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ABSTRACT: Background: Epidemiological studies
that examined the association between Parkinson’s dis-
ease (PD) and cancers led to inconsistent results, but
they face a number of methodological difficulties.
Objective: We used results from genome-wide associa-
tion studies (GWASs) to study the genetic correlation
between PD and different cancers to identify common
genetic risk factors.
Methods: We used individual data for participants of
European ancestry from the Courage-PD (Comprehensive
Unbiased Risk Factor Assessment for Genetics and Envi-
ronment in Parkinson’s Disease; PD, N = 16,519) and
EPITHYR (differentiated thyroid cancer, N = 3527) consor-
tia and summary statistics of GWASs from iPDGC
(International Parkinson Disease Genomics Consortium;
PD, N = 482,730), Melanoma Meta-Analysis Consortium
(MMAC), Breast Cancer Association Consortium (breast
cancer), the Prostate Cancer Association Group to Investi-
gate Cancer Associated Alterations in the Genome (pros-
tate cancer), International Lung Cancer Consortium (lung
cancer), and Ovarian Cancer Association Consortium (ovar-
ian cancer) (N comprised between 36,017 and 228,951 for
cancer GWASs). We estimated the genetic correlation
between PD and cancers using linkage disequilibrium score
regression. We studied the association between PD and
polymorphisms associated with cancers, and vice versa,

using cross-phenotypes polygenic risk score (PRS)
analyses.
Results: We confirmed a previously reported positive
genetic correlation of PD with melanoma (Gcorr = 0.16
[0.04; 0.28]) and reported an additional significant posi-
tive correlation of PD with prostate cancer (Gcorr = 0.11
[0.03; 0.19]). There was a significant inverse association
between the PRS for ovarian cancer and PD (odds ratio
[OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was
positively associated with breast cancer (OR = 1.08
[1.06; 1.10]) and inversely associated with ovarian cancer
(OR = 0.95 [0.91; 0.99]). The association between PD
and ovarian cancer was mostly driven by rs183211
located in an intron of the NSF gene (17q21.31).
Conclusions: We show evidence in favor of a contribu-
tion of pleiotropic genes to the association between PD
and specific cancers. © 2023 The Authors. Movement
Disorders published by Wiley Periodicals LLC on behalf
of International Parkinson and Movement Disorder Soci-
ety. This article has been contributed to by U.S. Govern-
ment employees and their work is in the public domain in
the USA.

Key Words: Parkinson’s disease; cancer; genetic corre-
lation; polygenic risk score; pleiotropy

Introduction

Although the frequency of cancers and neurodegen-
erative diseases increases with age, their cellular con-
sequences are very different, with cell proliferation in
cancers and neuronal death in neurodegenerative dis-
eases. Parkinson’s disease (PD) is caused by the loss

of dopaminergic neurons in the substantia nigra pars
compacta.
Epidemiological studies that examined the associa-

tion between PD and cancer support a general inverse
association, ie, patients with PD tend to have a lower
risk for cancer in general and cancer patients have a
lower risk for PD.1 This inverse association is mostly
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explained by an inverse association with smoking-related
cancers (lung, bladder, and colorectal cancers) because
of a lower prevalence of smoking in patients with PD,
but an inverse association has also been reported for
some non-smoking-related cancers.1,2 In addition, after
stratification on smoking status, two studies found an
inverse association between smoking-related cancers and
PD among ever smokers, whereas there was a positive
association among never smokers,3,4 in favor of an inter-
action with smoking. In addition to smoking, other
exposures associated with PD and cancer risk (eg, physi-
cal activity, reproductive factors in women) may also
contribute to confound PD–cancer associations. Other
possible biases in epidemiological studies include diag-
nostic bias, competing risks, or selective survival.5-7

Alternatively, positive associations between PD and spe-
cific cancers (melanoma, skin, breast, brain, and prostate)
have also been reported.1,8 In particular, the positive asso-
ciation between PD and melanoma is well established.9

This association exists both for melanomas occurring
before and after PD diagnosis, which does not support the
role of antiparkinsonian medications as a causal factor.10

It has been hypothesized that this association could be
explained by common genetic factors, because people with
a familial history of melanoma had an increased risk for
PD and, conversely, relatives of patients with PD had an
increased risk for melanoma.1

