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ARTICLE OPEN

Evaluating the role of common risk variation in the recurrence
risk of schizophrenia in multiplex schizophrenia families
Mohammad Ahangari1,2, Amanda E. Gentry1, Irish Schizophrenia Genomics Consortium*, Tan-Hoang Nguyen 1,3,
Robert Kirkpatrick1,3, Brian C. Verrelli 4, Silviu-Alin Bacanu 1,3, Kenneth S. Kendler 1,3,5, Bradley T. Webb6 and Brien P. Riley 1,3,5✉

© The Author(s) 2022

Multiplex families have higher recurrence risk of schizophrenia compared to the families of sporadic cases, but the source of this
increased recurrence risk is unknown. We used schizophrenia genome-wide association study data (N= 156,509) to construct
polygenic risk scores (PRS) in 1005 individuals from 257 multiplex schizophrenia families, 2114 ancestry-matched sporadic cases,
and 2205 population controls, to evaluate whether increased PRS can explain the higher recurrence risk of schizophrenia in
multiplex families compared to ancestry-matched sporadic cases. Using mixed-effects logistic regression with family structure
modeled as a random effect, we show that SCZ PRS in familial cases does not differ significantly from sporadic cases either with, or
without family history (FH) of psychotic disorders (All sporadic cases p= 0.90, FH+ cases p= 0.88, FH− cases p= 0.82). These
results indicate that increased burden of common schizophrenia risk variation as indexed by current SCZ PRS, is unlikely to account
for the higher recurrence risk of schizophrenia in multiplex families. In the absence of elevated PRS, segregation of rare risk
variation or environmental influences unique to the families may explain the increased familial recurrence risk. These findings also
further validate a genetically influenced psychosis spectrum, as shown by a continuous increase of common SCZ risk variation
burden from unaffected relatives to schizophrenia cases in multiplex families. Finally, these results suggest that common risk
variation loading are unlikely to be predictive of schizophrenia recurrence risk in the families of index probands, and additional
components of genetic risk must be identified and included in order to improve recurrence risk prediction.

Translational Psychiatry          (2022) 12:291 ; https://doi.org/10.1038/s41398-022-02060-3

INTRODUCTION
Schizophrenia (SCZ) is a severe, clinically heterogeneous psychiatric
disorder with a population prevalence of ~1% [1]. Twin, family, and
adoption studies consistently show a strong genetic component,
with heritability estimates of around 0.75–0.80 [2–6], and family
history (FH) remains the strongest risk factor for developing SCZ [7].
Despite high heritability, ~2/3 of SCZ cases report no FH of
psychotic illness, and most subjects with a positive FH (FH+) report
only a single affected relative [8, 9], concordant with the rates of
31% FH+ and 69% family history negative (FH−) observed in the
sample of sporadic SCZ cases analyzed in this study [10].
The Irish Study of High-Density Schizophrenia Families sample

(ISHDSF) [11–14] consists of 257 multiplex SCZ families with
genotype data, ascertained to have two or more first-degree
relatives meeting the Diagnostic and Statistical Manual of
Mental Disorders (DSM-III-R) criteria for SCZ or poor-outcome
schizoaffective disorder. Such multiplex families, display sub-
stantially higher recurrence risk of SCZ than reported in sporadic
cases [8, 9], and this discrepancy in recurrence risk suggests that
there may be important differences in the genetic architecture

between familial and sporadic SCZ cases that warrant further
investigation.
One explanation of this difference is that familial SCZ cases may

carry a higher burden of common SCZ risk variation as measured
by a higher SCZ polygenic risk score (PRS), than ancestry matched
sporadic cases. Another explanation is that the increased
recurrence risk in multiplex families may be attributable to
segregation of rarer, higher risk variation, identifiable through
exome or whole-genome sequencing likely in combination with
common risk variation. Sequencing studies suggest that rare,
deleterious variation in the genome is involved in the genetic
etiology of SCZ and other psychiatric disorders [15–22], but the
extent to which rare variation contributes to SCZ risk in multiplex
families is currently unknown. A third hypothesis, not addressed
here, is that familial cases may have increased exposure to
environmental risks unique to the families that may explain the
higher recurrence risk in multiplex families.
Mega-analyses of SCZ genome-wide association study (GWAS)

