum walks
can be efficiently implemented by quantum circuits [75].

Consequently, the spatial entanglement of the initial state emerges in the
extended Hilbert space as

7
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|ψ(0)⟩ = 1√
2

(|1⟩1 ⊗ |0⟩2 − eiϕ |0⟩1 ⊗ |1⟩2) (6)

where the kets for the other empty sites are suppressed for the brevity of the
notation. We want to transfer the input state to the end-sites of the structure.
Ideally, we would like to achieve the target state in the site basis |ψtarget⟩ =
(|4⟩ − exp(iϕ) |5⟩)/

√
2. Thus, one can represent the target state in the extended

Hilbert space of five sites as |Ψtarget⟩ = (|00010⟩ − exp(iϕ) |00001⟩)/
√

2.
To characterize the performance of the actual process, in addition to the fidelity

of state transfer | ⟨ψtarget|Ψ(t)⟩ |2, we quantify the entanglement transferred to the
end of the chain (sites 4 and 5). As we have only a single excitation, the initial
state in Eq. (5) evolves into a state in the form

|ψ(t)⟩ = (A1 |100⟩123 + A2 |010⟩123 + A3 |001⟩123) |00⟩45
+ |000⟩123 (A4 |10⟩45 + A5 |01⟩45) ,

(7)

where Ai are the time-dependent coefficients depending on the eigenvalues of the
Hamiltonian of the QW.

Tracing out the states of the sites 1, 2 and 3 in the density matrix ρ(t) =
|ψ(t)⟩ ⟨ψ(t)|, we find the reduced density matrix in the computational basis
|4⟩ |5⟩ = |00⟩, |01⟩, |10⟩, |11⟩ for the sites 4 and 5 in the form

ρ4,5 =




1 − a44 − a55 0 0 0
0 a44 a45 0
0 a∗

45 a55 0
0 0 0 0


 , (8)

where aij = AiA
∗
j . The distribution of the zero elements, and hence the sparsity

of the matrix, remains the same for any chain length.
We can quantify the pairwise entanglement using concurrence [54]. For a

state ρ, concurrence is defined as

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (9)

where ρ̃ is the spin-flipped state, and {λi} is the set of eigenvalues of R =
(ρ1/2ρ̃ρ1/2)1/2 arranged in non-increasing order. With this at hand, Ci=4,j=5 is
found to take the form

C4,5 = 2Max (0,√a44a55, |a45|) . (10)

8



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Owing to the definition of aij , the concurrence C4,5 can further be simplified to
C4,5 = 2|a45|. Note that this result can be extended to the matrices with arbitrary
size associated with chains of length N , giving CN−1,N = 2|aN−1,N |.

Using the Hamiltonian matrix H in Eq. (3) and the initial state ρ(0) =
|ψspatial(0)⟩ ⟨ψspatial(0)| in Eq. (5), with any ϕ, the dynamics of the entanglement
between pairs of sites of the system can be calculated numerically for any value
of t. We will also investigate the transport of the initial entangled Bell site-state
from the sites 1 and 2 to sites 4 and 5 in CQW. We will perform the calculations
for both CQW and CTQW cases separately. In the case of CTQW we use the
initial state in Eq. (5).

3.1. PTS breaking and entanglement transfer in CTQW on a triangular chain
To appreciate the role of the initial phase in Eq. (5) on the state transfer and

PTS breaking in CTQW on the triangular chain, let’s start with the initial state
|ψ(0)⟩ = |1⟩. The occupation probabilities Pi = ⟨i|ρ(t)|i⟩ of the sites i = 1
(solid, black) and i = 5 (dotted, red) are shown in Fig. 2, where mirror symmetry
in the behaviour of the probability distribution with respect to time can be seen.
Transfer from the initially occupied site |1⟩ to the rightmost site |5⟩ is found to be
weak (less than 45% at any time).

If we use the initial state given in Eq. (5) with the Adjacency matrix Eq. (1), in
addition to being able to control path interference, PTS can be broken depending
on the initial phase ϕ. We have numerically compared P5(t) for different ϕ
and found that ϕ = 3π/4 gives the largest occupation of site |5⟩. Fig. 2 shows
P1(t) (dashed, blue) and P5(t) (dot-dashed, orange) for ϕ = 3π/4, where time
reversal asymmetry, P (t) ̸= P (−t) emerges. Population transfer is significantly
enhanced using such a superposition state initially. We conclude that transferring a
particle from the left end of the chain to a site at the right end is more successful by
injecting the particle simultaneously at two sites with a certain quantum coherence
relative to starting a well-localized particle at a single site. Let’s now explore if
similar advantages can be found in the entanglement transfer.