Specific genes involved in familial forms of PD (SNCA,
Parkin, LRRK2) have been implicated in biological
mechanisms associated with breast, prostate, and thyroid
cancers.1,11,12 Inactivation of PARK2, a gene that causes
recessive forms of PD, is associated with an increased
cancer risk, highlighting its role as tumor suppressor,13

particularly in breast and ovarian cancers.14 Epidemio-
logical studies support an increased risk for cancer in
LRRK2-G2019S carriers.15 There is also an overrepre-
sentation of somatic mutations of PARK genes in mela-
noma cases.16 PARK6 (PINK1) is also known to play a
role in breast and ovarian cancers.17

A two-sampleMendelian randomization analysis did not
find evidence in favor of a causal relationship between sev-
eral cancers (includingmelanoma, breast, and prostate) and
PD, thus suggesting that the previously reported associa-
tions between PD and cancers may be explained by pleio-
tropic genetic factors or shared biology.18 A study using a
candidate gene approach found no association between PD
(Population Architecture through Genomics and Environ-
ment [PAGE] study, International Parkinson Disease Geno-
mics Consortium [iPDGC]) and genetic polymorphisms
associatedwithmelanoma or skin pigmentation in genome-
wide association studies (GWASs).19 One study used
iPDGC and 23andMe to show a positive significant genetic
correlation between melanoma and PD.20 Another study
examined the genetic correlation between three neurode-
generative diseases and multiple cancers; for PD, they also
used iPDGC and 23andMe data and showed positive

correlations withmelanoma and prostate cancers, although
these associations would not have been statistically signifi-
cant after correction formultiple testing.21

In this article, we aimed at identifying common
genetic risk factors of PD and cancers previously associ-
ated with PD (melanoma, breast, prostate) or for which
an association is suspected (lung, ovary, thyroid). First,
we estimated genetic correlations between PD and can-
cers using results from large GWASs and linkage dis-
equilibrium (LD) score regression. Second, we analyzed
the association of polygenic risk scores (PRSs) for PD
(and their individual single-nucleotide polymorphisms
[SNPs]) with each cancer and, conversely, the associa-
tion of PRSs for each cancer (and their individual SNPs)
with PD.

Subjects and Methods
GWAS Datasets on PD

We used data from two PD consortia: individual data
from the Courage-PD consortium (Comprehensive
Unbiased Risk Factor Assessment for Genetics and
Environment in Parkinson’s Disease)22 and summary
statistics from iPDGC.23,24

In Courage-PD, we excluded studies performed in Asian
populations, studies that included cases only, and those
with less than 50 cases and 50 controls. Only individuals
from European ancestry were retained for the analysis.
We also excluded individuals overlapping with iPDGC.
We finally used data from 23 of 35 case–control studies,
totaling 8919 cases and 7600 controls (Table S1). The
NeuroChip array was used to genotype all the samples
(see Supporting Information Methods). Imputation of
autosomal variants was performed separately in each
study, based on 271,398 to 373,664 SNPs. The mean
number of SNPs available in each study after imputation
was 13,710,549. In each study, SNP frequencies were
compared in cases versus controls under an additivemodel
using logistic regression adjusted for sex and the first four
principal components. We meta-analyzed the summary
statistics from the 23 GWASs using an inverse-variance
fixed-effects (I2 ≤ 25%) or random-effects (I2 > 25%)
model (see Supporting InformationMethods).
As a replication dataset for PD, we used GWAS sum-

mary statistics from the iPDGC consortium (33,674
cases, 449,056 controls).23 Sex-stratified summary sta-
tistics are also available for 13,020 male PD cases,
7936 paternal proxy cases, 89,660 male controls, 7947
female PD cases, 5473 maternal proxy cases, and
90,662 female controls.24

GWAS Datasets on Cancer
We used summary statistics from European ancestry–

based GWASs on cancer susceptibility: Breast Cancer
Association Consortium (BCAC)25 (122,977 breast
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cancer cases, 105,974 controls), Melanoma Meta-Analy-
sis Consortium (MMAC)26 (12,814 melanoma cases,
23,203 controls), Prostate Cancer Association Group to
Investigate Cancer Associated Alterations in the Genome
(PRACTICAL)27 (79,148 prostate cancer cases, 61,106
controls), International Lung Cancer Consortium
(ILCCO)28 (29,266 lung cancer cancers, 56,450 controls),
Ovarian Cancer Association Consortium (OCAC)29

(25,509 ovarian cancer cases, 40,941 controls), and Epi-
demiology of Thyroid Cancer Consortium (EPITHYR)30

(1554 differentiated thyroid cancer cases, 1973 controls).