data by the Psychiatric Genomics Consortium Schizophrenia
Working Group (PGC-SCZ) have identified 287 loci associated
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with SCZ [23–25]. GWAS data from such studies are frequently
used to construct PRS to index an individual’s common genetic
variant risk for a disorder. Although current PRS currently lack
power to predict SCZ in the general population, they have been
shown to index meaningful differences in SCZ liability between
individuals. For example, in the European PGC3-SCZ sample, the
highest PRS centile has an OR of 44 (95% CI= 31–63) for SCZ
compared to the lowest centile of PRS, and OR of 7 (95%
CI= 5.8–8.3) when the top centile is compared with the remaining
99% of the individuals in the sample [25].
Common risk variation analyses in multiplex family samples

smaller than ISHDSF have been performed [26–28], and we have
previously used the summary statistics from the first wave of PGC-
SCZ mega-analysis [23] to investigate whether the concept of the
genetically influenced psychosis spectrum is supported by
empirical data in multiplex SCZ families [29]. Here, we extend
our previous work by using PRS profiling in multiplex SCZ families,
sporadic SCZ cases and population controls, all from the
population of the island of Ireland, to directly test whether
common SCZ risk variation in the genome may explain the
increased recurrence risk of SCZ in multiplex families. Identifying
the source of the increased familial recurrence risk of SCZ is
important for future research into the genetic etiology of familial
SCZ, and potentially for both diagnosis and treatment of SCZ with
different familial backgrounds, as it will determine the relative
focus on environmental exposures, as well as common and rare
genetic variation in case–control and family studies of SCZ.

METHODS
Sample description
Irish study of high-density schizophrenia families (ISHDSF). Fieldwork for the
ISHDSF sample were carried out between 1987 and 1992, with probands
ascertained from public psychiatric hospitals in the Republic of Ireland and
Northern Ireland, with approval from local ethics committees [30]. Inclusion
criteria were two or more first-degree relatives meeting DSM-III-R criteria for
SCZ or poor-outcome schizoaffective disorder (PO-SAD), with all four
grandparents being born in Ireland or the United Kingdom. Relatives of
probands suspected of having psychotic illness were interviewed by trained
psychiatrists, and trained social worked interviewed other relatives. Hospital
and out-patient records were obtained and abstracted in >98% of cases
with SCZ or PO-SAD diagnoses. To avoid bias and detect possible mistakes
in diagnosis, independent review of all diagnostic information such as
interview, family history reports, and hospital information was made blind
to family assignments by two trained psychiatrists, with each psychiatrics
making up to three best estimate DSM-III-R diagnoses, with high agreement
between the two psychiatrists (weighted k= 0.94 ± 0.05).
The concentric diagnostic schema of the ISHDSF shown in Table 1 and

Supplementary Fig 4, includes four case definitions: narrow spectrum (SCZ,
PO-SAD and simple SCZ), intermediate spectrum (adding schizotypal
personality disorder, schizophreniform disorder, and delusional disorder,
psychosis not otherwise specified, and good-outcome schizoaffective
disorder), broad spectrum (adding psychotic affective illness, paranoid,
avoidant and schizoid personality disorders, and other disorders that
significantly aggregate in relatives of probands based on previous
epidemiological work in Ireland [12]) and very broad spectrum (adding any
other psychiatric illness in the families). The ISHDSF sample also includes
unaffected family members with no diagnosis of any psychiatric illness. The
ISHDSF diagnostic schema is described extensively elsewhere [31].