Fig. 3 shows that the concurrence is optimum for ϕ = ±3π/4 with a value
C4,5(1.12) ∼ 0.8. Therefore, for pairwise entanglement transfer, ϕ = 3π/4 gives
the most advantageous initial state. A natural question to ask is if there is a
fundamental connection between the critical phase ϕ = 3π/4 and PTS breaking
in CTQW.

We can quantify the bias between the forward and backward time evolutions
using the Bures distance between the states ρ(t) and ρ(−t). Bures distance is

9
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Figure 3: Time dependence of the concurrence C4,5(t) in the state of sites |4⟩ and |5⟩ for the
initial state in Eq. (5) of a particle that makes CTQW on a triangular chain of N = 5 sites.
Different curves stand for the initial states |ψ(0)⟩ = (|1⟩ − exp(iϕ) |2⟩)/

√
2 with ϕ = π/4 (solid,

black), ϕ = ±π/3 (dashed, blue), ϕ = ±π/2 (dot-dashed, red), ϕ = ±3π/4 (dotted, orange).

defined by [55, 56, 57]

DB(ρ, σ)2 = 2(1 −
√
F (ρ, σ)), (11)

where
F (ρ, σ) = [Tr(

√√
ρσ

√
ρ)]2 (12)

is the fidelity [76].
In Fig. 4, we only use the diagonal elements of ρ(t) and ρ(−t) while calcu-

lating the Bures distance DB(t) for different ϕ’s. As the probability information
is maintained on the diagonal elements of the density matrices, the off-diagonal
elements are discarded to demonstrate the broken PTS conditions more clearly.
For the phases 0 and ±π the PTS is not broken and the Bures distance is zero.
The largest bias in forward and backward time evolution is found for ϕ = π/2,
which is different from the critical phase ϕ = 3π/4 for optimum population and
entanglement transfer in CTQW over a triangular chain. We conclude that the
CTQW exploits the path interference for efficient state transfer, and a certain

10
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Figure 4: Time dependence of the Bures distance between the diagonal elements of the forward
and backward evolved density matrices ρ(t) and ρ(−t), for a CTQW on a triangular chain. The
curves are for the phases ϕ in the initial state |ψ(0)⟩ = (|1⟩ − exp(iϕ) |2⟩)/

√
2 with ϕ = ±π/3

(solid, black), ϕ = ±π/2 (dotted, red) and ϕ = ±3π/4 (dashed blue). The Bures distance for the
phases ϕ = 0 and ϕ = ±π are zero.

phase difference in the initial superposition state, quantum walk with broken PTS
is possible, similar to CQW. While the chiral character of CTQW is limited to
certain initial states, this can still be practically significant when the implementa-
tion of CQW is a challenging and chiral transfer of arbitrary entangled states is
not required.

3.2. PTS breaking and entanglement transfer in CQW on a triangular chain and
comparison with CTQW

For CQW, we plot the concurrence in Fig. 5 by using an initial Bell state with
ϕ = π in Eq. (5) and different θ in Eq. (3). We see that the concurrence is largest
for θ = π/2 with a value C4,5(1.02) ∼ 0.9, indicating that CQW has a slight
time advantage (∆t ∼ 0.1) along with a significantly higher quality transfer of
entanglement compared to CTQW (cf. Fig. 3). Without plotting, we state here
that a similar conclusion applies to occupation probabilities, too. We found that
CQW with θ = π/2 yields near perfect (P5 ∼ 0.95) state transfer |1⟩ → |5⟩ at
t ∼ 1.64.

11
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Figure 5: Time dependence of the concurrence C4,5 measuring the pairwise entanglement
between the sites |4⟩ and |5⟩ of a triangular chain of N = 5 sites over which an initial maximally
entangled Bell state (|1⟩ + |2⟩)/

√
2 of the sites 1 and 2 undergoes CQW. Different curves are for

the different complex hopping coefficients of the CQW with the phases θ = π/4 (dot-dashed,
black), θ = ±π/3 (dashed, blue), θ = ±π/2 (dot-dashed-dashed, red), θ = ±3π/4 (solid,
orange); same as θ = π/4.
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Figure 6: Time dependence of the Bures distance DB(t) between the diagonal elements of the
forward and backward evolved density matrices ρ(t) and ρ(−t), respectively, for a CQW on a
triangular chain of N = 5 sites. Initially the quantum walker is in a maximally entangled Bell
state (|1⟩ − exp(±iπ/2) |2⟩)/

√
2. Different curves are for chains with different complex hopping

coefficients of phases θ = ±π/4 (dashed, blue), θ = ±π/3 (solid, black) and θ = ±π/2 (dotted,
red). The Bures distance for the phases θ = 0 and ±π are zero; and for θ = π/4, DB(t) is the
same as that of θ = 3π/4.

