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DRL-Based RIS Phase Shift Design for OFDM
Communication Systems

Peng Chen, Xiao Li, Member, IEEE, Michail Matthaiou, Fellow, IEEE and Shi Jin, Senior Member, IEEE

Abstract—This letter investigates a downlink orthogonal fre-
quency division multiplexing (OFDM) transmission system aided
by a reconfigurable intelligent surface (RIS). To reduce the
system overhead and cost, we consider a 1-bit resolution and
column-wise controllable RIS, and aim to design the reflection
phase shifts of the elements on the RIS to improve the spectral
efficiency. By leveraging a deep Q-network (DQN) framework, a
deep reinforcement learning (DRL) based optimization algorithm
is proposed in order to design the reflection phase shifts. Sim-
ulations illustrate that the proposed DRL-based algorithm can
achieve significant performance gains in the spectral efficiency,
while greatly reducing the calculation delay.

Index terms—Deep reinforcement learning, discrete phase
shift, OFDM, reconfigurable intelligent surface.

I. INTRODUCTION

In recent years, it is widely accepted that reconfigurable
intelligent surfaces (RISs) represent a disruptive technology to
offer high spectral efficiency and coverage cost-effectively [1].
Specifically, a RIS is a metasurface made up of many reflective
elements which can reflect the incident signal with dynam-
ically adjusted amplitude and/or phase [2, 3]. Additionally,
these metasurfaces show great flexibility and compatibility in
practical deployments. They can be installed on the existing
infrastructure easily, such as the walls of skyscrapers and other
buildings.

Thanks to the above advantages, RIS-aided communication
systems have attracted great research attention. For broadband
systems, [4] proposed a successive convex approximation
(SCA) algorithm to optimize the RIS phase shift. In [5],
the SCA algorithm was also adopted to maximize the users’
minimum rate. Note that most existing works have considered
a continuous phase profile of RISs [6]. However, due to hard-
ware constraints, considering a discrete phase shift for each
reflective element is more reasonable in practice. Although
discrete phase shifts can be obtained by directly quantizing the
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continuous phase shifts computed by traditional algorithms,
almost all of them are of high computational complexity.

Since artificial intelligence (AI) has been developed rapidly
over the past years, the application of deep learning (DL) and
deep reinforcement learning (DRL) in wireless communication
systems have been widely investigated [7]. In [8–11], a DRL
method was utilized to handle the optimization problem of
the reflection coefficients at the RIS. Moreover, [8, 9] jointly
designed the BS precoding matrix and continuous phase of RIS
based on a DRL algorithm. In [10], a DRL-based algorithm
and discrete Fourier transform (DFT) codebook were adopted
to design the discrete phases of a RIS. A simultaneous
transmission and reflection RIS was considered in [11], and a
DRL-based algorithm was proposed to design its continuous
reflection phase shift and discrete transmission phase shift.
Nevertheless, for RIS-aided broadband communication sys-
tems, the application of DRL-based algorithms to optimize the
low-resolution discrete phase shifts is still open for research
exploitation.

In this letter, we elaborate on the discrete phase shift
optimization of each reflective element on the RIS in a
downlink orthogonal frequency division multiplexing (OFDM)
transmission system. In order to reduce the hardware cost, we
consider a 1-bit resolution and column-wise controllable RIS.
A DRL-based algorithm is proposed for the optimization of the
reflection phase shifts by applying a deep Q-network (DQN)
[10]. Numerical results verify that the proposed algorithm can
attain comparable spectral efficiency to the optimal approach
with low time consumption.

II. SYSTEM MODEL

In this letter, as illustrated in Fig. 1, a RIS-aided downlink
OFDM transmission system with K users and a RIS is
considered. The RIS, utilized to assist the communication, has
M = Mx ×My (Mx rows, My columns) reflective elements,
and is column-wise controllable such that the elements on the
same column share the same reflection phase shift. Moreover,
each reflective element on the RIS is of 1-bit resolution, i.e.,
the phase shift could be either 0 or π. Due to severe pass loss,
we only take into account the signal reflected once by the RIS.