LD Score Regression
To investigate the genetic correlation between PD and

each cancer, we performed cross-trait LD score regres-
sion.31 We performed one analysis for each PD–cancer
pair using summary statistics from the corresponding
GWAS. Before running the analyses, we implemented
the following filters31: SNPs with imputation scores
INFO > 0.9; minor allele frequency (MAF) > 0.01; har-
monized to HapMap3 SNPs with 1000 Genomes EUR
MAF > 0.05; and removal of indels, structural variants,
strand-ambiguous SNPs, and SNPs whose alleles did not
match those in 1000 Genomes. This was performed by
running the munge-sumstats.pr script included in ldsc.
We ran ldsc.py from the ldsc package after excluding the
HLA region. The final numbers of SNPs considered for
each pairwise genetic correlation analysis are reported in
Table S2.
Genetic correlations were estimated separately for

Courage-PD and iPDGC and were then meta-analyzed
using an inverse-variance weighting method. We used
the false discovery rate (FDR) to take into account mul-
tiple testing.

Cross-Phenotype PRS Analysis
Cross-phenotype PRS analysis allows investigating

whether an individual-level genome-wide genetic pre-
diction of a disease has substantive power to predict
another disease. For each PD–cancer pair, we examined
the association of the PRS for one of the diseases with
the other disease, and vice versa.
PRSs for each cancer were aligned in Courage-PD

using independent genome-wide significant SNPs and
corresponding weights for PRS previously published in
the largest GWAS to date on this cancer.27,28,32-36 The
lists of SNPs and corresponding weights used for cancer
PRSs are described in Table S3A–F. The association
between cancer PRSs and PD was examined in each of
the 23 studies of Courage-PD using logistic regression
adjusted for sex and four principal components. An
inverse-variance weighted meta-analysis of regression
coefficients was then performed. The extent of heteroge-
neity was estimated using the I2 statistic.37 A random-
effects meta-analysis was performed if I2 > 25%, and a

fixed-effects model was used otherwise. The association
between cancer PRSs and PD was calculated in iPDGC,
for which individual data were not available, using the
grs.summary function from the gtx R package38 based
on summary statistics.
Analyses of the PD PRS in cancer were based on both

88 SNPs identified by Nalls et al23 and 44 SNPs identi-
fied by Chang et al39 to compare the results. For non-
retrieved SNPs, we searched for proxies at r2 > 0.8 with
the proxysnps function based on the 1000 Genomes Pro-
ject (https://github.com/slowkow/proxysnps). We did not
use one palindromic SNP (rs1555399) with MAF > 0.45.
For thyroid cancer, we used the same strategy as for can-
cer PRSs in Courage-PD because individual data were
available. For all other cancers for which individual data
were not available, we used the same strategy as for the
analysis between cancer PRSs and PD using summary sta-
tistics from iPDGC. Results of associations with PRSs for
cancers in Courage-PD and iPDGC were meta-analyzed
using the inverse-variance weighting method as described
earlier. We calculated an FDR to correct for multiple test-
ing for each direction of the cross-phenotype PRS
analysis.

Shared Risk Loci
For PD–cancer pairs for which we identified a signifi-

cant cross-phenotype PRS association, we further
explored associations at the level of individual SNPs
from the PRSs, to identify pleiotropic risk loci that
influence these associations. For each PD–cancer pair,
we determined which SNPs played a role while cor-
recting for multiple testing using the FDR.

Stratified Analyses
Information on sex was available in Courage-PD and

the latest iPDGC GWAS.24 We examined the associa-
tion of cancer PRSs with PD in men and women to
identify sex-specific associations.
In addition, the ILCCO consortium performed

GWASs stratified by smoking status (ever/never) and
histology (small cell carcinoma, squamous cell carci-
noma, and adenocarcinoma). This allowed us to exam-
ine the association of PD PRSs with lung cancer risk
according to histology and smoking status.