We calculated the concurrences for ϕ = π/4, ϕ = π/3, ϕ = π/2, ϕ =
3π/4 and looked for the optimum θ values. We have found that for the state
(ϕ = π) initial Bell state, θ = π/2 gives the optimum (maximum) concurrence
C4,5(1.02) ∼ 0.9.

We plot the Bures distance DB(t) for the diagonal elements of ρ(t) and ρ(−t)
in Fig. 6, which shows that DB(t) is maximum for θ = ±π/2 (dotted, red).
Remarkably, the maximum broken PTS in the CTQW is found for ϕ = π/2. This
suggests that ϕ = θ = ±π/2 is an optimal choice for the broken-PTS condition
both for CTQW and CQW over a triangular chain. The critical angle of maximum
time-reversal asymmetry however coincides with a critical angle of optimum state
transfer only for the CQW. When the numerical values of DB(t) for CTQW in
Fig. 4 and CQW in Fig. 6 compared, DB(t) for CQW is numerically larger than
CTQW, suggesting a larger broken PTS condition.
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In Fig. 7, the concurrences for CQW and CTQW with an initial state of
(|1⟩ + |2⟩)/

√
2 are plotted. The solid red curve represents the CQW case and the

dashed blue line is for the CTQW case. This plot also demonstrates the broken
PTS in the CQW case. Here, one can notice the relatively higher entanglement
transfer quality in CQW. In addition, the transfer time is shorter in the case of
CQW by ∆t ∼ 0.4 .

To demonstrate the entanglement transfer in the short-time regime, we plot
the dynamics of the concurrences Ci,j that measure entanglement between every
pair of sites (i, j) of the triangular chain in Fig. 8. One can see the transfer of
entanglement from the sites (|1⟩ , |2⟩) to (|4⟩ , |5⟩). Although a spread over the
sites is present, entanglement propagates mainly as (|1⟩ , |2⟩) → (|2⟩ , |3⟩) →
(|2⟩ , |4⟩) → (|3⟩ , |4⟩) → (|4⟩ , |5⟩). If the success fidelity or the concurrence
is sufficient, the entanglement can be collected at the end of the chain in this
short-time regime. On the other hand, after multiple scatterings between the ends
of the chain, the entanglement transfer can be enhanced at the cost of longer
transfer time.

In Fig. 9, we plot the long-time behavior of the process for both CTQW and
CQW. CQW demonstrates a higher concurrence peak in the short-time regime for
the initial Bell state (ϕ = 0). When the fidelities are considered, the longer-time
entanglement transfer fidelity is higher than the short-time regime’s fidelities for
CQW and CTQW. Both allow for PGST of the entanglement with C4,5 = 0.999 at
t = 28.1 and with a concurrence of C4,5 = 0.971 at t = 25.7, respectively. These
observations depend on the initial state and the chain size. Though not shown here,
we numerically verified that CTQW gives a higher concurrence than CQW for
certain initial conditions in the short-time regime (e.g., for ϕ = π/2). Hence, we
conclude that breaking PTS either by CQW for any initial condition or by CTQW
for certain initial conditions gives comparable and high entanglement transfer
performance in a short-time regime, which can be further enhanced to PGST in
a long-time regime. The successful entanglement transfer (with a concurrence
of more than 0.9) is limited to chains shorter than N ∼ 9 sites, as discussed in
Sec. 3.4.

3.3. Transfer of mixed Werner-States on the triangular chain
Having demonstrated the role of pure entangled states under the CQW scheme,

it is natural to investigate the behavior of Werner-type mixed states under CQW
with θ = π/2 phase [77]. We introduce the Werner-like state

ρWerner(b) = bρ(0) + (1 − b)ρmixed, (13)
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Figure 7: Time(t) dependence of the concurrence C4,5(t) to measure the entanglement between
the sites |4⟩ and |5⟩ for an initially maximally entangled Bell state (|1⟩ + |2⟩)/

√
2 of the sites

|1⟩ and |2⟩ of a particle that makes CTQW (dashed, blue) and CQW (solid, red) with θ = π/2
on a triangular chain of N = 5 sites. We take the phases of the complex hopping coefficients as
θ = π/2 for CQW; while for CTQW hopping coefficients are real with θ = 0.
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where ρmixed is the maximally mixed state within the manifold of injection site
states |1⟩ and |2⟩.

