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Abstract: Exacerbation of the vascular pathology in radiation retinopathy as a result of pre-existing
diabetes has been recognized for many years, as reflected by clinical reports and a few early experi-
mental studies. However, the underlying pathogenetic mechanisms for the synergistic interaction
of radiation retinopathy (RR) and diabetic retinopathy (DR) have not been compared and evalu-
ated for insight on this phenomenon. The present work draws attention to the roles of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) as common mediators of both conditions
and sources of ongoing cellular injury in the radiation-induced bystander effect (RIBE) and the
senescence-associated secretory phenotype (SASP). Chronic hyperglycemia-mediated oxidative stress
and depleted antioxidant defense in diabetes, together with impaired DNA damage sensing and
repair mechanisms, were identified as the primary elements contributing to the increased severity of
RR in diabetic patients. We conclude that apart from strategic genetic mutations affecting the DNA
damage response (DDR), diabetes represents the most significant common risk factor for vascular
injury as a side effect of radiotherapy.

Keywords: retina; retinal vasculature; ionizing radiation; diabetes; radiation retinopathy; diabetic
retinopathy; telangiectasia; senescence; bystander effect

1. Introduction

In a response to several clinical reports [1-4], experimental studies in the early 1990s
demonstrated the increased severity of the compound insult inflicted on the retinal vascu-
lature by a combination of diabetes and ionizing radiation (IR), compared to IR alone [5-8].
The major pathophysiological mechanisms underlying the selective nature of the injury
exerted by each of these factors in vascular cells have been significantly elucidated over
the past 30 years; however, a unified paradigm of vascular pathology covering both phe-
nomena has not been described. In this review we will summarize the known pathogenetic
mechanisms common to both radiation retinopathy (RR) and diabetic retinopathy (DR) and
how they converge to exacerbate retinal disease when combined in patients and experimen-
tal models. Particular attention will be paid to oxidative and nitrositive stress as shared
mechanisms of cell injury in DR and RR, combined with compromise of DNA repair and
the DNA damage response (DDR) caused by diabetes. Additionally, the contribution of
the radiation-induced bystander effect and the senescence-associated secretory phenotype
as complementary components of chronic cellular dysfunction will be discussed. Finally,
factors contributing to the selective vulnerability imposed by the unique biology of vascu-
lar endothelial cells (ECs) in DR and RR will be considered. Firstly, we will consider EC
generation of cytotoxic reactive nitrogen species (RNS) during oxidative stress. Secondly,
we will investigate difficulties in the repair of DNA damage in the heterochromatin that
characterizes the nuclear architecture in ECs.
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As changes in clinical practice in relation to RR have been addressed by several recent
open access reviews [9-13], this work will be devoted to basic pathogenetic mechanisms in
DR and RR and how pre-existing diabetes potentiates RR. At the core of diabetes and its
complications lies insulin and glucose: one is the pivotal anabolic regulator in mammalian
metabolism, and the other is the most important energy substrate. Therefore, deregulation
of both such central elements in metabolism and growth is bound to have far-reaching and
complex sequalae, as indeed is the case in DR. This is beyond the scope of a single review.
In comparison, the impact of IR on the retina, while complicated, is relatively simple and in
this work will serve as the discriminator of which pathogenetic mechanisms of diabetes to
compare and discuss.

2. Vascular Histopathology in Radiation and Diabetic Retinopathies: Similar Yet Distinctive

Early clinical and experimental studies were quick to recognize the vulnerability of the
retinal vasculature to IR and the similarity of the vascular pathology in RR to that already
described for other ischemic retinopathies such as DR, venous occlusion, and hypertensive
retinopathy [14-16]. Fluorescein angiographic studies revealed that the retinal vascular
pathology in RR is characterized by dilated and telangiectatic vessels, microaneurysms
and progressive capillary nonperfusion, resulting in vascular leakage and inner retinal
ischemia [3,5,17,18] (Figure 1).

Figure 1. Venous phase fluorescein angiogram of the retinal vasculature in a diabetic patient with
a 5-year duration of diabetes, prior to radiotherapy for a parieto-temporal astrocytoma (45Gy of
photon X-rays (LINAC) in 20 fractions). A horizontal cut-off in the vascular pathology is obvious
due to RR changes in the superior fundus that fell within the radiation field. The angiogram shows
widespread areas of confluent capillary nonperfusion (asterisks), multiple microaneurysms (M) and
telangiectatic vessels (green arrows). Some larger vessels appear “beaded” but may indicate sites
of occluded branches, rather than dilatations (red arrow). The parafoveal capillaries have normal
morphology; therefore, the MAs at the same level and inferior to the fovea may have been the result
of DR and predated irradiation. Optic disc—D. (From Amoaku et al., 1993, [17]).
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Archer explained the common structural pathology of ischemic retinopathies during
adulthood as a consequence of a limited range of responses to diverse physical or metabolic
insults [6]. In contrast with the preferential loss of pericytes that represents a hallmark of
DR [19], we have documented widespread loss of microvascular endothelial cells in the
presence of surviving pericytes using vascular digests from both clinical RR and animal
models [5,6] (Figure 2A). Pericyte survival in the presence of endothelial cell loss was
initially observed in vascular digest specimens from experimental studies of RR in the
primate retina [18], although the authors were unsure of the change as they were unable
to find corroborative ultrastructural evidence. However, using electron microscopy, we
were able to show well-preserved pericytes within the walls of basement membrane tubes
that were devoid of endothelium (Figure 2B), a result confirmed in the study by Webster
etal. [8,20].

Figure 2. (A) Trypsin digest preparation of human retinal vasculature 6 months after 45Gy of photon
X-rays in 20 fractions shows a microaneurysm (MA) adjacent to a small arteriole (A). The aneurysm is
infiltrated by acute inflammatory cells: predominantly polymorphonuclear leucocytes, as identified
by their intensely stained multi-lobed nuclei. Some of the capillaries in the region of the MA are
acellular, while others show only viable pericytes (red arrows). The typically pale elongated nuclei of
surviving endothelial cells are indicated by green arrows. (B) Electron micrograph shows a surviving
pericyte cell body and nucleus (P) and pericyte processes (pp) within the basement membrane tube of
a retinal capillary from a diabetic patient 18 months after 55GY of photon X-rays in 25 fractions. No
endothelium is present. The basement membrane shows the age-related vacuolation characteristic
of human retinal capillaries (Vac). Position of original vascular lumen—L, stain—PAS-hematoxylin.
(From Archer et al., 1991, [5]).

We have previously proposed that the vascular changes in RR are consistent with an
initial seeding of acutely damaged endothelial cells (ECs), whose death precipitates the
reparative but untimely migration and division of a secondary population of sub-lethally
damaged ECs, which undergo cell death when forced to divide [6,21]. This initiates a
vicious cycle, with successive episodes of EC death and migration culminating in pro-
gressive capillary occlusion. Capillary loss in the microvascular bed will then expose the
residual network to hemodynamic forces that can either stimulate collateralization and
recanalization, or pathological remodeling in the form of telangiectasia and microaneurysm
development (Figure 3), depending on the regenerative potential of the system. We will
seek to update this schema in light of current knowledge and how diabetes impacts each of
the stages outlined above.
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Figure 3. (A) Venous phase fluorescein angiogram of the retinal vasculature in a patient who
received 50Gy of radiation in 25 fractions for a tumor of the nasopharynx 8 years prior to ophthalmic
assessment. A illustrates the predilection of RR for the macular region of the retina, especially the
capillary beds proximal to the fovea (F); microaneurysms—M, telangiectatic vessels—green arrows.
(From Amoaku et al., 1993, [17]). (B,C) show enlargement of box outlined in (A). (C) is taken from
an angiogram recorded 6 months after that shown in B and shows expansion of discrete regions
of capillary nonperfusion (asterisks). The region of telangiectasia indicated by yellow arrow in B
shows remodeling in (C). Vessel indicated by red arrow in (B) shows telangiectatic change in (C),
probably in response to increased hemodynamic stress due to closure of adjacent vessels and local
tissue hypoxia. (From Amoaku et al., 1993, [17]).
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3. Telangiectasia as a Distinctive Vascular Change in Radiation Retinopathy

Although the term telangiectasia is imprecise, authors tend to apply it to irregular,
tortuous, and dilated vessels, some with fusiform microaneurysmal distensions (Figures 1
and 3). In the context of severe RR or the classic retinal telangiectasia of Coats’ disease,
such vessels are associated with gross leakage, resulting in funduscopically visible retinal
exudates [2,3,22,23]. Additionally, as in Coats” disease, the exudates contain cholesterol
crystals that can be internalized by the local glial cells (Figure 4). Interestingly, the descriptor
telangiectatic does not tend to be applied to the vascular pathology of DR but is consistently
used to characterize it in RR. Indeed, ultrastructural studies of the telangiectatic vessels
in RR or Coats” disease demonstrate clear distinctions from the vascular pathology in
DR [24,25]. Our previous studies [5,6] have shown that, like the retinal telangiectasia of
Coats’ disease [24], the vascular leakage in RR can, at least in part, be explained by a switch
of the endothelium to a fenestrated phenotype in the affected vessels (Figure 4). Although
endothelial fenestration has been reported in long-term DR [26], it does not appear to be as
common as in RR.

In addition to the phenotypic switch in the endothelium, telangiectatic retinal vessels
have a sparse covering of pericytes and a grossly expanded Virchow—Robin space con-
taining a homogeneous expanse of fine collagen filaments (Figure 4), a feature that may
represent the clinical phenomenon of the fundoscopically opaque “sheathing” described in
the larger vessels in RR [3,27]. The reasons for development of the fibrous pseudoadventitia
in telangiectatic retinal vessels is unknown, but the phenomenon is not unique to the
retinal vasculature, as Stitt et al., found vessels with the same feature in the choriocapillaris
of irradiated diabetic rats [8]. Furthermore, is not clear which cells produce the matrix
proteins, although the significant development of the rough endoplasmic reticulum in the
ECs of telangiectatic vessels suggests them as one possible source (Figure 4). A similar
expansion of the perivascular extracellular matrix has been demonstrated in Coats’ telang-
iectasia [24,25,27] and described by the general histopathological term, hyalinization [24],
but appears to represent the same phenomenon as observed in RR. These changes are
distinct from those in DR, where obvious thickening and reduplication of the vascular basal
lamina produces a dense laminated basement membrane conglomerate [28].

Overall, telangiectasia presents as a form of pathological remodeling that is distinct
from intraretinal microvascular abnormalities (IRMA), the only distinctive vascular remod-
eling observed in DR [19]. Recanalization with telangiectatic change is common in RR,
while in DR delayed recanalization tends to permit ingress of space-filling glial processes
to the vascular basement membrane (BM) tubes, precluding any subsequent opening of the
channel [5].

The ultrastructural pathology in the retinal vasculature in DR and RR is summarized
in Table 1 below.