Irish schizophrenia genomics consortium case/control sample (ISGC). The
ISGC sample was assembled for a GWAS of SCZ in Ireland. Details of
recruitment, screening and quality control (QC) methods used for the ISGC
sample have been previously described in detail elsewhere [32]. Briefly, the
case sample was recruited through community mental health service and
inpatient units in the Republic of Ireland and Northern Ireland following
protocols with local ethics approval. All participants were interviewed
using a structured clinical interview for DSM-III-R or DSM-IV, were over 18
years of age and reported all four grandparents born either in Ireland or
the United Kingdom. Cases were screened to exclude substance-induced
psychotic disorder or psychosis due to a general medical condition. A
subset of sporadic cases sampled by Virginia Commonwealth University

(N= 745) have genotypic data and FH information available [10] from
completion of the family history research diagnostic criteria (FH-RDC)
interview [33]. This includes 233 (~31%) FH+ cases and 512 (~69%) FH−
cases, in close concordance with the other large meta-analyses [8, 9].
Controls from the Irish Biobank used in ISGC were blood donors from the
Irish Blood Transfusion Service recruited in the Republic of Ireland.
Inclusion criteria were all four grandparents born in Ireland or the United
Kingdom and no reported history of psychotic illness. Due to the relatively
low lifetime prevalence of SCZ, misclassification of controls should have
minimal impact on power [34].

Genotyping and QC
Samples were genotyped using three different arrays (Supplementary
Table 2). 830 individuals representing 237 families from the ISHDSF sample
were genotyped on the Illumina 610-Quad Array. An additional 175 ISHDSF
individuals from 52 families were later genotyped on the Infinium
PsychArray V.1.13 Array. For the case–control sample, 1627 sporadic cases
and 1730 controls were successfully genotyped using the Affymetrix V.6.0
Array, either at the Broad Institute or by Affymetrix. An additional
487 sporadic cases and 475 controls were later genotyped on the
PsychArray along with the additional ISHDSF individuals described above.
The same QC protocols were applied to all three datasets and full details
are described elsewhere for ISHDSF [31] and the case–control sample [32].
Exclusion criteria for samples were a call rate of <95%, more than one
Mendelian error in the ISHDF sample, and difference between reported
and genotypic sex. Exclusion criteria for SNPs were MAF < 1%, call rate
<98%, and p < 0.0001 for deviation from Hardy-Weinberg expectation. The
final ISHDSF sample included 1005 individuals from 257 pedigrees, and the
final case–control sample included 4,319 individuals (2114 sporadic cases
and 2205 controls), whose SNP data passed all QC filters.

Imputation
Genotypes passing QC were phased using Eagle V.2.4 [35] and phased
genotypes were then imputed to the Haplotype Reference Consortium
(HRC) reference panel [36] on the Michigan Imputation Server using
Minimac4 [37]. The HRC reference panel includes 64,975 samples from 20
different studies that are predominantly of European ancestry, making it
suitable for imputation of the samples studied here. Each of the genotype
sets were imputed and the imputed genotype probabilities were extracted
and used for PRS construction and downstream analyses. As part of the
post-imputation QC, variants with MAF < 1% and imputation quality score
of <0.3 [38] were excluded for the initial merging (Supplementary Materials
and Supplementary Figs. 1–3). After imputation and all QC steps, 9,298,012
SNPs in the Illumina Array, 11,080,279 SNPs in the Affymetrix Array, and
11,081,999 SNPs in the PsychArray remained for analysis. In total, 9,008,825
SNPs were shared across all three arrays and were used for PRS
construction and all downstream analyses. The mean imputation quality
for the SNPs used for PRS construction and downstream analyses on each
array was high (mean for all ≥0.96). Detailed information on imputation
quality for the SNPs used for PRS construction is provided in
Supplementary Materials and Supplementary Table 1.

Construction of polygenic risk scores
The ISGC and ISHDSF cohorts are part of the PGC3-SCZ GWAS. To avoid
upward bias in PRS estimations, we acquired leave-N-out SCZ summary
statistics from the PGC by excluding all cohorts containing any Irish
subjects included in the current study. The leave-N-out GWAS summary
statistics for PGC3-SCZ (N= 156,509) were first QC’d by excluding variants
with MAF < 1% and imputation quality score of <0.9, as well as removing
strand ambiguous variants and insertion deletion polymorphisms. We then
constructed PRS for all subjects using a Bayesian regression framework by
placing a continuous shrinkage prior on SNP effect sizes using PRS-CS with
phi value of 1e-2 [39]. PRS-CS uses linkage disequilibrium (LD) information
from 1000 Genomes European Phase 3 European sample [40] to estimate
the posterior effect sizes for each SNP. Although p-value thresholding
method have been previously used frequently [41], PRS-CS has shown
substantial improvement in predictive power compared to those methods
[42]. Similar to LD Score regression [43], PRS-CS limits the SNPs for PRS
construction to approximately 1.2 million variants from HapMap3. By
restricting the variants to HapMap3, the partitioning provides ~500 SNPs
per LD block which substantially reduces memory and computational
costs. The constructed PRS using PRS-CS method were normalized against
the score distribution in the population control for subsequent analyses.
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To show the specificity of the PRS constructed from PGC3-SCZ, an
additional PRS for low density lipoprotein (LDL, N= 87,048) from the
ENGAGE Consortium [44] was also constructed using the same protocols
described above. Genetic correlation and Mendelian Randomization
studies by PGC3-SCZ show that there is no genetic correlation or causal
relationship between SCZ and LDL, making LDL an appropriate
comparison phenotype in which no inflation of SCZ PRS would be
expected [45, 46].