For typically low-mobility users served by the RIS, we
consider that all channels remain constant during each coher-
ence block and are relatively independent between different
blocks. The frequency bandwidth is divided into V subcarriers,
represented as V =

{
0, 1, . . . , V − 1}, and for user k, the

subcarrier set is defined as Vk satisfying V1∩V2∩· · ·∩VK = ∅,
V1∪V2∪· · ·∪VK = V . We suppose that the channel state infor-
mation (CSI) is known at the BS and RIS. Let us define the re-
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Fig. 1. The considered RIS-aided downlink OFDM transmission system.

flection vector of the RIS as φ =
[
ejθ1 , · · · , ejθM

]T ∈ CM×1,
where the m-th reflective element phase shift θm = 0 or π,
m = 1, 2, . . . ,M , while (·)T represents the transpose. Since
the RIS is column-wise controllable, its reflection vector can
be reformulated as

φ = 1Mx ⊗φ, (1)

where φ =
[
ejθ1 , · · · , ejθMy

]T ∈ CMy×1, with ejθmy denot-
ing the reflection coefficient for the my-th column, 1Mx is a
Mx-dimensional all one vector and ⊗ indicates the Kronecker
product.

Each user receives the signal transmitted by the
BS through a direct channel as well as a reflec-
tion channel. For the user k, we denote h̃d,k =[
h̃d,k,0, h̃d,k,1, · · · , h̃d,k,L0−1,01×(V−L0)

]T
∈ CV×1 as the

zero-padded time domain direct channel with L0 delay taps.
Moreover, we use gm ∈ CL1×1 to represent the L1 tap
equivalent baseband channel among the BS and the m-th RIS
reflective element, and rk,m ∈ CL2×1 to represent the L2 tap
equivalent baseband channel among the m-th RIS reflective
element and the user k. For the user k, the time domain
reflection channel through the m-th RIS reflective element is
obtained as gm ∗ ejθm ∗ rk,m = ejθmgm ∗ rk,m ∈ CL3×1,
the number of delayed taps is L3 = L1 + L2 − 1, while ∗
indicates the convolution of two vectors. Let us denote the
time-domain zero-padded BS-RIS-user k reflection channel
as Zk = [zk,1, zk,2, · · · , zk,M ] ∈ CV×M , where zk,m =[
(gm ∗ rk,m)

T
,01×(V−L3)

]T ∈ CV×1.
At this point, for user k, the total received signal on

subcarrier i can be expressed as

yk,i =
√
piuk,isi + n̂i, i ∈ Vk, (2)

where pi represents the transmission power on subcarrier i at
the BS satisfying

∑K
k=1

∑
i∈Vk

pi 6 P̂ , P̂ is the maximal BS
power, si denotes the transmit signal at the BS on subcarrier
i satisfying E

[
|si|2

]
= 1, E [·] is the expectation operation,

n̂i represents the additive Gaussion white noise (AWGN) on
subcarrier i with mean 0 and variance σ2. Moreover, uk,i

denotes the frequency domain effective channel response of
user k on subcarrier i ∈ Vk, specified as

uk,i = fHi Zkφ+ fHi h̃d,k, (3)

where fHi is the i-th row of a DFT matrix FV ∈ CV×V ,
Zk =

[
zk,1, zk,2, · · · , zk,My

]
∈ CV×My represents the zero-

padded time domain reflection channel for the column-wise
controllable RIS, whose my-th column zk,my represents the
aggregated reflection channel corresponding to the my-th
column of the reflective elements on the RIS, and is expressed
as

zk,my =
∑Mx−1

j=0
zk,my+jMy , my = 1, 2, . . . ,My. (4)

Then, we can express the frequency domain reflection
channel and direct channel of user k on subcarrier i as

hr
k,i = fHi Zk, h

d
k,i = fHi h̃d,k. (5)

Therefore, the spectral efficiency of the user k can be com-
puted as

Rk =
1

N +NCP

∑
i∈Vk

log2

(
1 + pi

∣∣hr
k,iφ+ hd

k,i

∣∣2
κσ2

)
, (6)

where κ > 1 is used to indicate the difference in channel ca-
pacity relative to the actual system [12], and NCP is the cyclic
prefix (CP) satisfying the constraint NCP > max(L0, L3).