3.1. Telangiectasia: Endothelial Phenotype and Paracrine Signaling from VEGF to Norrin

Archer (1993) previously proposed that loss of the barrier endothelium in telangiectatic
retinal vessels in RR may be related to distancing of the endothelium from the glia limi-
tans by creation and expansion of the matrix-filled perivascular space [6]. Normal retinal
capillaries do not have a perivascular space, as the vascular and glial basal laminae are
fused in a common basement membrane [29-31], an arrangement that facilitates paracrine
crosstalk between the cells of the neurovascular unit (NVU) [32-34]. Therefore, disruption
of the NVU by physical separation of the retinal vascular endothelium from the glia limi-
tans may deprive the endothelium of the paracrine stimulation essential for the induction
and maintenance of the barrier phenotype. Following the seminal study of Janzer and
Raff (1987) implicating astrocytes in paracrine induction of the blood-brain barrier [35],
Benjamin suggested that pericytes had a central role in achieving vascular maturity in
the retina [36]. Although later studies questioned the need for the physical presence of
pericytes if recombinant angiopoietin-1 was provided exogenously [37], further investiga-
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tions reasserted a crucial role for the physical presence and direct EC communication with
pericytes in induction of the blood-brain barrier [38,39].

Figure 4. Electron micrographs of telangiectatic retinal blood vessels from 65-year-old female patient
diagnosed diabetic 1 year prior to treatment with 55Gy of X-rays for lacrimal sac tumor. (A) Previously
occluded retinal arteriole showing recanalization by telangiectatic endothelium (E). The endothelial
cells are extremely attenuated, and their nuclei are remarkably euchromatic (N). The vessel wall
contains “foamy” macrophages (FM) containing multiple lipid droplets (Ld) and multiple layers of
basal lamina. A mural cell process (MC) shows a junction with an endothelial cell (arrow). (B) Typical
large telangiectatic vessel shows attenuated endothelial cell (E) with highly euchromatic nucleus
(N) and adjacent mural cell process (MC). The wall shows the pseudoadventitia, or sheath of fine
collagen fibrils (CF), that typifies many large telangiectatic vessels. (C) Typical small telangiectatic
retinal vessel shows large expanses of endothelial cell fenestration (arrows). Insert shows that
the fenestrations are covered by diaphragms (arrows). The nonfenestrated portions of endothelial
cytoplasm often contained multiple cisternae of rough endoplasmic reticulum (RER). The vessel
wall contains bundles of fine collagen fibrils (CF) and fragmented segments of basal lamina (BL).
Lumen—L. (D) Large pools of proteinaceous fibrin-rich exudate were found in the vicinity of the
fenestrated telangiectatic retinal vessels. Cholesterol crystals were not obvious within the exudate,
but the characteristic residual spaces that remain after extraction of the cholesterol during tissue
processing (arrows) were obvious within the cytoplasm of adjacent glial cells (G). (E,F): The significant
development of the rough endoplasmic reticulum (RER) in the endothelial cells of small (E) and
large telangiectatic vessels (F) suggests that the endothelium may be responsible for synthesis of
the excessive collagen in the vessel walls. IF—intermediate filament bundles. (From Archer et al.,
1991, [5]).
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Table 1. Ultrastructural changes in the retinal vasculature in DR and RR.

Diabetic Radiation
Vascular Pathology Retinopathy Retinopathy
Loss of pericytes or vascular
smooth muscle cells in vessels
. .. . Yes No
with surviving endothelial
cells
Loss of endothelial cells in
Yessels with surviving No Yes
pericytes or vascular smooth
muscle cells
Generalized thickening of
capillary basement Yes No
membranes
Vessels with fenestrated . .
endothelial cells Only in end-stage disease Yes
Vascular occlusion and inner
Yes Yes

retinal ischaemia
No—Space-filling of BM tubes
by glial cells is permanent
Vascular remodelling IRMA Telangiectasia
Telangiectatic vessels with
expanded pseudoadventitia
and fenestrated endothelial
cells with euchromatic nuclei

Vascular recovery Limited recovery

No Yes

3.2. VEGF: Mitogen and Morphogen in Vascular Development

Although we now have considerable agreement that tissue specialization and func-
tional requirements dictate the vascular phenotype through conditioning of the paracrine
microenvironment, we still have not characterized the molecular profiles responsible for
morphological aberrations such as telangiectasia. However, much progress has been
made in the past 30 years, starting with the identification of vascular endothelial growth
factor/vascular permeability factor (VEGF) [40,41] and subsequent elucidation of its ac-
tions [42-44]. We now have increasing insight into the pervasive role that VEGF exerts on
all aspects of vascular biology in health and disease, not least in terms of its power to initiate
growth and control vascular morphology and organization during retinal development [45].
Initially defined as an endothelial-specific mitogen and modulator of vascular permeability,
demonstration of the necessity for precise modulation of the VEGF signaling gradient
in sprouting angiogenesis [46] highlighted its importance as a morphogen [47]. Indeed,
VEFG also has important roles in neural development and health in adulthood [43,44] and
is involved in branching morphogenesis beyond that in the vasculature [48,49]. In the
present context, the change from a continuous barrier endothelium to a fenestrated type in
telangiectatic retinal vessels can reasonably be attributed to unopposed VEGF signaling,
as its ability to rapidly effect such a switch was proven within the first decade after its
discovery [50,51]. Subsequent studies have shown the precision with which polarized
local VEGF secretion can maintain fenestration in specialized vascular beds, notably in
maintenance of the abundantly fenestrated retinal aspect of the choriocapillaris [52]. This
study showed that fenestrated endothelium requires a continued maintenance level of
VEGEF signaling, and that fenestration indicates endothelial specialization rather than a
default phenotype [52].

3.3. Vascular Stability and the Barrier Phenotype: Angiopoietin/Tie-2 and Norrin

While VEGF initiates and drives vascular development and remodeling after injury or
disease, it is dependent on the same paracrine and juxtracrine morphogenic organizers [45,
47] that determine cell fate and form tissue architecture in the embryonic development
of all other tissues [53,54]. In the retinal vasculature, stimulation of endothelial Tie-2
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receptor signaling by pericyte and glia-derived angiopoietin-1 (Ang-1) is essential for initial
stabilization of the vessels and control of permeability in pathological situations [55] but
does not appear to directly modulate the barrier phenotype [45]. However, Wnt signaling
has been shown to play a major role in the development of CNS vessels [56] and induction
of the blood-brain/blood-retinal barrier [57,58], with vascular Wnt signaling in the retina
attributable to the unconventional Wnt ligand Norrin [59,60]. Mutations in any of the genes
that encode Norrin, its receptor or coreceptors have been identified as causative in Norrie’s
disease, a devastating X-linked genetic condition characterized by pathological vascular
development and exudative retinopathy [58,60,61]. Norrin is a matrix-associated paracrine
protein [62] secreted by Muller cells in the retina [63] that binds the frizzled-4 Wnt receptor
expressed by the retinal ECs [59,64].

3.4. Norrin: A Role in Telangiectasia?

Interestingly, the NDP gene that codes for Norrin was associated with Coats’ telang-
iectasia prior to identification of the protein product Norrin [65]. Although no report of
the ultrastructural changes in the retinal vessels in human Norrie’s disease is available
for comparison with those in Coats” or radiation-induced telangiectasia, an early mouse
model of the condition showed fenestration in the retinal vessels [66]. Later studies of
Norrie mouse models showed impaired sprouting angiogenesis during retinal vascular
development. Failed sprouting resulted in a complete absence of the deep and interme-
diate retinal vascular plexuses in the most affected variants [60,67] with tortuosity and
abnormal crossings of the large retinal vessels [68]. Although the initial superficial vas-
cular plexus develops in these mice, the microvascular beds are sparse and characterized
by dilated capillaries with blunt-ended hypercellular protrusions suggestive of aborted
attempts at sprouting angiogenesis [60]. Some studies have interpreted these structures
as microaneurysms; however, their homogeneous distribution, consistent hypercellularity
and investment with a large concentration of mural cells/pericytes [67-69] is not congruent
with the life cycle of true microaneurysms, as observed in DR [70,71]. Indeed, the early
recruitment of excessive numbers of pericytes, which is a feature of retinal angiogenesis
in these models, may be responsible for the failure of vertical sprouting [60], as pericyte
recruitment leads to increased vascular stability [36] and suppression of endothelial cell
proliferation [72].

So, in respect to the possible relevance of Norrin to the loss of a barrier endothelium in
RR, at present, we can only speculate. Muller cell loss or dysfunction that impairs Norrin
expression could result in telangiectasia, and indeed, experiments in transgenic mice with
a conditional ablation of Muller cells show retinal telangiectasia and blood-retinal barrier
breakdown [73]. Alternatively, following secretion by Muller cells at the glia limitans, the
strong affinity of Norrin for the extracellular matrix [62] could trap it within the expanded
fibrous sheath in telangiectatic vessels and weaken its barrier-inducing signaling at the
endothelium. Such a scenario then presents the issue of what causes the excessive collagen
deposition in the perivascular space of telangiectatic vessels [5,6,27].

3.5. The Vascular Wall in Telangiectasia: TGFp in Control of the Extracellular Matrix

As pathological fibrosis in diverse situations involves transforming growth factor beta
(TGFp), the role of this pleiotropic cytokine must be considered in relation to the distinc-
tive fibrous sheath that typifies the vascular wall in telangiectatic vessels. TGFf3 plays a
central role in vascular development and remodeling [47] and is activated in radiation
injury [74,75]. As the protein is secreted in a latent form requiring proteolysis for activa-
tion [76], the particular tissue environment and cell sources of the necessary proteases are
crucial. Unfortunately, radiation-induced fibrosis tends to be studied in peripheral tissues,
where the cell players are significantly different to those in the retina [77]. However, in the
retina, Muller cells express TGF and its receptors [78], permitting autoactivation of TGFf3-
mediated responses that may include increased expression of matrix proteins, including
collagen [79]. In mammals, TGF(3 promotes reactive gliosis in Muller cells and upregulated



Int. |. Transl. Med. 2023, 3

128

plasminogen activator inhibitor (PAI-1), which inhibits cell-associated proteolysis and pro-
motes matrix accumulation [80]. Intriguingly, reactive oxygen species (ROS) generated by
IR have been shown to activate latent TGF{3 independently of enzymatic or cell-associated
factors [74,75]. Coincidentally, ROS can also induce expression of PAI-1 [81], although this
phenomenon has not been investigated in Muller cells. Therefore, matrix-bound TGFf
within the vascular basement membrane could be activated by radiation-induced ROS, and
in turn activate ECs or Muller cells at the vascular interface to initiate matrix secretion cou-
pled with positive feedback for further TGF{3 and matrix protein expression. Alternatively,
TGEFf could be released from senescent vascular cells as part of the senescence associated
secretory phenotype [82] or the radiation-induced bystander effect [83] discussed below.