Genomic relationship matrix, principal component and
statistical analyses
Statistical analyses were carried out using a mixed effects logistic
regressions using GMMAT package [47] in R [48]. To account for the high
degree of relatedness among individuals, we used glmm.wald() function,
fitted by maximum likelihood using Nelder-Mead optimization. Family
structure was modeled as a random effect with genetic relationship matrix
(GRM) calculated using LDAK [49] in all family members as well as sporadic
cases and population controls. Principal component analysis (PCA) of the
full sample is consistent with all individuals in the sample having European
ancestry (Supplementary Materials, and Supplementary Figs. 5–7). How-
ever, to account for fine-scale structure within the Irish population
(Supplementary Fig. 8), the top 10 principal components (PC) were also
included as covariates in the analyses. While none of the PCs showed
association with genotype arrays or sites, in order to account for other
possible batch effects due to genotyping carried out on different arrays or
at different sites, we included platform and site as covariates in the model
(Supplementary Materials). The final regression models included GRM as a
random effect covariate, with the top 10 PCs, genotyping platform, site,
and sex as fixed effect covariates. The final results were adjusted for
multiple testing using the Holm method in R.

RESULTS
The mean PRS across the diagnostic categories for SCZ are
displayed in Fig. 1. No significant differences in LDL PRS were
observed between any of the diagnostic categories compared to
population controls (Supplementary Fig. 9), indicating the
specificity of PGC3-SCZ PRS in this study.
PGC3-SCZ PRS results show that the Narrow spectrum category

in the families, which includes familial cases of SCZ, had the
highest mean PRS (Z= 1.13, SE= 0.09) followed by sporadic cases
(Z= 1.06, SE= 0.09), intermediate spectrum familial cases
(Z= 0.81, SE= 0.10), broad familial spectrum cases (Z= 0.67,
SE= 0.11), very-broad spectrum cases (Z= 0.53, SE= 0.098),
unaffected family members (Z= 0.36, SE= 0.10) and population
controls (Z= 0.004, SE= 0.07).

No significant difference between familial and sporadic cases
of SCZ
We observe no significant difference in PRS between familial SCZ
cases and all sporadic SCZ cases, (p= 0.90), nor between familial
SCZ cases and either FH+ (p= 0.88) or FH− (p= 0.82) sporadic
SCZ cases. These results suggests that an increased burden of
common SCZ risk variation is unlikely to account for the higher
recurrence risk of SCZ in multiplex families (Fig. 1). Additionally,
we show that there is no significant difference in SCZ PRS
between FH+ and FH− sporadic SCZ cases (p= 0.92), suggesting
that the inclusion of all sporadic cases in the comparison is
unlikely to cause an upward bias in the mean PRS for the full
cohort of sporadic cases, and further supporting the hypothesis
that increased PRS is unlikely to account for FH of SCZ in the
cohort studied here.