ρmixed = 1
2

2∑

i=1
|i⟩ ⟨i| . (14)

We use the maximally entangled state within the manifold of injection site
states, |ψ(0)⟩ = (|1⟩ + |2⟩)/

√
2 to define the initial state density matrix ρ(0) =

|ψspatial(0)⟩ ⟨ψspatial(0)|.
To investigate the behaviour of entanglement transfer with respect to time,

we calculate the fidelity F (ρ(t), ρtarget) as in Eq. (12) with the matrices ρ(t) and
ρtarget. Here, ρtarget represents the desired ideally transferred state

ρtarget = 1
2




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 b
0 0 0 b 1



. (15)

In Fig. 10, we plot the time behavior of the Fidelity, F (ρ(t), ρtarget), for
different b values. Clearly, the pure maximally entangled state ρWerner(b = 1) =
ρ(t = 0) yields the best entanglement transfer. On the contrary, fidelities closer
to zero is observed at the maximally mixed state ρWerner(b = 0) = ρmixed.

3.4. Scaling of entanglement transfer quality and time with respect to the chain
size

Until now, entanglement transfer on a chain ofN = 5 sites has been discussed.
In this subsection, we first investigate the entanglement transfer using CQW in
the short-time regime by calculating the time Tmax and value CN−1,N of the first
peak of the concurrence for chains of up to N = 71 sites. Fig. 11a shows that
Tmax (which we refer to as transfer time) scales linearly with N , consistent with
previous works [58, 59, 60]. Fig. 11b shows that the entanglement transfer quality
decreases severely in chains longer than N ∼ 9 sites. The figures include two
different chiral phases θ values and indicate similar behavior.

Next, we explore the long-time entanglement transfer dynamics by assuming
a waiting time of t = 500. In this case, we determine and fix an ideal value
of θ for given N and initial state to find the maximum concurrence, which is
not necessarily the first peak. The optimum θ for the initial state with ϕ = π is
found to be ±π/2, whose sign depends on N . The results are given in Table 1,
which shows the maximum concurrence and when it occurs for given N and the
corresponding optimum θ. For the same initial condition, the results for CTQW
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Chain Size N Time (t) Concurrence Optimum Chiral Phase (θ)
5 55.4 0.999 −π/2
7 85.1 0.992 π/2
9 2.9 0.947 −π/2

11 321.3 0.900 −π/2
13 397.6 0.885 −π/2
15 4.5 0.874 −π/2
17 136.2 0.700 −π/2
19 68.6 0.714 −π/2
21 6.1 0.814 −π/2
23 416 0.635 −π/2
25 88.5 0.711 −π/2
27 7.7 0.764 −π/2
29 125.8 0.593 π/2
31 376.5 0.736 π/2
33 9.3 0.718 −π/2

Table 1: The maximum concurrence and the transfer time table for the longer-time CQW scenario
(t = 500) with the initial state phase ϕ = π along with the optimal phases for these parameters.

are presented in Table 2. While the tables report the results for the chains with
up to N = 33 sites, the concurrence reduces to very low values after N ∼ 9
sites. We can see that both CQW and CTQW methods to break PTS yield highly
successful transfer of entangled states for relatively small graphs (N < 9). For
such graphs ( (N < 9), CQW is faster than CTQW to transfer the entanglement,
and its success is slightly higher (also cf. Fig. 7 where the same results are found
for another initial condition (ϕ = 0) and in the short-time regime).

4. Conclusion

We explored the transfer of spatial entanglement of a single spin excitation
(which we call particle) undergoing either CQW or CTQW on a triangular chain.
We found that particle transfer to the end of the chain is more successful if the
particle is injected simultaneously from the leftmost pair of sites in a specific
Bell-type superposition state. The success, measured by the rightmost site’s
occupation probability, depends on the relative phase ϕ between the site states in
the initial quantum superposition. Using the Bures distance between the forward
and backward time evolved states, we examined the dynamics of PTS breaking at
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Chain Size N Time (t) Concurrence