In summary, it appears that the thickened perivascular sheath in telangiectatic retinal
vessels could represent both a direct result of IR combined with hemodynamic stress due
to adjacent vascular occlusion and increased collateral blood flow [6].

The above discussion highlights the remaining uncertainties and gaps in our knowl-
edge relating to retinal telangiectasia, either in RR or other disease situations, and suggests
a need for more detailed studies examining the role of Norrin in these pathologies. Hope-
fully, if a lack of Norrin due to Muller cell loss or dysfunction were to prove responsible
for the morphological changes in IR-induced telangiectasia, it may be possible to use ther-
apeutic Norrin [84] or a novel Frizzled-4 receptor agonist [85] to prevent telangiectasia
following RR.

4. Reactive Oxygen and Reactive Nitrogen Species in RR
4.1. Reactive Oxygen Species: Initiators and Source of Chronic Cell Injury in RR

Cell damage caused by IR occurs via two recognized mechanisms: direct radiation
damage to DNA, membrane lipids and protein, and secondary oxidative damage mediated
by reactive oxygen species (ROS), initially generated through the ionization of water [86].
The level of injury accountable to ROS is estimated to comprise approximately 60% of the
total insult, with DNA representing the most critical target [74]. Importantly, mitochondrial
ROS generation beyond the initial injury can extend the oxidative insult, as described below
in relation to the radiation-induced bystander effect. The mechanism of mitochondrial
generation of ROS is discussed in relation to mitochondrial dysfunction in DR below.

4.2. Reactive Nitrogen Species: Products and Effectors of Oxidative Stress

Closely allied with ROS generation in the post-irradiation period is the production
of reactive nitrogen species (RNS). The chief source of RNS in biological tissues is the
gaseous physiological signaling molecule nitric oxide (NO), generated by the three ni-
tric oxide synthase enzymes, two of which are expressed constitutively: neuronal NOS
(nNNOS/NOS-1) and endothelial NOS (eNOS/NOS-3), while the third (iNOS/NOS-2) is
induced by pro-inflammatory signals [87]. In contrast with the constitutive NOS isoforms,
iNOS can be expressed by a wide variety of cells on exposure to bacterial LPS and pro-
inflammatory cytokines, so extending the possibility of RNS generation to many cell types
during inflammation [88].

In our previous studies of RR, we proposed that part of the selective vulnerability
of retinal microvascular ECs, compared to pericytes, was EC expression of eNOS and the
generation of the highly reactive RNS, peroxynitrite [21]. At that time, NO’s potential to
combine with superoxide to yield peroxynitrite had been recognized, although it appeared
that the presence of superoxide dismutase (SOD) would prevent such unfavorable reac-
tions [89]. However, subsequent studies showed that under conditions of oxidative stress,
the reaction between NO and superoxide to yield peroxynitrite occurs more quickly than
the dismutation of superoxide by SOD [88,90]. Therefore, in pathological situations in
which antioxidant defenses are stressed, NO may become a threat to the cells that normally
utilize it as a signaling molecule [91]: specifically neurons and vascular ECs [88,92].
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4.3. NOS Uncoupling: Source of ROS and RNS

While NO can react with superoxide from various sources, during oxidative stress,
NOS itself has the capacity for internal generation of ROS and RNS. Under physiological
conditions, NOS generates NO using L-arginine as a substrate and NADPH, flavin ade-
nine dinucleotide (FAD), flavin mononucleotide (FMN), and tetrahydrobiopterin (BH4)
as cofactors, with molecular oxygen as an electron acceptor [87]. This complex enzyme
accommodates separate C-terminal reductase and N-terminal oxidase sites and forms a
functional dimer with physical interaction at the heme site of the oxygenase domains [87].
An internal electron transport chain (ETC) shuttles electrons from the reductase site of one
monomer and the oxidase site of its partner. Binding of BH4 at the heme site stabilizes the
dimer and facilitates the transfer of electrons to the opposing monomer [87]. The generation
of NO from L-Arginine is a two-step process which requires the enzyme to cycle twice
with the intermediate of Hydroxy-L-Arginine (HLArg) produced in the first stage [93].
In the second step, the HLArg, which has remained bound to the enzyme, is oxidized to
NO and L-Citrulline [93]. However, under oxidative stress or suboptimal concentrations
of L-arginine and /or BH4, the ETC can become uncoupled and generate superoxide, as
well as NO and their reaction product, peroxynitrite [94]. Peroxynitrite then causes a
loss of enzyme activity through BH4 oxidation and irreversible destruction of the heme
site [94,95]. In relation to the issue of eNOS uncoupling due to depletion of BH4, it should
also be appreciated that in inflammatory situations such as those that occur in the diabetic
retina [96,97], or the radiation-induced bystander effect (discussed below) [98], INOS may
outcompete eNOS for the available BH4 [99].

4.4. S-Glutathionylation of eNOS

eNOS has multiple physiological roles and is subject to a host of regulatory post-
translational modifications [87]. However, in 2010, a ground-breaking study by Chen
et al. [100] showed that under conditions of oxidative stress, eNOS may undergo reversible
S-glutathionylation. This modification occurred at two critical cysteine residues within the
reductase domain of the protein, causing uncoupling of the enzyme with a 70% reduction in
NOS activity and a 5-fold increase in superoxide generation [100]. Importantly, glutathiony-
lation requires the oxidized form of glutathione (GSSH), so eNOS uncoupling may occur
simultaneously with the other negative effects of oxidative stress and the diabetes-related
GSH depletion described below.

5. The Radiation-Induced Bystander Effect

It has become increasing clear that ROS generation at the time of irradiation represents
only a portion of the total oxidative insult, as ROS are generated by mitochondria in the
post irradiation period, a response that may persist indefinitely due to mitochondrial DNA
damage [101-103]. Such mitochondrial ROS generation is now recognized as a major
component of the radiation-induced bystander effect (RIBE) [104,105], an umbrella term
for a host of deleterious “off target” effects observed in nonirradiated cells in response
to soluble factors released by the irradiated population [105-107]. Irradiated cells release
ROS/RNS, along with proinflammatory cytokines that incite further ROS/RNS production
in the bystander cells [103,105], a mechanism that requires the transcriptional activity of
nuclear factor kappa-B (NFkB) [108]. Crucial to the generation of RNS in the RIBE is the
expression of iNOS [98], an enzyme that, when induced by proinflammatory signals, occurs
at much higher levels than the other NOS isoforms and generates significantly more NO
and superoxide than either of the constitutive enzymes [87]. It should also be appreciated
that iNOS can be induced in vascular ECs as a direct effect of IR exposure [109], which may
be considered an early component of the RIBE [98]. In addition to ROS/RNS and cytokines,
it has been shown that the release of specific micro-RNA species (miRs) by irradiated cells
represents a potentially powerful arm of the RIBE with the ability to genetically program
RIBE effects in target cells [110,111]. miRs may be released from irradiated cells and
internalized in a simple paracrine fashion by bystander cells [111]. Alternatively, miRs may
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be transferred by one or more of the more recently discovered avenues for cellular exchange,
such as direct cytoplasmic transfer through tunnelling nanotubes [112] or extracellularly
by exosomes or related microvesicles [113,114]. Obviously, miR exchange via nanotubes is
limited to cells in the immediate environment of irradiated individuals [114], while those
in solution or in extracellular vesicles may operate over great distances, the latter receiving
direct protection from RNAase degradation [115,116].

Role of Cellular Senescence in the RIBE

Although one of the recognized cellular responses to IR is the induction of cellular
senescence [117], it is not clear what component of the RIBE phenomenon is attributable
to the generation of ROS and pro-inflammatory cytokines by senescent cells [117]. This
phenomenon, known as the senescence-associated secretory phenotype (SASP) [118], is not
unique to IR-induced senescent cells, but is a feature of senescence induced by a variety
of different stimuli [119]. In many situations, SASP appears to be executed by the Ataxia
Telangiectasia Mutated kinase (ATM)-p53-p21 pathway, an extension of DDR signaling
coordinated by p53 [119,120]. Senescence represents an alternative fate decision to apoptosis
following p53-mediated cell cycle arrest after cells have incurred severe toxic, inflammatory
or metabolic stress—insults that challenge the integrity of the genome [121]. In spite of the
fact that the RIBE can have a long-distance [105] or even systemic impact, there is obvious
crossover between the paracrine effects of RIBE and SASP, such as persistent DNA damage
and the associated DDR [122,123]. Likewise, both phenomena involve the generation of
pro-fibrotic TGF-f3 [82,83] and inflammatory cytokines, and ROS/RNS mediated by a NFkB
transcriptional program [108,118]. Indeed, the deleterious effects of SASP on healthy cells,
due to the presence of senescent neighbors, has been termed a senescent cell bystander
effect [124] and should also be considered a source of ROS and inflammatory mediators in
DR [125,126]. Recent studies have revealed that, like the RIBE, a SASP-like phenotype may
be propagated by microvesicular transfer of specific miRs in endothelial cells [127,128],
although on a positive note, miRs have been identified that specifically downregulate the
SASP-associated inflammation [129].

Importantly, senescent cells are resistant to apoptosis [121] and, if not cleared by
normal immune mechanisms [130], may propagate paracrine senescence to healthy cells
in their locality [131]. Therefore, with reference to RR, it may be fortunate that senescent
vascular ECs appear to be more vulnerable to apoptosis than other cell types, such as
fibroblasts [121], and may open to clearance by senolytic drugs, as will be discussed
later [132].

Although bystander effects do not appear to have been specifically investigated in
relation to RR in clinical practice, one study discovered a relationship between the severity
of RR and the area of retina involved in the radiation field [133]. This result suggests that a
greater irradiated volume of retinal cells may produce higher local concentrations of ROS
and inflammatory cytokines, thus generating a more intense RIBE.

The mechanisms of chronic cellular dysfunction that converge in the RIBE and SASP
pathologies provide some explanation of the variable latency period observed in our
clinical observations of RR [3,6,21] (for consideration of RR latency in relation to treatment
modalities, and risk factors, including diabetes and concomitant chemotherapy, see the
discussion by Archer [6]).