Results
LD Score Regression

The meta-analysis of genetic correlations identified
two significant positive genetic correlations of PD with
melanoma (Gcorr-meta = 0.16, Pmeta = 0.02, FDR =
0.047) and prostate cancer (Gcorr-meta = 0.11, Pmeta =
0.01, FDR = 0.047) that remained significant after
correction for multiple testing (FDR < 0.05) (Table 1).
There was no heterogeneity between the Courage-PD
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and iPDGC datasets. The genetic correlation
between PD and breast cancer was positive and con-
sistent in both datasets, but not statistically signifi-
cant (Pmeta = 0.24, FDR = 0.37). The other three
cancers showed heterogeneous genetic correlations in
sizes and directions between Courage-PD and
iPDGC.

Cross-Phenotype PRS Analysis
Analyses of the association between cancer PRSs and

PD are shown in Table 2. We found one significant
inverse association between the PRS for ovarian cancer
and PD (Pmeta = 2.1 � 10�5, FDR = 1.1 � 10�4). Sug-
gestive positive associations were observed for the PRS
for breast cancer (Pmeta = 0.05, FDR = 0.10) and lung
cancer (Pmeta = 0.02, FDR = 0.07) with PD, but these
associations became nonsignificant after correction for
multiple testing.
Regarding the association between the PD PRSs and

cancers (Table 3), we found a positive association
between both PD PRSs and breast cancer, with a
stronger association for the PRSChang (odds ratio [OR]

= 1.08, P = 4.6 � 10�14, FDR = 2.7 � 10�13) than
PRSNalls (OR = 1.03, P = 1.9 � 10�4, FDR =
1.14 � 10�3). We also found an inverse association
between the PRSChang and ovarian cancer (OR = 0.95,
P = 0.013, FDR = 0.04); the association was similar
for the PRSNalls, but it was borderline significant and
became nonsignificant after correction for multiple
testing.

Shared Risk Loci
We searched for pleiotropic SNPs between PD and

breast cancer on one side, and between PD and ovarian
cancer on the other side, by examining associations for
individual SNPs included in the PD, breast cancer, or
ovarian cancer PRSs (Tables S4A–D and S5A–D).
The PRSs for PD and ovarian cancer share a common

region on locus 17q21.31 that was also associated with
breast cancer (Tables 4 and 5). This region is represen-
ted by four SNPs in high LD: rs183211, rs17649553,
rs62053943 (pairwise r2 > 0.7, D0 = 1 in 1000 Genome
CEU), and rs117615688 (r2 < 0.14, D0 = 1 with the
three other SNPs). Associations with these SNPs were

TABLE 1 Genetic correlations between PD and cancers

Courage-PD iPDGC Meta-analysis

Cancer Gcorr CI95% P Gcorr CI95% P Gcorr CI95% Pmeta Phet FDR

Breast cancer 0.06 [�0.06; 0.18] 0.36 0.04 [�0.06; 0.14] 0.46 0.05 [�0.03; 0.13] 0.24 0.84 0.37

Ovarian cancer 0.04 [�0.20; 0.28] 0.74 �0.13 [�0.27; 0.01] 0.07 �0.09 [�0.21; 0.03] 0.17 0.23 0.33

Melanoma 0.18 [�0.02; 0.38] 0.09 0.14 [�0.02; 0.30] 0.08 0.16 [0.04; 0.28] 0.02 0.80 0.047

Thyroid cancer 0.28 [�0.05; 0.61] 0.10 �0.02 [�0.33; 0.29] 0.88 0.11 [�0.13; 0.35] 0.32 0.19 0.39

Prostate cancer 0.11 [�0.03; 0.25] 0.10 0.11 [�0.01; 0.23] 0.05 0.11 [0.03; 0.19] 0.01 0.98 0.047

Lung cancer 0.14 [�0.02; 0.30] 0.10 �0.05 [�0.02; 0.09] 0.40 0.02 [�0.08; 0.12] 0.72 0.07 0.72

Abbreviations: PD, Parkinson’s disease; iPDGC, International Parkinson Disease Genomics Consortium; CI95%, 95% confidence interval; Gcorr, genetic correlation; Pmeta, P value
from the meta-analysis of both datasets; FDR, false discovery rate.