5 193.9 0.993
7 342.8 0.979
9 410.6 0.900

11 482.7 0.805
13 498.3 0.749
15 288.2 0.748
17 82.5 0.697
19 4.1 0.661
21 4.5 0.631
23 4.9 0.608
25 5.3 0.594
27 5.7 0.581
29 6.1 0.567
31 6.4 0.552
33 6.8 0.540

Table 2: The maximum concurrence and the transfer time table for the longer-time CTQW
scenario (t = 500) with the initial state phase ϕ = π.
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different ϕ. We conclude that PTS breaking and the success of entangled state
transfer via CTQW vary with ϕ. We explained the physical mechanism in terms
of the role of the relative phase ϕ in the initial state played in the path interference
in the triangular chain which eventually determines the quality of state transfer via
CTQW. The success and PTS breaking character of CTQW is limited to certain
initial states with strict initial phase values.

The chiral phase angle in CQW brings additional flexibility and generality to
transfer arbitrary entangled states, which is not possible with CTQW. The chiral
phase can be used to optimize transfer success. Even for those entangled states
that can be transferred by CTQW, using optimum chiral phases, entanglement
transfer with CQW is found to be faster and more successful for small graphs
with less than 9 sites. In our examinations, we also considered long chains (about
70 sites). When longer triangular chains are considered, the entanglement transfer
success is severely reduced for both CQW and CTQW.

We examined both short-time and long-time dynamics of entanglement trans-
fer. In the short-time regime, the first peak of the concurrence is used to probe
the entanglement transfer. The time when the first peak emerges (entanglement
transfer time) scales linearly with the chain size, as expected from the earlier
works [58, 59, 60]. Longer-time regime is used to look for a global maximum
in entanglement dynamics, and hence it can give higher entanglement transfer
success at the cost of longer waiting times. Speed and success advantages of
CQW over CTQW for certain initial states remain in the longer-time regime as
well. Breaking PTS strongly either by CQW for any initial condition or by CTQW
for certain initial conditions give comparable and high entanglement transfer
performance in a short-time regime, which can be further enhanced in long-time
regime; though short-time regime can be more practical for real applications open
to environmental quantum decoherence effects.

In summary, if CTQW is capable to transfer entanglement with PTS breaking
for a certain initial state, then the performance of transfer is comparable to CQW.
Hence, if implementing CQW is challenging and transfer of arbitrary entangled
states is not required, we conclude that CTQW can be preferred over CQW. On
the other hand, if the optimum transfer of arbitrary entangled states with PTS
breaking character is required then it is necessary to implement CQW. Our main
conclusion is foundational in nature, based upon the physical mechanism of PTS
breaking in terms of the path interference and phases in the initial state and
hopping coefficients, and hence, is independent of any physical embodiment.

In addition, we explored the behavior of various mixed Werner states under
our CQW scheme. We found that the purest maximally entangled state yields the
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best state transfer.
Our results can help to understand the interplay of PTS breaking and entangle-

ment transfer and practically to design optimum chiral lattices for the transfer of
entangled states in physical platforms such as plasmonic non-Hermitian coupled
waveguides [69], ultracold atomic optical lattices [65], photonic-spin waveg-
uides [64], or quantum superconducting circuits [61, 62].
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Appendix A Perfect state and entanglement transfer on circulant graphs

We present perfect state and entanglement transfer on some circulant graphs in
this appendix. Such graphs occupy a relatively large space than linear triangular
chains to transfer a state over the same distance and require more qubits to
implement. For example, we take a 5 × 5 circulant graph shown in Fig.12a with
only nearest-neighbor interactions. The adjacency matrix for such a graph is

A =




0 −i 0 0 −i
i 0 −i 0 0
0 i 0 −i 0
0 0 i 0 −i
i 0 0 i 0



. (16)

Fig. 13 shows that the entanglement transfer on such a graph is nearly perfect
with a concurrence of C ∼ 0.93 at t ∼ 4.5.

Another example is a pentagram graph which is sketched on Fig.12b. This
graph contains three triangular plaquettes, but being circulant comes with the cost
of more edges. The adjacency matrix reads

A =




0 −i −i −i −i
i 0 −i −i −i
i i 0 −i −i
i i i 0 −i
i i i i 0



. (17)

Fig. 14 presents the possibility of nearly perfect entanglement transfer with a
concurrence of C4,5 ∼ 1 at t ∼ 3.7.
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Appendix B Eigenvalues and Eigenstates of the Hamiltonian

Numerically calculated eigenstates corresponding to the eigenvalues in Eq. (4),
are listed in the same order as the equations,

Λ1 =




−0.65 − 0.76i
−1.3 + 0.25i
−0.65 + 1.41i
0.65 + 1.15i

1



,Λ2 =




−0.65 + 0.76i
−1.3 − 0.25i
−0.65 − 1.41i
, 0.65 − 1.15i

1



,

Λ3 =




0
1

−1
1
0



,Λ4 =




0.22 + 0.98i
0.44 − 0.33i
0.22 + 0.18i
−0.22 + 0.5i

1i



,Λ5 =




0.22 − 0.98i
0.44 + 0.33i
0.22 − 0.18i
−0.22 − 0.5i

1



.