6. ROS and Impaired Antioxidant Defense in the Pathogenesis of DR

Pathological ROS generation also represents a central pathway of cell damage in
diabetes and has been shown to drive several avenues of glucose-mediated metabolic
insult [134-136]. As is the case for RR, a major source of metabolic ROS in diabetes
is the mitochondrial electron transport chain (ETC) [135,137-139]. Under conditions of
nutrient saturation in a high glucose environment, the flow of reducing equivalents from
the citric acid cycle is maximal and increased generation of superoxide is provided by the
ETC [140]. Although superoxide is short-lived and confined by phospholipid membranes,
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it undergoes conversion to hydrogen peroxide (H;O;) through the action of manganese-
dependent superoxide dismutase (MnSOD) within the mitochondrial matrix [141]. HyO,
is less reactive than superoxide but has a much longer half-life, and unlike superoxide,
readily crosses cell membranes. In normoglycemia, H,O is efficiently converted to oxygen
and water, primarily by glutathione peroxidase (GSX), two isoforms of which are located
within the mitochondria [141,142]. Indeed, under normal conditions, mitochondria have
the capacity to buffer exogenous H>O, to maintain a physiological redox balance [142-144].
However, in the high glucose environment of poorly controlled diabetes, mitochondrial
GSX activity may be impaired if the availability of its hydrogen donor, reduced glutathione
(GSH), is limited. In this regard, the activity of the aberrant polyol pathway in DR is
significant, as it consumes NADPH [140], an important cofactor required in order for
glutathione reductase to regenerate oxidized glutathione (GSSH) to its reduced antioxidant
form [145]. GSH is crucial to antioxidant defenses in two important ways. Firstly, it
functions in a nonenzymatic manner to scavenge ROS, RNS, and toxic electrophiles [146].
Secondly, as mentioned above, it serves as the hydrogen donor for GSX, an enzyme with
the ability to detoxify a broad range of peroxides, including organic peroxides derived
from lipid peroxidation [147,148]. Although firm evidence of the functional status of
mitochondrial GSX in diabetic cells and tissues appears to be lacking, cytoplasmic depletion
of its hydrogen donor GSH will eventually impact its enzymatic capacity [149]. GSH has
been shown to be reduced in the retina of diabetic rats [150] and multiple studies of
antioxidant status show a systemic reduction in human subjects [151,152]. Crucially, GSX
has been shown to be vulnerable to inactivation by peroxynitrite [153].

6.1. NADPH Oxidase as a Source of ROS in DR

A second major source of ROS in diabetes [154-156], with particular importance in
the vasculature [157,158], is NADPH oxidase. NADPH oxidase has multiple subunits and
isoforms [159], but NOX2 appears to be the most significant in the retinal vasculature and
during diabetes [154], more so because its location in the caveolae microdomains of the
plasma membrane facilitates close access to endothelial nitric oxide synthase (eNOS/NOS-
3) [160]. Under physiological conditions, this arrangement favors the propagation of
ROS-dependent signaling, but in a pro-oxidant environment, it may contribute to uncou-
pling of the internal electron transport chain of eNOS with generation of superoxide and
RNS [160]. NADH oxidase further exacerbates eNOS dysfunction in diabetes through
induction of arginase, an enzyme that reduces the bioavailability of L-arginine, an addi-
tional inducer of NOS uncoupling [161]. NADPH oxidase has also been proposed as the
initial source of aberrant ROS generation in DR [162]. In this scheme, ROS generation
by NADPH oxidase precedes mitochondrial dysfunction and may cause it, although the
precise mechanism of NADPH oxidase activation in DR is unclear [162]. Finally, NADPH
oxidase-derived superoxide has been shown to cause EC senescence on exposure to high
glucose in vitro [126], thereby propagating SASP-mediated inflammation. Interestingly,
intermittent rather than chronic high glucose produced a higher population of senescent
cells, suggesting that the variable glucose levels experienced by diabetic patients may be
more injurious to vascular ECs than constant hyperglycemia [126]. In contrast, fluctuating
glucose levels are associated with cell death in microvascular pericytes, suggesting a basic
difference in cell fate decisions of these closely associated cells in response to a common
stressor [163].

6.2. Role of iNOS in Vascular Dysfunction in DR and RR

Impaired NO-mediated vascular functions are well characterized in diabetes and other
vascular diseases [99] with inflammation-driven iNOS suppressing physiological eNOS
activity and exacerbating oxidative/nitrositive stress. While the impact of iNOS expression
is difficult to assess in patients, work from animal models of DR suggests that iNOS has a
central role in vascular dysfunction in DR [164]. Likewise, iNOS can be induced in vascular
ECs, both as a direct effect of radiation [109], and as a component of the RIBE [98].
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6.3. Nitrositive Stress in Neuro-Glial Pathology in DR and RR

Neuronal and glial dysfunction in DR now represents a major research focus [14,
165,166], although the aberrant effects of nitrositive stress does not appear to have been
investigated in vulnerable neurons such as nitric oxide-dependent amacrine cells [167].
Amacrine cells appear to be the main source of nitric oxide in the inner retina [167] and
although this is not implicated in diabetes-related functional abnormalities [168], an early
study showed loss of NO expressing amacrine cells in diabetic rats [169]. Intriguingly, the
amacrine cell loss in this study was reversed by treatment with aminoguanidine (AG),
a benefit the authors attributed solely to inhibition of advanced glycation end-products
(AGESs) [169]. However, if iNOS had been induced as a secondary effect of nNOS-related
nitrositive stress, the AG treatment could have exerted additional benefit in its role as a
selective inhibitor of iNOS [170,171]. Clearly, RNS injury in amacrine cells during diabetes
and following exposure to IR requires further work in animal models.

In contrast with DR, neuronal dysfunction in RR is largely unexplored. Although our
original studies of RR revealed an unexpected radiosensitivity of the rod photoreceptor cells
in the rat, no cell death or ultrastructural abnormalities were recorded in the inner retinal
neurons in the same time period [172]. However, at 6 months post-irradiation, swollen
axons containing typical cytoid bodies and mitochondrial aggregates were present in the
nerve fiber layer [173]. Cytoid bodies in the ganglion cell axons of the nerve fiber layer are
the ultrastructural signature of “cotton wool spots” and evidence of impaired axoplasmic
transport leads to significant vascular insufficiency and local tissue hypoxia [174].

7. Chromatin Structure: A Determinant of Radiation Sensitivity

As mentioned above, our early studies on radiation damage to the retina showed that
the rod photoreceptor cells were by far the most radiosensitive retinal cells in the rat, in
sharp contrast with the radioresistance of the inner retinal neurons [172]. This observation
was surprising in view of the apparent radioresistance of the human retina [6] and drew our
attention to the dense heterochromatin (HC) of the rat rod cells in relation to their extreme
radiosensitivity [6,21,172]. The nuclear chromatin in rod cells of nocturnal mammals such
as rats and mice is dramatically different than in human rods [6] and has an inverted
arrangement [6,21,172,175] to the conventional pattern. The vast majority of mammalian
cells show a variable amount of densely clumped heterochromatin at the nuclear periphery
and finely dispersed euchromatin in the central nucleoplasm, as is the norm in the inner
retinal neurons [6,21]. In contrast, rod cells in nocturnal rodents have a central mass of
dense heterochromatin and a thin peripheral margin of euchromatin [175], an inverted
arrangement (Figure 5) that appears to enhance vision in low light levels [176].
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Figure 5. Shows an electron micrograph of the outer and inner nuclear layers of the rat retina,
fixed 12 h after irradiation with 20Gy of X-rays. Note the high proportion of heterochromatin (HC)
and the inverted chromatin conformation in the rod photoreceptor cell nuclei (RN). Many of the
rod cells are in apoptosis and show typical apoptotic chromatin condensation (A). In comparison,
the predominantly euchromatic inner retinal neurons appear undamaged. Note that the vascular
endothelial cells (arrows) have significantly more heterochromatin than the cells of the inner nuclear
layer (INL) but show no evidence of acute injury at this time. (From Amoaku et al., 1989, [172]; Archer
& Gardiner 1994, [21]).

We hypothesized that other cells with a high proportion of heterochromatin (HC), such
as retinal vascular ECs, may be similarly vulnerable to radiation-induced DNA damage
(Figure 5). We suggested that unrepaired DNA damage may trigger cell death if ECs harbor-
ing such damage were forced to re-enter the cell cycle, in order to cover defects created by
loss of adjacent cells within the EC monolayer [6,21]. Although the influence of chromatin
conformation on mechanisms of DNA repair were largely unknown in the early 1990s,
previous studies by Wheeler and Wierowski showed that DNA damage was more effi-
ciently repaired in dividing tumor cells than in terminally differentiated CNS neurons [177].
These authors concluded that the difference in DNA repair efficiency was due to easier
access of the repair enzymes to lesion sites in dividing cells [177]. Although their “Accessi-
bility Hypothesis” did not embrace chromatin accessibility [177], the concept prompted
our consideration of the need for bulky enzymes to penetrate a crowded macromolecular
environment to access DNA break sites, and condensed chromatin as a potential barrier to
the repair apparatus, as compared to the open conformation of euchromatin [6,21].

Since our original proposal that DNA lesions lying within HC may not be as efficiently
repaired as those within euchromatin [6,21], a great deal has been learned about the diverse
and overlapping mechanisms of DNA repair [178-181]. In the context of IR-induced injury,
the repair of double-strand breaks is of particular importance and represents a major
research focus (Box 1). This is also true of the complex damage sensing and transduction
pathways that constitute the mammalian DDR [182,183]. Many of the genes with roles in
the DDR have been identified because of the diseases that result from dysfunction in the
sensor or effector proteins they encode [184]. This was the case for the ATM gene, named
for Ataxia Telangiectasia, Mutated [185], a rare autosomal recessive condition manifesting
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with cerebellar neuropathy, immunodeficiency, and cutaneous telangiectasia in conjunctiva
or sun-exposed skin [186,187], and considered by some experts as the most radiosensitive
human condition [188].

The ATM gene encodes the ATM kinase, a serine/threonine protein kinase of the
phosphoinositide-3 kinase superfamily [189] that acts as the central transducer of the
DDR with multiple substrates that include the cell cycle checkpoint kinases Chk1 and
Chk2, as well as p53 [182,190,191]. ATM is normally resident in the cell nucleus, where
it is maintained as an inactive dimer or multimer [192]. However, chromatin changes in
the vicinity of double-strand DNA breaks (DSBs) cause rapid autophosphorylation by
adjacent enzyme molecules at serine residue-1981 (S1981), thereby releasing active ATM
monomers [192]. Monomeric ATM is then recruited to the DSB site by the triple protein
MRN complex, which, in combination with exposure to linear DNA, fully activates ATM
activity and increases its substrate affinity [193,194]. As mentioned above in relation to
cell senescence, the outcome of the transduction cascade initiated by ATM may be cell
cycle arrest to permit time for DNA repair, followed by either apoptosis or senescence if
satisfactory repair cannot be achieved [121].

Box 1. Double-strand break repair.