TABLE 2 Association between cancer PRSs and PD

Courage-PD iPDGC Meta-analysis

PRS OR [CI95%] P OR [CI95%] P OR [CI95%] Pmeta Phet FDR

Breast cancer 1.05 [0.98; 1.12] 0.17 1.04 [0.99; 1.10] 0.15 1.04 [1.00; 1.09] 0.05 0.86 0.10

Ovarian cancer 0.88 [0.80; 0.96] 5.2 � 10�3 0.90 [0.84; 0.96] 1.2 � 10�3 0.89 [0.84; 0.94] 2.1 � 10�5 0.76 1.1 � 10�4

Melanoma 0.99 [0.86; 1.15] 0.90 1.09 [0.98; 1.22] 0.11 1.06 [0.97; 1.15] 0.22 0.29 0.33

Thyroid cancer 1.02 [0.96; 1.08] 0.53 1.00 [0.96; 1.05] 0.96 1.01 [0.97; 1.04] 0.65 0.66 0.65

Prostate cancer 1.01 [0.96; 1.07] 0.61 1.01 [0.97; 1.06] 0.57 1.01 [0.98; 1.05] 0.44 0.96 0.53

Lung cancer 1.00 [0.92; 1.09] 0.94 1.10 [1.03; 1.17] 5.5 � 10�3 1.06 [1.01; 1.12] 0.02 0.11 0.07

Abbreviations: PRS, polygenic risk score; PD, Parkinson’s disease; iPDGC, International Parkinson Disease Genomics Consortium; OR, odds ratio; CI95%, 95% confidence inter-
val; Pmeta, P value from the meta-analysis of both datasets; Phet, P value of heterogeneity; FDR, false discovery rate.
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in the same direction for PD and breast cancer, but in
the inverse direction with ovarian cancer. These SNPs
are located in introns of three different genes: NSF
(N-ethylmaleimide-sensitive factor, vesicle fusing ATPase),
MAPT (microtubule-associated protein tau), and CRHR1
(Corticotropin-Releasing Hormone Receptor 1). These
results are in favor of a common haplotype associated
with the three diseases. The inverse cross-phenotype asso-
ciation between PD and ovarian cancer was mostly driven
by this locus. No other SNPs of the PD PRS were signifi-
cantly associated with ovarian cancer (or conversely) after
correcting for multiple testing.
Of the SNPs from the PD PRSs, six were signifi-

cantly associated with breast cancer and were located
at five different loci (Table 4): 2q11.2 (in an intron of

MAP4K4, mitogen-activated protein kinase 4),
6p21.32, 16q12.1 (intronic region of CASC16, can-
cer susceptibility 16), 17q23.2 (in an intron of
BRIP1, BRCA1 interacting protein C-terminal heli-
case 1) with SNPs associated in the same direction,
and 17q21.2 with SNPs inversely associated (in an
intron of RETREG3, reticulophagy regulator family
member 3).
Of the SNPs from the breast cancer PRS, rs3566861

located at 16q12.1 was in common with the PRSChang.
The two SNPs at locus 16q12.1 from the breast cancer
PRS are in high LD (r2 = 0.87, D0 = 0.97) and were
associated with PD in iPDGC (rs4784227: OR = 1.08,
P = 9.4 � 10�5; rs3566861: OR = 1.08, P =
1.5 � 10�4) (Table 5).

TABLE 3 Association between PD PRSs and cancers

PRSChang PRSNalls

Disease OR [CI95%] P FDR OR [CI95%] P FDR

Breast cancer 1.08 [1.06; 1.10] 4.6 � 10�14 2.7 � 10�13 1.03 [1.01; 1.05] 1.9 � 10�4 1.14 � 10�3

Ovarian cancer 0.95 [0.91; 0.99] 0.013 0.04 0.97 [0.94; 1.00] 0.07 0.21

Melanoma 1.04 [0.98; 1.11] 0.19 0.38 1.05 [1.00; 1.10] 0.43 0.43

Thyroid cancer 0.92 [0.79; 1.07] 0.30 0.45 0.93 [0.82; 1.05] 0.25 0.375

Prostate cancer 1.00 [0.97; 1.02] 0.80 0.80 1.01 [0.99; 1.03] 0.41 0.43

Lung cancer 0.94 [0.79; 1.13] 0.51 0.61 0.98 [0.95; 1.00] 0.16 0.32

Abbreviations: PD, Parkinson’s disease; PRS, polygenic risk score; OR, odds ratio; CI95%, 95% confidence interval; FDR, false discovery rate.