In this letter, we assume that the BS distributes the sub-
carrier power evenly, pi = Pt

V , i = 0, 1, . . . , V − 1. We try to
maximize the broadband transmission system sum spectral
efficiency through optimizing the reflection phase shifts of the
RIS elements. The problem can be formulated as

P1 : max
φ

K∑
k=1

∑
i∈Vk

log2

(
1 + pi

∣∣hr
k,iφ+ hd

k,i

∣∣2
κσ2

)
,

s.t. θmy = 0 or π,my = 1, 2, . . . ,My.

(7)

Note that the above problem is non-convex. Numerical
methods, such as the branch and bound algorithm, are usually
utilized to solve such discrete optimization problems, while
entailing high computational delay. Next, we try to solve it
through a DRL-based algorithm.

III. DRL-BASED OPTIMIZATION ALGORITHM

In this section, we propose an efficient method to design the
reflection phase shifts of the RIS with low calculation delay.
We define the codebook P as the set containing all the possible
reflection vectors of the RIS. Thus, the above problem for the
reflection vector φ that optimizes the sum spectral efficiency
can be re-formulated as

P2 : max
φ

K∑
k=1

∑
i∈Vk

log2

(
1 + pi

∣∣hr
k,iφ+ hd

k,i

∣∣2
κσ2

)
,

s.t. φ ∈ P.

(8)

Problem P2 can be solved via an exhaustive search algorithm.
However, this would entail a computational complexity of
O(2My ). To reduce the calculation delay, we propose an
optimization algorithm exploiting DQN to design the reflection
vector.

DQN is a DRL algorithm able to solve the non-convex
problem with continuous state space and discrete action space,
as demonstrated in Fig. 2. The DQN agent contains a state-
action Q-network, a target Q̂-network, a replay buffer, and
an optimizer. The state-action Q-network and the target Q̂-
network are implemented with a deep neural network (DNN)
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Fig. 2. DQN framework.

with weights Ω and Ω̂, respectively. Specifically, in each
learning iteration t, the DQN agent acquires the state st by
observing the current environment, and then selects an action
at according to an ϵ-greedy policy, that either selects an
action randomly with probability ϵ, or selects an action by
the network, i.e.,

at = argmax
a′

Q(st, a
′;Ω), (9)

with probability (1 − ϵ). The reward rt will be obtained
from the environment and the state will update to st+1, after
the action at is completed. Then, the agent stores the tuple
(st, at, rt, st+1) into the replay buffer as an experience. The
optimizer randomly selects B-sized experience tuples from
the replay buffer, and update the network with the selected
experience tuples so that the state-action Q-network output
Q(st, at;Ω) approaches the target Q-value:

Q(st, at;Ω)← rt + γmax
a′

Q̂(st+1, a
′; Ω̂), (10)

where γ is a discount factor and Q̂(st+1, a
′; Ω̂) represents

the target Q̂-network output. At certain intervals, the weights
Ω̂ of the target Q̂-network are soft-updated according to the
state-action Q-network weights. After extensive training, a
robust DRL-based algorithm will be obtained that can output
the optimal action which has the maximum static-action Q-
network output for a given environment state.

In the proposed RIS phase shift optimization algorithm, we
regard the CSI of the considered system as the environment.
At current learning iteration t, the key elements of the DQN
method are defined in details:

1) State: st =
{
h
r(t)
k,i , h

d(t)
k,i

}
i=0,1,...,V−1

is set as the

corresponding state, where h
r(t)
k,i and h

d(t)
k,i represents the

frequency domain reflection channel and direct channel
in learning iteration t. In this way, the DQN method can
obtain the channel state characteristics. Moreover, the
agent deconstructs the input vector into real and imagi-
nary parts, doubling the dimension of st to 2(My+1)V .