The most significant form of DNA damage arising from exposure to IR is dou-ble-strand DNA
breaks (DSBs), as failure to repair such lesions seriously threatens the integrity of the genome.
Beyond triggering cell death, DSBs may cause chromosomal breakage and, if incorrectly repaired,
may induce highly mutagenic chromosomal translocations [195]. Most DSBs are restored by one
of two main classes of repair mechanism: homologous recombination (HR) or nonhomologous
end-joining (NHE]) [179]. HR is a high-fidelity mechanism that operates in the late-S and G2
phases of the cell cycle and is possible when homologous sequences of the region around the
break site are available on either a sister chromatid or a homologous chromosome [196]. DSBs
at replication forks are most amenable to HR because of the unwound nature of the DNA strand
and proximity of the sister chromatid as a correct template. In con-trast, DSBs caused by IR are
“accidental” and may occur in a restrictive chromatin environment that limits the efficiency of a
homology search and causes it to default to an NHE] option for repair [196]. Compared to HR,
NHE] operates at all stages of the cell cycle, although it is considered an error-prone mechanism
as it requires processing of the DNA ends at the break site and may cause deletions or insertions
that are poten-tially mutagenic [195]. On the other hand, NEJM is relatively simple, efficient, and,
as most somatic cells in mammals do not cycle, only DSBs within the coding region of a regularly
transcribed gene will be detrimental to cell function. This system appears to be expedient in most
situations, as NHE] is the predominant DSB repair mechanism, accounting for the repair of up to
80% of DSBs in human cells [195].

7.1. DSB Repair in Heterochromatin

In relation to our original thesis, considerable experimental evidence now supports
the notion that a dense chromatin conformation may impede the repair of enclosed DNA
lesions. Ground-breaking studies conducted over 10 years ago showed that DSBs within
HC are repaired two-fold more slowly than those within euchromatin, and that the slow
components have a specific requirement for ATM signaling and the Artemis nuclease [197-
199]. Interestingly, these studies highlighted a need for DSB sites within HC to relocate to the
interface with euchromatin at the periphery of the chromobodies (dense HC aggregates) and
aneed for ATM in chromatin modification in the region of the break site. The investigators
concluded that DSBs repaired by slow kinetics did so because of the HC environment, rather
than lesion complexity, suggesting that HC was refractory to expansion of the signaling
complex formed at DSB sites [199-201]. These conclusions are congruent with previous
and later investigations comparing DSB repair in HC and euchromatin [202-205].

Such studies rely on technical advances derived from the identification of radiation-
induced foci (RIF) [206,207], a multiprotein complex recruited to DSB sites and initially
characterized by a megabase-scale accumulation of the histone variant YH2AX around the
break site [208]. Phosphorylation of H2AX at lysine-139 mediated by ATM, or the closely
related DNA-dependent protein kinase (DNA-PK) [209], promotes recruitment and location
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of the MRN sensor-repair apparatus, and a complex array of DNA repair and DDR signal
transduction enzymes, including ATM. The extent of YH2AX modified chromatin and the
size of RIF in comparison to the minute scale of a DSB is remarkable. Yet, in relation to the
importance of DSBs in the continued survival of the cell and organism, RIFs represent an
appropriate signaling platform for amplification of the DDR. Phospho-specific antibodies
for YH2AX have been of enormous value in locating DSB sites in immunostained cells
and tissues, and for microscopy-based identification of the various protein participants
colocalized at RIF. Readers are recommended to refer to the excellent and comprehensive
assessment of RIF formation and relationship to DSBs by Chiolo et al. [207].

7.2. Heterochromatin: Constitutive or Facultative

While the studies cited above represent a great advance in recognizing the importance
of HC in DNA repair [210], there is still much work required to evaluate DSB repair
in relation to the different types of HC involved. Only a few authors are explicit that
in their work, they assume heterochromatin to be constitutive-HC (cHC), while others
fail to make the distinction or recognize the existence of facultative-HC (fHC). fHC is
qualitatively distinct from cHC, in that it is rich in conditionally silenced genes relating to
cell differentiation [211,212], rather than permanently repressed repetitive elements and
transposons that characterize cHC [213]. fHC comprises a significant proportion of the
clumped chromatin that gives differentiated cells their characteristic nuclear chromatin
patterns [214], that undoubtedly reflect the portions of the genome that are transcriptionally
inactive in particular types of differentiated cells [211]. In comparison, cHC is less diverse
and contains few genes but plays central roles in genome stability, such as in silencing
repetitive sequences that are subject to inappropriate recombination with DSBs [213].
Beyond insulating potentially dangerous regions of the genome, recent studies attribute
important roles for cHC in chromosome architecture and the overall organization of the
genome [215]. Therefore, unrepaired DSBs in cHC or fHC domains may have quite different
consequences in cycling and noncycling cells. However, both are likely to be relevant in
retinal vascular ECs, which may be quiescent at the time when DNA damage occurs, but
are later forced to re-enter the cycle, as we have discussed previously [6,21].

The role of the HC environment in DNA repair and DDR signaling raises questions
about how to study these processes in vascular ECs. ECs from various tissues, including
the retina [216], may be conveniently propagated in vitro, and monolayers are routinely
employed for studies of DNA repair [217]. However, when placed in culture, the nuclei of
vascular ECs show a dramatic reduction in HC compared to ECs in vivo (Figure 6), raising
doubts as to whether their radiosensitivity in culture reflects that in situ within their tissue
of origin. Such ultrastructural alterations in chromatin probably reflect reactivation of
conditionally silenced genes held within fHC and a movement into the euchromatin [211,
212]. Such regions would necessitate inclusion of cycle-related genes, as ECs in culture
are continually cycling, while those in vivo only divide in response to vascular repair or
remodeling and angiogenic stimulation. Similarly, in relation to the present discussion, ECs
in telangiectatic vessels from irradiated retinas show an altered and highly euchromatic
chromatin distribution, suggesting a radically different gene-expression profile to that of
normal retinal ECs (Figure 4A,B,F and Figure 6E). The observed chromatin changes in
ECs can be explained by recent studies of distinct chromosomal regions that physically
interact with the nuclear lamina, called lamina-associated domains (LADs) [215,218,219].
Elegant studies have shown that LADs within fHC contain large numbers of silenced genes
that, when activated, move away from the lamina and reassociate when expression of the
contained genes ceases [220-222].

Retinal vascular ECs in vivo are particularly stable, with only ~0.05% engaged in the
cell cycle at any given time [223], but readily re-enter the cycle when placed in suitable
culture conditions in vitro [216]. Interestingly, cultured ECs that are induced to form a
tubular network with a covering of extracellular matrix gel undergo nuclear changes
that produce a chromatin architecture similar to that observed in vivo [224] (Figure 6).
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Therefore, there is a need for detailed studies of RIF kinetics in retinal vascular cells
following IR exposure in vivo. Flat mounted retinas represent the model of choice for
studies of developmental angiogenesis and could be conveniently exploited for studies of
DNA repair in RR.

Figure 6. Electron micrographs comparing vascular endothelial cell (EC) chromatin from the follow-
ing sources: (A) EC nucleus from normal primate retinal capillary shows a thick layer of densely
stained HC associated with the nuclear envelope (arrows). Finely dispersed euchromatin (Eu) occu-
pies more central regions of the nucleoplasm. (B) EC nucleus from normal rat retinal capillary shows
a typical chromatin distribution similar to that in (A). (C) Typica nucleus from human umbilical
vein EC (HUVEC) in monolayer culture is largely occupied by finely dispersed euchromatin (Eu).
Only a thin margin of HC is present in close association with the nuclear lamina/envelope complex.
Nucleolus—N. (D) EC nucleus from bovine retinal capillary EC tube in 3-D Matrigel culture. The
layer of peripheral HC is thicker than that of the HUVEC nucleus in monolayer culture, but is thinner
than that of retinal ECs in vivo, shown in (A,B). The collapsed lumen of the EC tube is marked L.
Nucleolus—N. (E) EC nucleus from telangiectatic vessel in irradiated diabetic human retina (18
months after 55Gy) is remarkably euchromatic compared to those of normal retinal ECs in vivo (A,B)
or that from a retinal capillary of a diabetic rat (F). (Adapted for Archer et al., 1991 [5]; Archer 1993 [6];
Amoaku et al., 1992, [173]; Stitt et al., 2005 [224]).

7.3. DNA Damage: Chromatin Sensitivity vs. Cellular Sensitivity

It should be fully appreciated that the difficulties of repairing DNA damage occurring
within HC, discussed above, does not mean that DNA within HC is more vulnerable
to damage than when located within euchromatin. Importantly, the reverse appears to
be the case, with transcriptionally inactive DNA within HC incurring fewer DSBs than
active euchromatic regions [201,225]. However, the same study showed that DSBs in
transcriptionally active DNA were repaired more efficiently [225], so DSBs within HC,
although less numerous, could represent a greater threat to cell survival, as suggested by
our studies of irradiated rod photoreceptor cells in the rat retina (Figure 5) [6,21,172].
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8. Telangiectasia in ATM: DNA Damage and/or Oxidative Stress

Studies over the past 20 years have shown that in addition to its multiple actions
in DNA repair, ATM activation is also central to the sensing and coordination of cellular
responses to oxidative stress [226,227]. Oxidant-mediated activation of ATM results in a
disulfide cross-linked dimer with kinase activity, in contrast with ATM autophosphoryla-
tion and release of functional monomers, as described above in relation to DNA damage
sensing [228]. Mutations in a specific cysteine residue was found to abrogate the ATM
response to oxidative stress while leaving its DDR activities intact [226].

Early studies showed that ATM-deficient cells demonstrated impaired antioxidant
defenses (discussed by Guo [226], specifically in reduced levels of GSH, an effect that
was most likely related to the reduced levels of NADPH required for regeneration of
oxidized glutathione, as discussed above. This notion was supported by later studies
showing that ATM stimulates the pentose monophosphate shunt, an important source of
NADPH [229]. Intriguingly, the impaired antioxidant defense in DR is linked to NADPH
deficiency resulting from polyol pathway activity [140], a feature that may further associate
the vascular pathology in DR with that in clinical ataxia telangiectasia.

In spite of the extensive studies on the actions of ATM in basic DDR signaling and
the downstream sequalae in cerebellar degeneration and immune dysfunction, little at-
tention has been paid to the pathogenesis of the vascular phenotype that is characteristic
of the eponymous human disease [186,187]. However, as the known vascular changes
occur in the conjunctiva and sun-exposed skin, it is likely that the telangiectasia has a
degenerative rather than a developmental etiology. Indeed, the tortuosity of telangiectatic
vessels replicates the morphology of the preferential flow path defined in a capillary bed
by collateral remodeling in response to local vascular occlusion [230]. Such a scenario
involving progressive capillary closure was described by Archer in the retinal vasculature
during radiation retinopathy [6]. Reduction in capillary density would impose additional
hemodynamic stress on surviving vessels with resultant dilatation and vascular leakage,
exacerbated by local tissue hypoxia (Figure 3). It is currently unknown whether such
vascular pathology in ATM patients is attributable to DNA damage or oxidative stress,
but as both factors tend to occur in unison [231], any attempt to dissect the downstream
effects may be difficult. That said, some clues can be obtained from studies on related
DNA repair disorders. Notably, Nijmegen break syndrome (NBS) causes a similar DNA
repair deficiency as ATM but without the telangiectasia, suggesting that impairment of the
antioxidant functions of ATM is at least partially responsible for the vascular damage [232].