TABLE 4 SNPs of PRSs for PD associated with breast or ovarian cancer

Weight in PRSs for PD Cancer

Locus Gene SNP Position (kb) EA BA ORChang ORNalls Type OR CI95% P

2q11.2 MAP4K4 rs11683001 102,396 A T – 1.07 Breast 1.03 [1.01, 1.04] 1.6 � 10�4

2q11.2 MAP4K4 rs34043159 102,413 C T 1.07 – Breast 1.02 [1.01, 1.04] 2.8 � 10�4

6p21.32 / rs9275326 32,666 C T 1.17 – Breast 1.03 [1.01, 1.05] 1.8 � 10�3

16q12.1 CASC16 rs4784227 52,599 T C 1.08 – Breast 1.24 [1.22, 1.26] 6.8 � 10�201

CASC16 rs3104783 52,636 A C – 1.07 Breast 1.10 [1.09, 1.11] 1.6 � 10�52

17q21.2 RETREG3 rs12951632 40,741 T C – 1.07 Breast 0.98 [0.96, 0.99] 5.1 � 10�4

17q21.31 CRHR1 rs62053943 43,744 C T – 1.31 Ovarian 0.89 [0.85, 0.92] 5.0 � 10�9

– 1.31 Breast 1.06 [1.04, 1.08] 8.6 � 10�11

CRHR1 rs117615688 43,798 G A – 1.26 Ovarian 0.91 [0.86, 0.96] 7.0 � 10�4

– 1.26 Breast 1.04 [1.01, 1.07] 8.7 � 10�3

MAPT rs17649553 43,994 C T 1.28 – Ovarian 0.89 [0.87, 0.92] 1.2 � 10�12

1.28 – Breast 1.05 [1.03, 1.07] 1.5 � 10�10

17q23.2 BRIP1 rs61169879 59,917 T C – 1.09 Breast 1.03 [1.02, 1.05] 3.9 � 10�3

Abbreviations: SNP, single-nucleotide polymorphism; PRS, polygenic risk score; PD, Parkinson’s disease; EA, effect allele; BA, baseline allele; OR, odds ratio; CI95%, 95%
confidence interval.
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Stratified Analyses
Associations of the cancer PRSs with PD in men and

women are shown in Table S6A,B. The inverse associa-
tion between the ovarian cancer PRS and PD was pre-
sent both in women (Pmeta = 3.23 � 10�4) and in men
(Pmeta = 1.38 � 10�4) with the same effect size (OR =
0.88) and similar associations in Courage-PD and
iPDGC. The association of the breast cancer PRS with
PD was stronger in men (OR = 1.08, Pmeta =
3 � 10�3), in whom it was driven by iPDGC, than in
women (OR = 1.05, Pmeta = 0.07). The association
between the lung cancer PRS and PD was present only
in women (OR = 1.08, P = 0.04).
Associations between the PD PRS with different histol-

ogy types of lung cancer are presented in Table S7.
An inverse association was found between the PRSNalls

and squamous cell carcinoma (ORNalls = 0.94, PNalls =
8.0 � 10�3). The association with PRSChang was in the
same direction, but not significant (ORChang = 0.98,
PChang = 0.42). Stratified analyses by smoking status
in lung cancer showed an inverse association in ever
smokers (ORChang = 0.96, PPRS-Chang = 0.086; ORNalls =
0.95, PPRS-Nalls = 9.6 � 10�3), but not in never smokers
(ORChang = 1.07, PPRS-Chang = 0.28; ORNalls = 1.02,
PPRS-Nalls = 0.73) (see Table S8). However, the inter-
actions between the PD PRSs and smoking status did
not reach statistical significance (PPRS-Chang = 0.097,
PPRS-Nalls = 0.20).

Discussion

In this article, we investigated whether pleiotropy
plays a role in the association between PD and cancers
using GWAS data from two PD and six cancer consor-
tia. We found significant positive genetic correlations of
PD with melanoma and prostate cancer. Cross-
phenotype analyses showed that the PD PRS was asso-
ciated with a higher risk for breast cancer and a lower
risk for ovarian cancer. The ovarian cancer PRS was
also associated with a lower risk for PD.
Our finding of a positive correlation of PD with mela-

noma and prostate cancer is consistent with epidemio-
logical studies reporting positive associations of PD
with melanoma,1,10 whereas different directions of
associations have been reported between PD and pros-
tate cancer.1,40 The genetic correlation we identified
between PD and melanoma (Gcorr = 0.16 [0.04; 0.28])
is consistent with a previous study that used iPDGC
and 23andMe data39 to show a significant correlation
of a similar magnitude (Gcorr = 0.17 [0.10; 0.24]).20