2) Action: Set at =
{
θ
(t)

1 , θ
(t)

2 , · · · , θ(t)My

}
∈ P as the

action, the elements of which are the reflection phase
shifts for each column of RIS.

3) Reward: Note that the design objective of the proposed
algorithm is to optimize the total spectral efficiency.
Thus, we set rt =

∑K
k=1 R

(t)
k as the reward value.

Training Procedure: At the initialization time, the state-
action Q-network Ω and the target Q̂-network Ω̂ are generated
so that their weights are uniformly distributed. Moreover, a

reflection vector codebook P and a replay buffer D with
capacity C are initialized. In each learning iteration t, the
CSI is preprocessed as the current state st. For exploration
besides exploitation, the agent chooses the action based on the
ϵ-greedy policy. Then, at is reformed into a reflection vector

φ =
[
ejθ1 , · · · , ejθMy

]T
to compute the current reward rt

and the current environment state is updated to st+1. Further,
the agent obtains the tuple (st, at, rt, st+1) and stores it to the
replay buffer D as one experience. Then, the agent randomly
samples B-sized minibatches of the experience tuples, i.e.,
(sj , aj , rj , sj+1), j = 1, . . . ,B from D. After that, the target
Q-value that the static-action Q-network aims to approximate
will be calculated by

yj =

{
rj , j = B,
rj + γmax

a′
Q̂(sj+1, a

′; Ω̂) , j < B, (11)

where Q̂(sj+1, a
′; Ω̂) are the corresponding target Q̂-network

output. We define the loss function as the following mean
squared error, i.e.,

L(Ω) =
1

B

∑B

j=1

(
yj −Q(sj , aj ;Ω)

)2
. (12)

The DQN agent utilizes a soft-update on the weights Ω̂ of the
target Q̂-network. A soft-update can effectively eliminate the
instability of state-action network and accelerate the conver-
gence of the algorithm, that is given by

Ω̂ = τΩ+ (1− τ)Ω̂, (13)

where τ ≪ 1 is the soft update coefficient. Finally, the DQN
agent learns to map an input (the CSI) to an output (the
reflection phase shift of RIS).

Application Procedure: To further improve the performance,
we add a searching procedure within a small range of
potential phase shift vectors, based on the output of the
trained DQN agent.1 The agent obtains the current channel
information

{
h
r(t)
k,i , h

d(t)
k,i

}
i=0,1,...,V−1

and proprocesses it to
get the state st. Then, the most potential L actions, i.e.,
A =

{
a(1), a(2), · · · , a(L)

}
can be achieved by selecting the

L actions with the largest output Q(s, a;Ω). The optimal
action a∗ leading to the maximum spectral efficiency will
be selected as the reflection vector. By properly choosing the
value of L, the proposed approach can effectively improve the
spectral efficiency of the network at the cost of a relatively low
extra time consumption. Algorithm 1 exemplifies the detailed
procedure of the proposed algorithm.

Implementation Consideration: Note that a RIS has usually
low or no data processing capabilities, while the BS is usually
capable of complex computations and can acquire the overall
system information. Thus, we consider to place the DRL agent
at the BS, so that the agent can obtain the channel coefficients
through a channel estimation method applied at the BS, such as

1Unlike the improvements of RL in some existing works, such as [13],
which proposed a novel distributed RL approach, and [14, 15], which em-
ployed a modulated Hebbian network and a quantum-inspired experience
replay, we hereafter utilize a searching procedure to improve RL, which can
output the nearly optimal action by comparing the spectral efficiencies of the
most potential part of the actions.
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Algorithm 1 DRL-based Optimization Algorithm
Input: replay buffer capacity D, γ, τ , codebook of reflection

coefficients P , batch size B.
Output: Trained state-action Q-network Q(s, a;Ω).
Initialization: Initialize the network Q (s, a;Ω) and