(18)

Appendix C Definitions of the some mathematical and graph theory terms
used in the manuscript

A graph is a set of vertices and edges connecting them. Here, we present
definitions of some mathematical terms from graph theory and linear algebra we
used in the main text.
Hadamard Product:Hadamard Product is the element-wise product of two matri-
ces with the same dimensions.

Circulant Graph:Undirected graphs contain only bidirectional edges. Cir-
culant graphs are undirected graphs, which take any vertex to all of the other
vertices .

Flat Eigenbasis:When each eigenvector of a basis has entries of the same
magnitude, that eigenbasis is called a flat eigenbasis [39].

Adjacency Matrix, and the Graph Laplacian Matrix:A Laplacian matrix
L = D − A is a matrix that describes a graph, where A is the adjacency matrix
and D is the degree matrix. A degree matrix is a diagonal matrix whose elements
indicate the number of edges attached to each vertex of a graph. An adjacency
matrix represents the connections of a graph, whose elements corresponding to
adjacent (connected by an edge) vertices are 1 [78].
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Figure 8: The time evolution of concurrence Ci,j , measuring the pairwise entanglement between
the sites |i⟩ and |j⟩, is shown as a matrix with i, j = 1..5. Each square in these matrices stands for
the value of the concurrence Ci,j . Colors from light to dark scale with 1 to 0, respectively. Initially
(at t = 0), the quantum walker is injected in the maximally entangled Bell state of the sites 1
and 2 with C1,2 = 1 (upper left panel) to undergo CQW with complex hopping coefficients with
phase θ = π/2. As time progresses, one can notice the unidirectional transfer of entanglement
(light colored pair of squares) to the rightmost sites 4 and 5. The panels are for the t = 0 (upper
left), t = 0.2 (upper right), t = 0.4 (middle left), t = 0.6 (middle right), t = 0.8 (bottom left),
and t = 1 (bottom right).
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Figure 9: Time dependence of the concurrence C4,5(t) of CQW (solid blue curve) and CTQW
(solid red curve) for the long-time evolution (t = 100). In this plot, we have considered the initial
state |ψspatial(0)⟩ = (|1⟩ + |2⟩)/

√
2.
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Figure 10: Time dependence of the Fidelity F (ρ(t), ρtarget) between ρ(t) and ρWerner as a function
of time t with an initial Werner state under the scheme of CQW on a triangular chain of N = 5
sites with complex edge weights of phase θ = π/2. Where b = −1/4 as solid black, b = 0 as
dashed blue, b = 1/2 as thick dashed red and finally, maximally entangled bell state b = 1 is
dot-dashed orange.

24



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

N

T
m
ax
(N
)

(a)

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

N

C
N
-
1,
N
(N
)

(b)

Figure 11: (a) Scaling of state transfer time with respect to the chain size. Red dots represent
θ = 0 and blue dots represent θ = π/2 (b) Concurrence value at the state transfer time. Red dots
represent θ = 0 and blue dots represent θ = π/2

25



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of
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Figure 12: (a) Graph of a linear chain of 5 vertices arranged as an odd number cycle. (b) Graph of a
linear chain of 5 vertices arranged as a pentagram with five-pointed star-like diagonal connections.
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Figure 13: Time(t) dependence of the concurrence C4,5(t) to measure the entanglement between
the sites |4⟩ and |5⟩ on a 5 × 5 circulant graph with only nearest-neighbour interactions for an
initially maximally entangled Bell state (|1⟩ + |2⟩)/

√
2 of the sites |1⟩ and |2⟩ of a particle that

makes CQW.

26



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

t

C
4,
5(
t)

Figure 14: Time(t) dependence of the concurrence C4,5(t) to measure the entanglement between
the sites |4⟩ and |5⟩ on a complete pentagram graph for an initially maximally entangled Bell state
(|1⟩ + |2⟩)/

√
2 of the sites |1⟩ and |2⟩ of a particle that makes CQW.
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