All family members carry a high burden of common SCZ risk
variants
Familial and sporadic SCZ cases show a significantly higher mean
SCZ PRS compared to all other diagnostic categories in the ISHDSF
sample and ancestry-matched population controls (Figs. 1 and 2,
Supplementary Table 3), underlining the important role of
common risk variation in the genetic architecture of both familial

and sporadic SCZ cases. All other ISHDSF diagnostic categories
also show a significantly higher SCZ PRS compared to the
population controls (Figs. 1 and 2). PRS comparison within the
ISHDSF sample (Supplementary Table 4) shows no significant
difference between mean PRS for intermediate and broad
categories, indicating that individuals in both categories have a
similar burden of common SCZ risk variants despite the presence
of a range of diagnoses on the psychosis spectrum such as
atypical psychosis and delusional disorder in the intermediate
category, and disorders such as major depressive disorder with
psychotic features, and bipolar disorder in the broad category. We
observed no significant difference in SCZ PRS loading between
the broad category and the very-broad category, which includes
any other psychiatric disorder in the ISHDSF sample. The mean
SCZ PRS in the very broad category is not significantly different
from the unaffected members of the families, indicating a similar
burden of common SCZ risk variation in these two distinct
diagnostic categories. Finally, we observe a significantly higher
PRS in unaffected family members compared to the population
controls (P= 4.13 × 10−3), indicating a high baseline risk for SCZ in
all members of multiplex families compared to population
controls, regardless of their diagnostic status. This observation is
consistent with SCZ transmission through some unaffected family
members observed in the ISHDSF and other family samples.

DISCUSSION
Multiplex SCZ families represent the upper bounds of the
distribution of recurrence risk for SCZ, and this study aimed to
investigate the source of this increased recurrence risk. Since
sporadic cases are considered to be the norm for most complex
diseases including SCZ [50], this makes sporadic SCZ cases a good
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Fig. 1 Mean Leave-N-Out PGC3-SCZ PRS for each of the diagnostic
categories in the ISHDSF sample, sporadic SCZ cases and
ancestry-matched population controls. A subset of sporadic cases
with family history (FH) information are further divided into FH+
(green bar) and FH− (red bar) categories. Unaffected relatives (dark
orange bar) are distinct from population controls (black bar) as they
represent unaffected individuals in the families. Familial SCZ cases
are represented in the narrow spectrum category as described in the
methods section. Error bars represent the standard error of the
observed mean. X axis shows each of the diagnostic categories. Y
axis shows the mean normalized Z-score for PGC3-SCZ.
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comparison group to assess whether elevated PRS can account for
the increase in recurrence risk in familial cases. We observed that
familial SCZ cases do not have a significantly increased PRS
compared to sporadic SCZ cases in our modestly sized sample. We
further show that this observation holds true regardless of the FH
status of sporadic cases. Therefore, our finding provides empirical
evidence that increased recurrence risk of SCZ in the ISHDSF
sample is unlikely to be attributable to an increased burden of
common SCZ risk variation as identified from genome-wide
association studies. Therefore, the hypothesis that high familial
recurrence risk of SCZ in multiplex families may be attributable to
excess rare variation in the genome specific to SCZ, warrants
further investigation. Furthermore, these results validate the
concept of a genetically influenced psychosis spectrum in
multiplex SCZ families as shown by a continuous increase of
common SCZ risk variation burden across all members of the
ISHDSF, from unaffected family members, to narrow category in
the ISHDSF sample.
This analysis reveals potentially important differences in the

genetic architecture of familial SCZ cases compared to familial
bipolar disorder (BIP) cases. Analysis conducted by Andlauer et al
[27] on BIP multiplex families have shown that unlike familial SCZ
cases studied here, familial BIP cases have a significantly higher
BIP PRS compared to ancestry matched, sporadic cases. These
results, in addition to sparse evidence for the involvement of rare
risk variation in the genetic architecture of BIP [22], demonstrates
the importance of common risk variation in familial BIP, whereas
whole exome sequencing studies of SCZ in both family and
case–control samples have demonstrated that in addition to
common variation, rare variation also plays an important role in
the genetic architecture of SCZ [21, 51–53].
Although sequencing studies are only now reaching sample

sizes sufficiently powered to detect individually associated rare
variation and rare variant enriched genes associated with SCZ [21],
earlier sequencing and rare variation studies observe consistent
enrichment of rare variation in certain gene-sets and functional
categories related to SCZ [51]. In addition, SNP signals from PGC3-