Another study examined the genetic correlation
between three neurodegenerative diseases and multiple
cancers; analyses for PD were based on iPDGC and
23andMe data and showed a significant positive corre-
lations with melanoma (Gcorr = 0.14, P = 0.044) andT
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prostate cancer (iPDGC: Gcorr = 0.09, P = 0.032;
23andMe: Gcorr = 0.16, P = 0.044) that would not
have survived multiple testing correction.21 The authors
also investigated the genetic correlation of PD with
breast, ovarian, lung, and thyroid cancers and found no
associations. The main difference between these two
studies and ours is that, in addition to iPDGC data
(excluding 23andMe), we also used data from a
completely independent GWAS from the Courage-PD
consortium.
We did not find significant correlations between PD

and other cancers. However, the lack of correlation
may be because of the fact that LD score allows to
highlight only an overall trend of correlation. If shared
loci of two diseases are randomly associated in different
directions, an overall correlation would be masked by
positively and negatively correlated regions that cancel
each other out.
We explored the cross-phenotype PRS association

between PD and cancers using two PRSs for PD. This
allowed us to compare the results from the PRS pro-
posed by Nalls et al23 and the previous one proposed by
Chang et al.39 The PRSNalls is more recent and included
a higher number of SNPS but was determined in a popu-
lation composed partly of proxy cases that could have
led to some dilution of associations because of a less pre-
cise characterization of the disease. Both PD PRSs were
associated with a higher risk for breast cancer. The
breast cancer PRS was also associated with a higher risk
for PD, but the association was no longer significant
after correction for multiple testing. In addition, cross-
phenotype analyses showed that the PD-PRSChang was
associated with a lower risk for ovarian cancer. Consis-
tently, the ovarian cancer PRS was also associated with
a lower risk for PD. Associations between both PD PRSs
with each cancer were consistent, but the association
with ovarian cancer reached significance only for the
PRSChang. To our knowledge, no published study has
previously performed analyses of the cross-phenotype
associations between PD and cancer.
Analyses of the associations between SNPs of the

PRSs highlighted in cross-phenotype analyses showed
that the inverse association between PD and ovarian
cancer was mostly driven by one SNP in the 17q21.31
region. Three SNPs in this region were positively associ-
ated with breast cancer; they were not in LD with
BRCA1, which is also located in this region. The gene
MAPT in this region, tagged by SNPs of the PD-PRS,
was already known as a potential predictive marker in
epithelial ovarian cancer patients treated with pacli-
taxel/platinum first-line chemotherapy and as a marker
of paclitaxel sensitivity in breast cancer.1 Also, the gene
NSF of the ovarian cancer PRS has already been
reported to be associated with PD through the same
SNP: rs183211. This gene has also been recently
reported as associated with cancer pleiotropy (breast,

cervix, lung, melanoma, testis) in a pan-cancer study.41

Four other regions from the PD PRS were associated
with breast cancer in the same direction (2q11.2,
6p21.32, 16q12.1, 17q23.2) and one region in the
opposite direction (17q21.2). The breast cancer PRS
was not significantly associated with PD after correc-
tion for multiple testing, but the positive association
was detected at a suggestive threshold. Sex-stratified
analyses did not show major differences between men
and women in the association of the PRS for both ovar-
ian cancer and breast cancer with PD.
We detected another positive association between PD

and the PRS for lung cancer that was significant in
iPDGC, but not in Courage-PD; in sex-stratified ana-
lyses, this positive association was present in women
only, whereas it tended to be inverse, although not sig-
nificant, in men. We also found an inverse association
between the PD PRSNalls and squamous carcinomas of
the lung. Cross-phenotype analyses of lung cancer strat-
ified by smoking status showed an inverse association
in ever smokers, whereas the association was positive in
never smokers. These findings are consistent with the
facts that squamous carcinomas are known to be the
lung cancer histological type with the strongest associa-
tion with tobacco,28,42 and that smoking rates are
lower in women. There was a trend toward a gene–
environment interaction that was not statistically signif-
icant, possibly because of the small number of never
smokers compared with the number of ever smokers
and small effect sizes.
Cross-phenotype PRS analyses in other cancers did