Interestingly, retinal telangiectasia has not been described in ATM patients [233],
although certain ATM alleles have been associated with increased risk of idiopathic and
radiation-induced telangiectasia [234,235]. These studies cite pre-existing diabetes as a risk
factor for telangiectasia, although the possible role of ATM dysfunction in the development
of both conditions was not discussed. Nevertheless, such dysfunction is a real possibility, as
ATM has also been associated with diabetes and glucose intolerance [236,237], conditions
that may be related to impaired antioxidant actions in ATM deficiency.

Further insight into the vulnerability of the retinal vasculature to ATM dysfunction can
be gained from the occurrence of blood-retinal barrier dysfunction in ATM-null mice [238],
and manifestation of a DR-like vasodegeneration in chimeric mice after an ATM-null
bone marrow transplant [239]. In the latter study, the chimeras that received ATM-null
hematopoietic stem cells showed a higher level of retinal capillary fallout compared to
the equivalent control wild type (WT) mice receiving WT donor cells. ATM-null bone
marrow chimeras also showed exacerbated DR when diabetes was induced with streptozo-
tocin (STZ) [239]. Surprisingly, the authors observed increased capillary occlusion in the
nondiabetic ATM-null chimeras compared to wild type controls, a change attributed to
impairment of endothelial repair by the ATM-null marrow-derived precursors [239]. This
result was in accordance with a previous study showing loss of antioxidant potential and
failure of self-renewal by hematopoietic stem cells in ATM-null mice [240]. However, it is
difficult to attribute the vasodegeneration in nondiabetic ATM-null bone marrow chimeras
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solely to deficiencies in the vascular precursors [239]. As mentioned above, the retinal
vascular ECs are an extremely stable population [223] that, under normal circumstances,
should have a modest need for marrow-derived progenitors. However, this may not be the
case in retinopathy observed following the total body irradiation (TBI) applied before a
bone marrow transplant. Indeed, it seems likely that the observed retinopathy may have
been initiated by retinal endothelial damage during the TBI necessary for bone marrow
ablation prior to the transplant [239]. The gamma radiation dose of 8-9 Gy in TBI approx-
imates to the threshold for lethal radiation damage in vascular endothelial cells of mice
or humans [241]. This was also the dose that produced a measurable increase in acellular
capillaries in the retina of normal rats [7] and should have been sufficient to increase EC
death in the retinal vasculature of the chimeric mice, thereby exposing the deficiency in
ATM-null marrow-derived endothelial progenitors [15].

9. DNA Damage and Repair in Diabetes: Roles for RAGE and miR200

The vulnerability of vascular ECs to high-glucose-induced DNA damage was demon-
strated >30 years ago, although the generation of ROS/RNS under diabetic conditions
was not fully appreciated at that time [242]. Subsequently, evidence of oxidative DNA
damage in diabetes has steadily increased [243-247], facilitated by the identification of
8-hydroxydeoxy-guanosine (8-OHdG), a soluble oxidation product of the DNA base gua-
nine as a biomarker [248]. Likewise, evidence of impaired DNA repair and disruption of
the DDR in diabetes has also been advanced [246,249-251], including significant recent
evidence of a hitherto unknown role of the receptor for advanced glycation end-products
(RAGE) in DSB repair [252-254]. RAGE is a cell surface mediator of inflammation induced
by various proinflammatory signals [255], notably as a result of exposure to advanced
glycation end-products, moieties with well-characterized roles in the complications of dia-
betes [256,257]. Kumar et al., have shown RAGE to be a previously unrecognized substrate
of ATM that, following phosphorylation, is recruited to DSB sites [252,253], where it colo-
calizes with the MRE11 subunit of the MRN damage sensor complex discussed above [258].
Experiments with RAGE-null mice showed that loss of RAGE from the DSB repair sensor
complex resulted in persistent DDR signaling and cellular senescence, with release of the
cytokine markers of SASP described above [252]. Subsequent studies revealed that chronic
exposure to diabetic conditions compromises DNA repair, specifically nonhomologous
end-joining (NHE]), that can be corrected by treatment with a mimetic of phosphorylated
RAGE [253]. As RAGE is a known inducer of oxidative stress via NADPH oxidase [259], its
actions in DNA repair initially appear paradoxical, but may be compensatory.

Until recently, it was unknown how diabetes and the associated oxidative stress ex-
erted its repressive effects on DNA repair and DDR signaling at the level of gene expression.
However, an important recent study by Bhatt et al., offers valuable insights by comparing
groups of type-1 diabetic patients, with and without clinical evidence of complications after
more than 50 years of diabetes [260]. Using cultured fibroblasts and induced pluripotent
stem cells (iPS) from these patients, the study provided evidence of aberrant suppression of
DNA damage signaling by the regulatory RNA miR200. Fibroblasts from patients without
complications demonstrated normal DDR protein expression, while those from patients
with complications showed downregulation of ATM and several other downstream ele-
ments of the DDR. Importantly, patients with complications showed higher circulating
levels of miR200 than those without complications or nondiabetic controls. Addition-
ally, overexpression of miR200 in iPS-derived human neurons and vascular ECs caused
downregulation of ATM protein accompanied by increases in DNA damage markers and
apoptosis, changes that were reversed by restoration of ATM. It is interesting that a number
of DDR genes were shown to represent targets of miR200, yet singular restoration of ATM
effectively reversed the pathology. This result raises the possibility that in addition to its
DDR signaling roles, the antioxidant functions of ATM may also have been involved in
the beneficial effects [260]. It appears that several members of the miR200 family were
included in the analysis and the overexpression and knockdown experiments [260], so it
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is not clear which member/s of the family [261] mediated the observed effects. However,
previous studies have shown that oxidative stress significantly increases expression of
miR200c in vascular ECs and that its overexpression induced growth arrest, apoptosis, and
senescence [262]. Notably, the same study observed that blockade of miR200c prevented
oxidant-induced senescence, a result that suggests greater oxidative stress may have been
involved in the diabetic patients with complications in the study by Bhatt et al. [260].

Oxidant-Induced Single-Strand Breaks and Poly-(ADP-Ribose) Polymerase in DR

Much discussion concerning oxidative DNA damage in diabetes has focused on
SSBs, as poly-(ADP-ribose) polymerase (PARP), the primary sensor of single-strand breaks
(SSBs) has been implicated in an unusual pathological mechanism resulting in necrotic cell
death [178]. Although the presence of an undamaged sister strand enables high-fidelity
repair of SSBs, they are several orders of magnitude more common than DSBs and a
frequent result of oxidative damage [178]. The intensity of oxidant-induced SSBs in some
pathophysiological conditions, including diabetes, can induce necrosis [263,264] through
uncontrolled activation of PARP [178]. The enzymatic activity of PARP is triggered within
seconds of binding to SSBs leading to generation of poly-ADP-ribose (PAR) using NAD+
as substrate [178]. PAR is a branched polymer that coats PARP itself and many other
DNA-associated proteins, facilitating recruitment of repair enzymes and remodeling of the
chromatin environment [265]. However, overwhelming numbers of strand breaks and/or
the persistence of unrepaired DNA lesions can induce futile hyperactivation of PARP, with
cell death following exhaustion of cellular NAD+ and ATP [263,264,266]. Additionally,
independent of cellular energy status, it has been shown that PAR accumulation on the
surface of the mitochondria can also trigger cell death through the release of apoptosis-
inducing factor [266].

Significantly, PARP is induced in the retinal vasculature of diabetic rats [267] and PARP
inhibition prevented hyperglycemia-induced death of retinal ECs in vitro [267]. PARP-
mediated cell death has also been shown following peroxynitrite-mediated DNA damage
in vascular ECs in diabetes [268,269]. Indeed, much of the severe ROS/RNS-mediated DNA
damage in the retinal vasculature during both DR and RR involves the powerful oxidant
peroxynitrite [270,271], with the purine base guanine as the most vulnerable target [272].
As both mechanisms for repair of such damage, base-excision repair (BER) and nucleotide
excision repair (NER) are depressed in diabetes [249,250], many such lesions can progress
to SSBs, and eventually some may progress to DSBs [273]. A dramatic illustration of the
prevalence of oxidant-induced DNA strand breaks in the diabetic retina is provided in a 2011
study by McVicar et al. [274]. This study showed intense nick-end labeling of broken DNA
strands in a majority of retinal cells after 7 months of diabetes, a defect that was significantly
corrected by a 1-month period of treatment with a cytoprotective erythropoietin mimetic
peptide [274]. Importantly, the cytoprotective actions of erythropoietin signaling include
stimulation of major antioxidant pathways [275,276].

10. Vascular Repair in DR and RR: Role of Endothelial Progenitor Cells

Diabetes is characterized by depressed wound healing [277], vascular collateraliza-
tion [278], and angiogenesis [224], and studies over the past 25 years have added dysfunc-
tion of endothelial progenitor cells (EPCs) to this list [15]. EPCs originate from hematopoi-
etic stem cells in the bone marrow, although other disseminated repositories may also be
found in perivascular niches of the large blood vessels (see the discussion by Stitt et al.,
2011) [15]. We have proposed that accelerated cell death [279] by retinal ECs in diabetes,
leads to exhaustion of local repair capacity by differentiated ECs in situ [223], a situation
that, under physiological conditions, should trigger replenishment by EPCs and subsequent
regeneration. Indeed, it is likely that successful recruitment of EPCs may be responsible for
the observed vascular recovery in RR (Figure 7).
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Figure 7. Retinal fluorescein angiograms from a patient who received 55Gy of photon X-rays for
treatment of an anterior dural myxosarcoma. (A) shows closure of the capillary bed superior to the
foveal avascular zone 9 months after treatment. A large vessel (red arrow) traversing the ischemic
region (red asterisks) shows dilation and leakage. (B) Angiogram of the same region 6 months
later shows reperfusion of the occluded capillary bed (yellow asterisks), including a large vessel
(blue arrows). The large vessel traversing the previously ischemic bed (green arrow) has regained
competence to fluorescein and is no longer dilated. NB* An occluded perifoveal vessel marked with
ared X in angiogram-A shows reperfusion in angiogram-B, although the recanalized vessel shows
evidence of telangiectatic change (red arrow). A-indicates the foveal avascular zone. (From Archer &
Gardiner 1994, [21]).