SCZ GWAS are shown to be highly enriched in noncoding
functional sequences in the genome [25], further underscoring the
importance of conducting large scale whole-genome sequencing
to identify rare variation in non-coding regions of the genome
linked to SCZ. Results from the 1000 Genomes Project demon-
strates that rare functional variation is frequent in the genome [54]
and shows strong population specificity [55]. For example, using
GWAS probe intensity data in the Irish case–control sample used
in this study, we have previously detected a rare, novel 149 kb
duplication overlapping the protein activated kinase 7 (PAK7) gene
only found in the Irish population [56]. This duplication is
associated with SCZ in the ISGC (p= 0.007), and a replication
sample of Irish and UK case–controls with 22 carriers in 11,707
cases and 10 carriers in 21,204 controls (p= 0.0004, OR= 11.3).
This duplication in PAK7 gene is in strong LD with local haplotypes
(p= 2.5 × 10−21), indicating a single ancestral event and inheri-
tance identical by descent in carriers.
We note that the liability that is captured by PRS constructed

from PGC3-SCZ is currently insufficient for predicting a diagnosis
of SCZ (AUC= 0.71) [25], meaning that PRS alone cannot be used
as a diagnostic tool. The results of our study further suggest that
current PRS alone is unlikely to be predictive of SCZ recurrence
risk in the families of index probands. To address both of these
predictive limitations of SCZ PRS, additional components of
genetic risk must be identified and included in order to improve
both identification of future cases and recurrence risk prediction in
the relatives of probands.
The results presented in this study should be interpreted in the

context of some limitations. First, current PGC3-SCZ PRS accounts
for ~2.6% of the total variance in SCZ liability [25], and genetic
risks from rare and structural variation are not represented in the
PRS. As a result, some known genetic risk factors for SCZ such as
the 22-q11 deletion [57] are not included in PRS construction, and
such genetic risk factors are best measured through direct
assessment of structural variation or whole genome sequencing
studies. Despite these limitations, PRS provide the most reliable
measurement of common risk variation in the genome and are
suitable for indexing an individual’s risk for SCZ in this study.
Second, the various diagnostic categories in the ISHDSF sample
contain different number of subjects [30]. For example, the lower
number of individuals satisfying broad and very broad diagnostic
schema in the families, means that the power of analysis in those
subgroups is lower. However, the narrow category which includes
familial SCZ cases in the ISHDSF sample, has the highest number
of individuals across all the diagnostic categories in the ISHDSF,
making the sample suitable for the main hypothesis being tested
in this study. Third, FH information is only available for a subset of
sporadic cases as described in the methods. However, the ratio of
FH+ (~31%) and FH− (~69%) sporadic cases studied here is in
close agreement with FH data from large meta-analyses samples
[8, 9], suggesting the subset of sporadic FH+ and FH− cases
available are representative. Fourth, this analysis did not assess the
common risk variant burden of each family separately, and the
degree to which common risk variation may impact each family
could vary between different families. Fifth, since the environ-
mental factors unique to the families have also not been
systematically assessed here, integrating rare genetic variation
from whole sequencing studies with environmental influences in
future analyses could further elucidate the role of rare variation
and environmental influences on the recurrence risk of SCZ in
multiplex families. Finally, as more samples from under-
represented populations are collected, it is essential to replicate
and show the generalizability of these findings in more diverse
populations.
In conclusion, in this study, we show that differences in

common risk variation as indexed by current PRS, is unlikely to
account for the increased recurrence risk of SCZ in our cohort of
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Fig. 2 Comparison of PRS between the ISHDSF diagnostic
categories and sporadic cases, versus population controls. All
analyses follow the hypothesis that ISHDSF members and sporadic
cases have a higher PRS compared to population controls. All PRS
have been normalized using Z-score standardization prior to
obtaining odds ratios. The plots show odds ratios (OR, filled circles)
with 95% confidence intervals (CI) for each category compared to
population controls. X axis represents the odds ratios. Left side of Y
axis represents each of the categories used for comparison versus
population controls. Right side of the Y axis represents the p-values
after multiple testing correction.
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multiplex SCZ families and ancestry matched sporadic cases.
Therefore, our results suggest that both common and rare SCZ risk
variation needs to be indexed to potentially improve diagnostic
and familial recurrence prediction of SCZ.
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