not show any association with PD. However, multiple
pleiotropic SNPs with different directions of associa-
tions may lead to diluting an association with PRSs.
The main strength of our study is that we used the

largest GWAS available at the present date for several
cancers together with two independent large PD
datasets to replicate our findings, while correcting for
multiple testing. Our study also has limitations. The
size of the GWAS datasets was different for different
phenotypes, and for some of them, we did not have
access to individual data but rather GWAS summary
statistics. The panels of SNPs available in each GWAS
were also different, which could affect the results, espe-
cially for genetic correlation analysis. Although the
NeuroChip array has reduced coverage compared with
some other arrays, the tagging variant backbone of
about 306,670 SNPs has good genome-wide resolution
and allows to perform genome-wide imputation; in addi-
tion, we retained for our analyses SNPs with good-
quality imputation (r2 ≥ 0.8). Our analyses are restricted
to participants of European descent, and additional stud-
ies are needed in other populations. Finally, except for
the lung cancer GWAS that performed analyses stratified
by smoking, analyses stratified by environmental factors
were not available for other cancer GWASs.
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Epidemiological studies have identified a complex
association between PD and cancers, but the underlying
mechanisms remain poorly understood. In addition,
epidemiological studies on the relation between neuro-
degenerative diseases and cancer face a number of
methodological difficulties and possible biases, includ-
ing confounding, diagnostic bias, competing risks, or
selective survival.5-7 Alternatively, as for Mendelian
randomization, the genetic approach we used is not
affected by confounding, reverse causation, or surveil-
lance biases because genes are randomly assigned at
birth and are not influenced by exposures. In addition,
we used GWASs for PD and cancer studies that were
independent and did not include overlapping partici-
pants; hence in the cancer GWAS, the diagnosis was
independent of PD, and vice versa. Studies based on a
genetic approach are complementary to epidemiological
studies and may help understand whether genetic plei-
otropy could account for some of the associations
highlighted by epidemiological studies. Our results sug-
gest the importance of shared genetic variants between
PD and some cancers. These analyses may be followed
by analyses of genome-wide pleiotropy at a SNP, gene,
or pathway level to better understand the shared
biologic mechanisms between PD and cancer. It would
also be interesting to explore additional environmental
factors that could interact with pleiotropic genes associ-
ated with both PD and cancer. Evidence of pleiotropy
between PD and cancer will improve our understanding
of the etiology of these diseases and will provide
insights into their underlying biology.
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Luxembourg), R. Fern�andez-Santiago (Barcelona, Spain),
N. Wood (London, UK), and H.R. Morris (London, UK).
Additional ILCCO (International Lung Cancer Consor-

tium) investigators: D. Albanes (Bethesda, MD, USA),
M.T. Landi (Bethesda, MD, USA), S. Lam (Vancouver,
BC, Canada), A. Tardon (Oviedo, Spain), C. Chen
(Seattle, WA, USA), S.E. Bojesen (Copenhagen,
Denmark), M. Johansson (Lyon, France), P. Brennan
(Lyon, France), A. Risch (Heidelberg, Germany),
H. Bickeböller (Goettingen, Germany), H.-E. Wichmann
(Munich, Germany), D. Christiani (Boston, MA, USA),
G. Rennert (Haifa, Israel), S. Arnold (Lexington, KY,
USA), J.K. Field (Liverpool, UK), S.S. Shete (Houston,
TX, USA), L. Le Marchand (Honolulu, HI, USA),
O. Melander (Lund, Sweden), H. Brunnström (Lund,
Sweden), G. Liu (Toronto, ON, Canada), A. Andrew
(Lebanon, NH, USA), L.A. Kiemeney (Nijmegen, the
Netherlands), S. Zienolddiny-Narui (Oslo, Norway),
K. Grankvist (Umea, Sweden), N. Cporaso (NIH,
Bethesda, MD, USA), A. Cox (Sheffield, UK), P. Lazarus
(Spokane, WA, USA), M.B. Schabath (Tampa, FL, USA),
and M.C. Aldrich (Nashville, TN, USA).
Additional MMAC investigators: D.T. Bishop (Leeds,

UK), J.E. Lee (Houston, TX, USA), M. Brossard (Paris,
France), N.G. Martin (Brisbane, QLD, Australia),
E.K. Moses (Perth, WA, Australia), F. Song (Tianjin,
China), J.H. Barrett (Heidelberg, Germany), D.F. Easton
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