However, the systemic nature of diabetes means that the local demand for vasorepara-
tive EPCs by the retina is compromised, both by depressed numbers of circulating EPCs
and diabetes-related cellular dysfunction [15,280]. In spite of such negative constraints
on vascular repair in the diabetic retina, the fact that preretinal neovascularization (NV)
continues as a sight-threatening complication of the condition attests to the qualitative
difference between reparative or remodeling processes and neo-angiogenesis. It is cur-
rently unclear at which point in the vasodegenerative phase of DR are the conditions that
trigger neo-angiogenesis and the progression to proliferative diabetic retinopathy (PDR)
created. However, it appears to be closely linked to the extent of ischemic hypoxia in the
neural retina, as a reduction in retinal oxygen consumption by pan-retinal photocoagula-
tion [281-283] still provides an effective and lasting treatment for PDR [284] in comparison
to anti-VEGEF therapy [285], which does nothing to address the underlying tissue hypoxia.
The hypoxic retina is able to generate both local and systemic distress signals, and re-
cruitment of the stem-like replicative potential of EPCs to sites of sprouting angiogenesis
may provide an explanation for how a moribund circulation with such deficient powers
of regeneration can suddenly generate the florid growth observed in preretinal-NV [15].
This remarkable change was well illustrated in our rat model of IR on a background of
STZ diabetes (discussed below). In this model, the retinal capillaries showed the typical
degenerative changes of DR with thickened capillary basement membranes and pericyte
loss (Figure 8), including the recently recognized phenomenon of autophagy-associated
cell death in the mural cells [28].
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Figure 8. Electron micrographs of intra-retinal capillary in a moderately hyperglycemic STZ diabetic
rat, 1 year after induction of diabetes and 6 months after 15Gy of X-irradiation. (A) The capillary
basement membrane (BM) is grossly thickened and contains the profile of a pericyte “ghost” (PG).
Although the ghost cell lacks a continuous plasma membrane, it retains many profiles of endomem-
branes consistent with intense autophagic activity (arrows). (B,C) Enlarged images of the PG regions
indicated by arrows in image-A show heterogeneous cell debris either enclosed or partially enclosed
by double membranes (arrows). (From Stitt et al., 1994, [8]).

In contrast, the preretinal-NV observed in these animals possessed healthy organelle-
rich endothelial cells and pericytes, in every way equivalent to those of the developing
retina (Figure 9). It is particularly interesting that these vessels were replete with healthy
pericytes, as we have previously demonstrated in preretinal-NV in nondiabetic primates
following branch vein occlusion [230]. Although pericytes continue to divide following
recruitment to the endothelial tubes in retinal vascular development, they show almost
no turnover in the mature retinal circulation and no attempt to replace those lost during
DR [223]. These facts pose the question of where the new pericytes come from in our model.
While pericytes in the developing retinal vasculature appear to derive from the neural
crest [286,287], in adulthood, mesenchymal stem cells (MSCs) from similar repositories as
EPCs appear to have the potential to generate pericytes [288] and the bone marrow presents
as a likely source, although detection of circulating MSCs is problematic [289]. Interestingly,
for many years, pericytes were proposed to represent a local source of MSCs, as pericytes
from many different tissues were able to generate multiple differentiated cell types in vitro
or after transplantation [290,291]. However, a recent study employing lineage-tracing
of the transcription factor TBX18, shared by pericytes and vascular smooth muscle cells,
has challenged this notion [291]. The authors attribute the results of previous studies
showing the multipotentiality of pericytes to genetic and epigenetic aberrations induced
by in vitro manipulation [291]. Regardless of their in vitro potential, the pericytes of the
retinal vasculature appear to have little in vivo potential beyond the possibility of further
development into fully differentiated vascular smooth muscle cells [292]. In the context of
our model the devastating impact of diabetes almost certainly precludes any possibility of
an endogenous pericyte contribution to the observed preretinal-NV and makes recruitment
of marrow-derived MSCs the likely source of mural cells, although the recruitment process
has not been studied with as much vigor as that of EPCs. EPC recruitment is complex (see
the discussion by Stitt et al., 2011 [15]), but the switch from background to PDR appears to
occur relatively quickly once retinal hypoxia has progressed beyond a critical level.



Int. |. Transl. Med. 2023, 3

142

Figure 9. Electron micrographs of pre-retinal neovascularization in a moderately hyperglycemic
1-year STZ diabetic rat 6 months after 15Gy of X-irradiation. (A) Site of entry of new retinal vessels
to the pre-retinal region of the vitreous body (V). Vessel-A shows a formed lumen and is perfused
by red blood cells (RBC). Vessel-B has a formed lumen but appears empty, while the lumen of the
tortuous capillary vessel-C appears in 2 profiles marked by arrows (also in image-(B)). The profile
marked by the red arrow has opened, while the blue arrow indicates the slit-like lumen typical of
capillary sprouts proximal to the tip. The adjacent retina shows a macrophage (Mp) engorged with
secondary lysosomes. Ganglion cell—Gc. (B) Montage extension of location depicted in image-(A)
shows passage of vessel through the nerve fiber layer (NFL). CB indicates a cytoid body within
distended ganglion cell axon. Vessel lumen shows a platelet and a mononuclear cell (Mo) adherent
to the endothelium. (C) A new vessel within the vitreous body shows healthy endothelial cells (E)
and pericytes (P) rich in intracellular organelles. Lumen—L. (D) A new capillary vessel within the
vitreous body shows a large organelle-rich pericyte (P) enveloping an endothelial cell (E). Several
pericyte—endothelial junctions are indicated by blue arrows. Lumen—L, vitreous—V. Red arrow—see
legend of image-(E). (E) Serial section of the attenuated portion of the EC cytoplasm (E) indicated by
the red arrow in image-(D) shows endothelial fenestrae covered by diaphragms (arrow). Lumen—L,
pericyte—P. (F) A new vessel in the vitreous body (V) shows the typical site of endothelial mitosis
at a site with a formed lumen (L), as shown in normal intraretinal vascular development in (G).
Condensed chromosomal bodies (CB) are located within the mitotic spindle (SP). (G) Endothelial
mitosis in developing retinal vasculature at postnatal day-5. Condensed chromosomal bodies are
located in EC which forms part of the vessel lumen (L). Pericyte—P, astrocyte—AS, vitreous—V,
CB—chromosomal body, SP—mitotic spindle, L—vascular lumen. (Adapted for Archer et al., 1991, [5];
Archer 1993, [6]; Stitt et al., 1994, [8]).
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Micro-RNAs in Vascular Repair

Beyond direct cellular additions and interactions by EPCs, the capacity for long-
range control of vascular repair by circulating miRs, which are either naked or enclosed
by microvesicles, adds a new dimension to some of our previous work. A 2005 study
from our laboratory examined the ability of sera from diabetic patients to support in vitro
angiogenesis compared to nondiabetic controls [224]. Sera from diabetic patients exerted a
strong antiangiogenic effect compared to nondiabetic sera. Furthermore, sera from diabetic
patients with poor glycemic control (HbA1C > 11) was significantly more antiangiogenic
than that from diabetic patients with good control (HbA1C < 6). This study showed that a
significant component of the antiangiogenic effect was mediated by advanced glycation
end-products, levels of which were higher in the sera from diabetic patients with poor
glycemic control [224]. However, other soluble factors may also have been involved, such as
inhibitory miRs as shown for diabetes-related DNA damage responses [260] or SASP [129].
Future studies will be required to examine the profile of miRs in the circulation of diabetic
patients and test the pro- or antiangiogenic activity of those miRs with known vascular
targets [293,294] in suitable models. Hopefully the negative effects mediated by miRs may
be overcome through judicial use of the same class of molecules. Indeed, it appears that
much of the positive input from EPCs in vascular repair is mediated by miRs [295,296].

11. Addition of Radiation to DR Provides an Animal Model with Unique Features

Unfortunately, studies of EPC involvement in retinal NV have only been possible in
neonatal models of oxygen-induced retinopathy [297], as suitable diabetic models are not
available [298-301]. The discrete nature of the scattered capillary closure that occurs in the
commonly employed streptozotocin (STZ)-induced rodent models of DR fails to produce
sufficiently confluent regions of retinal ischemia to promote neovascularization, and even
more complex transgenic models only produce subretinal rather than the preretinal-NV that
occurs in diabetic patients [302]. Preretinal-NV has been reported in diabetic monkeys, but
only after many years of diabetes [299,301,302], which is impractical for research purposes
and presents significant ethical and financial barriers. In contrast, we have shown that
the superimposition of RR on a background of STZ diabetes in the rat produces confluent
sectors of microvascular closure in the inner retina within a matter of months [6,8,173]. The
results of these experiments were assessed using trypsin digests and electron microscopy,
yet even with the random and limited tissue sampling of the latter, we were able to
demonstrate preretinal-NV (Figure 9). Importantly, these studies also revealed widespread
foci of cytoid bodies (discussed above), the ultrastructural correlates of “cotton wool”
spots (Figure 10)—another feature of human DR that has only been reproduced in primate
models [299,301,302].

Electron microscopy reveals that cytoid bodies identified in this model consist of
swollen axons, occurring either singly or in groups, containing the products of failed axonal
transport, chiefly “log-jams” of deranged mitochondria that are normally associated with
microtubular motor proteins (Figure 10). The states of preservation of the mitochondria
ranged from aggregates with normal morphology to others resembling the heterogeneous
membranous contents of autophagic vacuoles (Figure 10), although it remains to be proven
whether the various signaling components of the autophagic apparatus can access cytoid
bodies. Mitochondria themselves have been shown to represent important sites of au-
tophagic membrane biogenesis [303], but essential enzymes and signaling molecules may
only be available in the cell soma, proximal to the nucleus [304]. Curiously, the contents of
some cytoid bodies consisted almost entirely of microvesicles with the size and morphol-
ogy of synaptosomes, while others were filled with swirling bundles of neurofilaments
(Figure 10). Such clumps of neurofilaments were observed in the seminal study that docu-
mented the nature of “cotton wool” spots [174] but it has yet to be determined whether the
filaments involved represent aggregation of the original axonal contents or polymerization
of neurofilament subunits being transported at the time of interruption [305]. The observed
diversity of the contents of adjacent axons within the cytoid body probably reflects the
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relative proximity of their ganglion cell bodies to the site of vascular insufficiency and
tissue hypoxia causing the ATP deficiency and microtubular transport failure.

Figure 10. Electron micrographs of cytoid bodies in the nerve fiber layer (NFL) of the retina in a
moderately hyperglycemic STZ diabetic rat, 1 year after induction of diabetes and 6 months after
15Gy of X-irradiation. (A) Cytoid bodies (CB) consisting of swollen ganglion cell axons, occurring
either singly or in groups, are filled with intact mitochondria (M) and multiple membrane-bound
bodies enclosing heterogenous cell debris and remnants of endomembranes. Some individual axons
are almost entirely filled by neurofilaments (NF). AS—astrocyte. (B) Single axon distended by an
aggregate of intact mitochondria surrounded by neurofilaments (NF). AS—cytoplasm of astrocyte.
(C) Cytoid body composed of several swollen axons showing the axolemmal boundaries (arrows)
and distinctive contents of certain axons: Those marked SV are almost exclusively filled with small
vesicles with the size and morphology of synaptosomes, while others are filled with recognizable
mitochondria, and some are filled with autophagic bodies (AB). AX - normal axon filled with
neurotubules. (From Stitt et al., 1994, [8]).