Q̂(s, a; Ω̂) with random weights Ω̂ = Ω.
Task I: Network Training
1: for each episode do
2: Initialize the outer environment s0;
3: for t = 0, 1, 2, ..., T − 1 do
4: Obtain the current channel information{

h
r(t)
k,i , h

d(t)
k,i

}
, ∀i and preprocess it;

5: With probability ϵ select an action at ∈ P at random;
6: Otherwise select action at = argmax

a′
Q(st, a

′;Ω);

7: Acquire the reward rt and next state st+1;
8: Put the experience tuple

(
st, at, rt, st+1

)
into D;

9: if t mod Tp = 0 then
10: Sample B-sized tuples from D randomly;
11: Calculate target Q-value based on (11);
12: Update the state-action Q-network and target Q̂-

network according to (12) and (13);
13: end if
14: st ← st+1;
15: end for
16: Decrease ϵ gradually;
17: end for
Task II: Network Application
1: Obtain the current channel information

{
hr
k,i, h

d
k,i

}
, ∀i

from the environment and preprocess to s;
2: Select the most potential L actions, i.e., A ={

a(1), a(2), · · · , a(L)
}

with the largest Q(s, a;Ω);
3: Calculate the spectral efficiencies corresponding to each

action in the set A;
4: Select the optimal action a∗ as the RIS reflection phase

shift by comparing these spectral efficiencies;

[16] and [17]. Then, the agent can calculate the reward based
on its output action. The RIS controller obtains the phase shifts
from the BS through either a wired or wireless link, and then
adjusts the RIS elements correspondingly.

IV. EXPERIMENT RESULTS

In this section, as described in Fig. 3, we consider a
downlink SISO-OFDM system with eight users, located within
a quarter circle near the reconfigurable intelligent surface, the
radius of which is set to d3 = 10m. The vertical and horizontal
distances among the BS and the RIS are d1 = 10m, d2 = 50m,
respectively.

BS

User 1

User 8

RIS

1
d

2
d

3
d

Fig. 3. Simulation setup.

The total number of subcarriers is V = 64 and the
subcarriers are allocated to the eight users evenly, i.e., Vk ={
8k, . . . , 8k + 7}, k = 0, 1, . . . , 7. The distance between

two adjacent reflective elements of the RIS is set to half
wavelength. For the maximal delay spread, we set L0 = 16,
L1 = 13 and L2 = 4, respectively. Moreover, for the direct
channels of BS-users, we consider Rayleigh fading, while the
reflection channels, i.e., BS-RIS and RIS-users channels, are
considered to be Rician fading. The first tap of the reflection
channels represents the line-of-sight (LoS) path, while the
other taps are non-line-of-sight (NLoS) paths. The Rician
factors of the BS-RIS channel and the RIS-users channel are
denoted as ℑBR and ℑRU, i.e.,

ℑBR =
PLoS,BR

PNLoS,BR
,ℑRU =

PLoS,RU

PNLoS,RU
, (14)

where PLoS,BR, PNLoS,BR, PLoS,RU and PNLoS,RU are the
powers of the LoS and NLoS path of the corresponding
channels. The large-scale fading is modeled as PL = PL0 −
10ϱlog10

(
d
D0

)
dB, where PL0 = −30 dB, D0 = 1m, d

is the distance among the transmitter and receiver, and ϱ is
the path loss exponent. The corresponding parameters of the
OFDM system model are set to ℑBR = 2dB, ℑRU = 4dB,
κ = 8.8dB, NCP = 16 and σ2 = −75dBm, respectively. The
path loss exponents of the BS-RIS channel, RIS-users channel,
and BS-users channel are respectively set as ϱBR = 2.2,
ϱRU = 2.4, and ϱBU = 3.8. The signal-to-noise ratio (SNR)
of the BS-Users direct channel is SNRd = Pd