It can be argued that the superimposition of ionizing radiation to DR in our model
simply introduces additional oxidative stress and greater intensity of the shared inflamma-
tory factors of the RIBE and SASP, discussed above. As such, the addition of a moderate
level of ionizing radiation (single dose of 15Gy) in STZ diabetic rats, and probably mice as
well, offers a cleaner and more clinically relevant model of DR than transgenic approaches.

12. Possible Therapeutic Interventions

Clearly, maximal tumor cell lethality represents the primary goal in patients receiving
therapeutic radiation for head and neck cancer, so any radioprotective measure for adjacent
normal tissues must not conflict with that priority. Again, any systemic measure aimed
at preservation of vascular function could compromise that goal if applied in advance of
treatment. A longstanding opinion is that a significant proportion of the treatment effect
in radiotherapy is attributable to destruction of the tumor vasculature [241,306], although
recent studies have challenged this view [307]. Arguably, such considerations can be
overcome by treatments applied in the post-irradiation period, or in the case of the retina,
by exploiting intraocular delivery of cytoprotective agents with antioxidant properties prior
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to irradiation [274]. Alternatively, significant preservation of the retinal vasculature may be
possible with post-irradiation therapies aimed at the persistent bystander effects, including
SASP-related inflammation and ROS/RNS generation. One such option may be the use
of senolytic drugs. These are currently undergoing evaluation to determine the possible
benefits of reducing the inflammatory burden of senescent cells in relation to natural
aging and fibrotic disease [132,308]. At a suitable time-point in the post-radiation period,
systemic use of senolytic drugs designed to trigger apoptosis in vascular ECs with a SASP
profile may reduce chronic vascular pathology in the retina and other bystander organs.
Such approaches would require exhaustive evaluation in suitable models, as removal of
senescent cells may not always be of benefit [309]. Again, such strategies could possibly
exacerbate vascular closure in diabetic patients with impaired endothelial regeneration and
EPC responses.

Use of recombinant Norrin or Frizzled-4 receptor agonists was suggested above as a
possible treatment for blood-retinal barrier dysfunction in radiation-induced telangiectasia,
although a broad-spectrum approach to neuroprotection targeting all the components of the
neurovascular unit appears more promising. Arguably, the preservation of normal Muller
cell function, including endogenous Norrin expression, could prevent all the features of
telangiectatic pathology. In this regard, suitable neuroprotective agents may be available
from those under evaluation for the treatment of ischemic stroke [310,311].

The pervasive role of the powerful oxidant peroxynitrite in much of the radiation and
diabetes-related pathology discussed in this review suggests peroxynitrite as a suitable
drug target. Indeed, several studies have already revealed the efficacy of peroxynitrite
decomposition catalysts for both vascular and neuroprotection in DR [312-314] and the en-
dogenous antioxidants uric acid [311] and curcumin [315,316] have exhibited peroxynitrite
scavenging properties. Interestingly, like some synthetic radioprotectants, curcumin exerts
radioprotection in normal tissues and radiosensitization in some tumors [317].

Synthetic radioprotectants have been under development for many years, but only
amifostine appears to have been tested in the retina [318]. The authors reported that
rats pre-treated with systemic amifostine showed less apoptosis than irradiated controls.
However, as the rats were not tumor bearing, no information was available on the relative
level of radioprotection afforded to normal retina compared to tumor. Unfortunately, there
is much controversy regarding whether or not amifostine also protects the target tumors in
radiotherapy [319].

A more novel compound RRx-001, also called ABDNAZ (1-bromoacetyl-3,3-dinitroaze
tidine), is reported to exert differential radioprotection through induction of the master
antioxidant transcription factor Nrf2 [320,321], although the study reporting protection of
normal tissues only examined cells in vitro [320]. Previous work showed that ABDNAZ
exerts its antitumor effects via generation of ROS and RNS [322], suggesting that the upreg-
ulation of Nrf2 in normal cells may be due to its oxidative challenge, a feature of concern
in diabetic individuals, in light of the role of ROS/RNS in DR discussed above. It was
also shown that the radiosensitivity of normal cells was enhanced by ABDNAZ, and more
so under hypoxia [322]. Again, this is a potentially problematic property for the diabetic
retina that may suffer a generalized functional hypoxia with discrete regions of frank
ischemic hypoxia [19]. Indeed, the unique metabolism [323] and polarized tissue oxygen
profile of the retina [324] need to be considered in the use of any potential radiosensitizers.
Specifically, the use of aerobic glycolysis, or the “Warburg Effect” by many retinal cells [323]
may make them vulnerable to drugs targeting the same metabolism in cancer cells [325].

Useful avenues of radioprotection may also be achieved through the repurposing
of well-characterized drugs, as shown by a very recent study of the antidiabetic drug
metformin [326]. Metformin is widely prescribed to treat insulin resistance in type-2
diabetic patients and has established neuroprotective actions following ischemic stroke and
spinal cord injury [326]. The authors found that pre-treatment with metformin enhanced
recovery of neurogenesis with functional benefits in recovery of olfactory memory following
irradiation with 8Gy of X-rays. The treatment effect was attributed to a reduction in
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neuroinflammation via inhibition of NF-kB, and although vascular benefits were not
explored, metformin has previously demonstrated improvement in post-ischemic vascular
recovery and angiogenesis [327]. For radioprotection in diabetic patients, metformin may
hold additional benefits, as it has been shown to reduce nitrositive stress via reduction of
peroxynitrite [328].

Whether any of the suggested approaches to radioprotection for the retina reach the
clinic will depend on critical evaluation in experimental models that are already available.

In relation to radioprotection, it should also be appreciated that since our original
studies of RR, the clinical practice of radiotherapy has advanced considerably with the
adoption of hyperfractionation [329] and intensity-modulated radiation therapy [330,331]
These techniques offer, respectively, inter-fraction recovery of normal tissues and sharper
cut-offs in the radiation field with reduction in the area of the irradiated penumbra. How-
ever, much remains to be understood in relation to the retina, especially the trade-off in
improved recovery of irradiated tissue versus a greater RIBE in adjacent tissue. In vitro
studies by Mothersill et al., have shown that the strength of RIBE signaling elicited by
irradiated cells does not decrease for subsequent fractions, so the overall impact may be
greater [332,333], although the effects of repeated exposure to such signals by bystander
tissues in vivo have not been investigated.

13. Conclusions: Combined Vascular Insult of RR on a Background of DR

Since our early clinico-pathological studies of RR in diabetic patients and experimental
studies in animal models, knowledge of IR-induced cell damage and DR has expanded
enormously and birthed new concepts and mechanisms of tissue injury in both conditions.
At that time, the role of oxidative damage to cells and tissues was firmly established in RR,
but was poorly appreciated in DR, and the cytotoxicity of RNS was yet to be elucidated in
either condition. Therefore, our conjecture of the threat posed to the retinal vasculature by
peroxynitrite was purely intuitive. Now, extensive literature details the activity of the NOS
enzymes and attests to the reality of nitrositive stress, with peroxynitrite confirmed to be
its most destructive species.

Clearly, the combined oxidative/nitrositive insult of an initial radiation injury and
the ongoing cytotoxic effects of the RIBE can only be exacerbated when superimposed
on a diabetic background of impaired antioxidant defense and depressed DNA repair.
In the retinal vasculature, both IR and diabetes can induce endothelial senescence with
a common legacy of SASP-mediated chronic inflammation. However, from a broader
biological perspective, it is obvious that diabetes induces distinctive and more insidious
effects than radiation insult alone, not least impairment of DNA repair and the signaling
mechanisms of the DDR: Longitudinal clinical studies on nondiabetic patients with RR
provide definitive evidence of vascular recovery in capillary beds previously obliterated
by radiation [15], while RR in diabetic individuals is inexorably progressive with limited
recanalization, passive remodeling, and telangiectasia. Similarly, diabetic patients show a
more rapid onset of RR and more extensive vaso-occlusion [3,17], consistent with impaired
vascular recovery, as demonstrated by investigations of various tissues, including the
retina [224,278].

In summary, it is obvious that pre-existing diabetes, whether manifested as DR or not,
represents a major threat to the vasculature of both irradiated and bystander tissues. New
research on IR and the RIBE in DR are needed to understand their combined impact on all
the cellular components of the neurovascular unit and to evaluate novel radioprotection
strategies.
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AG

AT
BH4
BL

BM
cHC
DR
DSBs
EC
eNOS
EPC
ETC
FAD
fHC
YH2AX
GSH
GSSH
GSX
H202
HbA1C
HC
HLArg
IL-1
IL-6
1L-8
iNOS
IR
IRMA
LADs
miR
miR
MnSOD
MRN
MSCs
NAD+
NADPH
NF-kB
NHE]
nNOS
NO
NOX2-
NVU
P21
P53
PAR
PARP
PDR
RAGE
RIBE
RIF
RNS
ROS
RR
SASP-
SSBs
STZ
TBI
TGFp
TNF«x
VEGF
8-OHdG

aminoguanidine

ataxia telangiectasia mutated
tetrahydrobiopterin

basal lamina

basement membrane
constitutive heterochromatin
diabetic retinopathy
double-strand DNA breaks
endothelial cell

endothelial nitric oxide synthase
endothelial progenitor cell
electron transport chain

flavin adenine dinucleotide
facultative heterochromatin
phospho-histone H2AX

reduced glutathione

oxidised glutathione
glutathione peroxide

hydrogen peroxide
hemoglobin-A1C
heterochromatin
hydroxy-L-arginine
interleukin-1

interleukin-6

interleukin-8

inducible nitric oxide synthase
ionizing radiation

intraretinal microvascular abnormalities
lamina-associated domains
microRNA

microRNA

manganese superoxide dismutase
MRE11-Rad50-Nbs1 complex
mesenchymal stem cells
oxidised nicotinamide adenine dinucleotide

reduced nicotinamide adenine dinucleotide phosphate

nuclear factor kappa-B
Non-homologous end joining
neuronal nitric oxide synthase
nitric oxide

NADPH-oxidase-2

neurovascular unit
cyclin-dependent kinase inhibitor-1
tumor suppressor protein-53
poly-ADP-ribose

poly-ADP-ribose polymerase
proliferative diabetic retinopathy
receptor for advanced glycation end-products
radiation-induced bystander effect
radiation-induced foci

reactive nitrogen species

reactive oxygen species

radiation retinopathy
senescence-associated secretory phenotype
single-strand DNA breaks
streptozotocin

total body irradiation

transforming growth factor beta
tumor necrosis factor alpha,
vascular endothelial growth factor
8-hydroxydeoxy-guanosine
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