V σ2 , where
Pd = Pt

V

∑K
k=1

∑
i∈Vk

∣∣hd
k,i

∣∣2. A single GPU of NVIDIA
RTX2080 Ti is applied to train the DRL network. The static-
action Q-network and target Q̂-network both consist of four
fully-connected layers of 1408, 2048, 2048, 1024 nodes,
respectively. The capacity C of the replay buffer is 2000 and
the batch size is B = 512, while T = 1000 and Tp = 200.
Moreover, the initial value of the greedy factor ϵ is 0.95 and
it decreases by a factor of 1% in every episode until it reaches
0.1. The learning rate and soft update coefficient are set to
α = 0.001, τ = 0.005, respectively, while γ = 0.
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Fig. 4. Spectral efficiency vs. SNRd.

Figure 4 demonstrates the spectral efficiency achieved by
the proposed DRL-based algorithm versus SNRd under dif-
ferent L. In this figure, the SNRd varies from -5 to 15dB
and the arrangement of reflective elements in the RIS is
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Mx = 10, My = 10. For comparison, we also demonstrate the
performance of the exhaustive search (as an upper bound),
random phase shifts, without RIS and Discrete successive
convex approximation (SCA) algorithm. The Discrete SCA
algorithm obtains the phase shift by directly quantizing the
continuous phase shift obtained by the SCA algorithm [4]
to 0 or π, whilst the number of iterations of the SCA
algorithm is 8. As shown by the results, regardless of the
SNRd, the appropriate deployment of the RIS (efficient phase
shift design) brings significant gains in spectral efficiency. As
illustrated, the spectral efficiency of the DRL-based algorithm
increases with L. Most importantly, it is obvious that the
proposed algorithm can achieve a comparable performance to
the upper bound and outperforms all the other algorithms. In

TABLE I
ON-LINE RUNNING TIME AND PERFORMANCE COMPARISON

Algorithm Time(ms) Performance
Proposed Algorithm with L = 1 0.66 97.34%
Proposed Algorithm with L = 2 2.54 97.86%
Proposed Algorithm with L = 4 4.71 98.47%
Proposed Algorithm with L = 8 8.33 99.27%

Discrete SCA 1494.8 92.13%

Table I, we compare the on-line running time and performance
of the proposed DRL-based algorithm and the Discrete SCA
algorithm. The performance is represented by the ratio of the
achieved spectral efficiency of these algorithms to the upper
bound. The other experiment parameters are the same as in
Fig. 4. From Table I, it can be seen that the running time
of the Discrete SCA algorithm is several hundred, or even
thousand, times that of the proposed algorithm. The spectral
efficiency achieved by the proposed algorithm outperforms
that of the Discrete SCA algorithm. This is because the
Discrete SCA algorithm obtains the phase shift by directly
quantizing the continuous phase shift obtained by the SCA
algorithm to 0 or π, which might not be optimal. Moreover,
the achieved spectral efficiency of the proposed algorithm can
reach up to 99% of the upper bound when L = 8. Thus, the
proposed algorithm can attain a spectral efficiency comparable
to the optimal approach with low time consumption. Also, the
proposed DRL-based algorithm can make a good compromise
between time complexity and performance by adjusting L
dynamically.

In Fig. 5, the convergence performance of the proposed
DRL-based algorithm is illustrated, where SNRd = 15 dB and
the arrangement of reflective elements in the RIS is Mx = 10,
My = 10. In this figure, we can notice that the performance
of the proposed method approaches the upper bound of the
exhaustive search algorithm as the agent learns, while the
convergence of DRL requires about 330 episodes.

V. CONCLUSION

In this letter, we investigated the design problem of discrete
reflection vector of a RIS in a broadband communication
system to optimize the spectral efficiency. We proposed an
efficient DRL-based algorithm for designing the 1-bit resolu-
tion discrete phase shifts of the column-wise controllable RIS.
Experimental results indicated that the proposed method can
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R
ew

ar
d
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Proposed Alogrithm

Fig. 5. Convergence performance of the proposed algorithm.

achieve significant performance gain and is close to the upper
bound with low time consumption.
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