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ABSTRACT

Marine dinoflagellates of the genera Alexandrium are well known producers of the potent neurotoxic
paralytic shellfish toxins that can enter the food web and ultimately present a serious risk to public
health in addition to causing huge economic losses. Direct coastal monitoring of Alexandrium spp. can
provide early warning of potential shellfish contamination and risks to consumers and so a rapid,
sensitive, portable and easy-to-use assay has been developed for this purpose using an innovative
planar waveguide device.

The disposable planar waveguide is comprised of a transparent substrate onto which an array of toxin-
protein conjugates is deposited, assembled in a cartridge allowing the introduction of sample, and

detection reagents. The competitive assay format uses a high affinity antibody to paralytic shellfish



toxins with a detection signal generated via a fluorescently labelled secondary antibody. The waveguide
cartridge is analysed by a simple reader device and results are displayed on a laptop computer. Assay
speed has been optimised to enable measurement within 15 min. A rapid, portable sample preparation
technique was developed for Alexandrium spp. in seawater to ensure analysis was completed within a
short period of time. The assay was validated and the LOD and CCP were determined as 12pg/mL and
20pg/mL respectively with an intra-assay CV of 11.3% at the CCP and an average recovery of 106%. The
highly innovative assay was proven to accurately detect toxin presence in algae sampled from the US

and European waters at an unprecedented cell density of 10cells/L.

Keywords: Paralytic shellfish toxins, fluorescence immunoassay, planar waveguide, Alexandrium spp,

early warning, ultra sensitive.

1. Introduction

Phytoplankton is intrinsic to the marine ecosystem as they produce a significant proportion of the
photosynthetic biomass that zooplankton and larger life forms rely on. Under specific conditions of high
nutrient levels from agricultural, domestic and industrial discharges, these microalgae proliferate and
produce harmful algal blooms (HABs, also known as “red tides”) (James et al., 2010). Various HAB
species are toxic and can lead to poisoning of humans, fish and other wildlife via food web transfer
(Batoréu et al., 2005). While many dinoflagellate genera cause HABs, one of the most important is the
Alexandrium genus because of its global distribution, diversity and severity of the toxins produced
(Churro et al., 2010). This genus is responsible for the production of saxitoxins (STX) that cause paralytic
shellfish poisons (PSPs) throughout the world (Anderson et al., 2012).

PSP in humans is caused by the consumption of contaminated bivalves and other shellfish that have

accumulated STX during filter feeding. The STX are potent neurotoxins that bind to the sodium channels



in nerve cell membranes disrupting normal depolarization. To date 57 STX analogues have been
identified and are collectively referred to as paralytic shellfish toxins (PSTs) (Wiese et al., 2010), all
exhibiting different toxicities.

Coastal monitoring for the presence and identification of marine toxic algae and the concentrations of
PSTs produced is a significant challenge (Anderson, 2009). That said while monitoring is clearly required,
the costs must be controlled. As a result, field deployable, sensitive, rapid qualitative tests will help
provide protection of these areas.

Many methods of analysis exist for the measurement of the PSTs but generally these assays are
designed for shellfish. In the absence of any regulations for PST concentrations in coastal waters, these
techniques may not have the necessary sensitivity to provide early warning of these toxins. The
reference method of analysis for shellfish is the mouse bioassay (MBA) (AOAC Official Method 959.08,
2005) however it is not sensitive enough as an early warning detection of PSTs in coastal waters. In
addition to its technical shortcomings for water analysis, ethical considerations are becoming more
important globally (Campbell et al., 2011a). The AOAC HPLC method (AOAC Official Method 2005.06.,
2005) has found acceptance for screening, however sample preparation is lengthy and the
interpretation of the results extremely complex requiring highly trained personnel (van den Top et al.,
2011). Another HPLC method frequently used is that developed by Oshima (1995) however three
different analyses are required to identify the PST derivatives. In recent times LC-MS/MS has emerged
as a powerful tool for the analysis of PSTs (Jaime et al., 2001 and Dell’Aversano et al., 2005). While
these methods allow for the accurate determination of these toxins in phytoplankton, they are
laboratory based requiring skilled technicians and expensive equipment. More rapid immunological
based methods have emerged over the past decade. One such example is biosensor assays based on

surface plasmon resonance (Fonfria et al., 2007; Rawn et al., 2009; Campbell et al., 2010 and Haughey et



al., 2011), however again these have been designed for determination of the toxins in shellfish, are
laboratory based and require a large capital outlay.

Many ELISAs have seen applied to the detection of PSTs in shellfish samples but few have been tested
for phytoplankton. They are specifically designed for screening, but are not truly portable requiring a
reader. Often the sensitivity is high, but inaccurate results may occur as a result of the antibody
specificity (Usleber et al., 2001; Dubois et al., 2010). One approach to alleviate the problem of
underestimation of results is to combine two antibodies into the test format as described by Campbell
et al (2011b) or employ two assays (Chu et al, 1996). Several commercial ELISA kits exist for the
screening of PSTs, however only one has been applied to the determination of STX in water samples, the
Abraxis Saxitoxin (PSP) ELISA kit. An alternative immunological format is that of Lateral Flow Devices
(LFDs) which are designed to be used in field conditions and give a qualitative result, but again they have
only been tested in shellfish.

A receptor binding assay (Doucette et al, 1997) and cytotoxicity/cell culture methods have been
developed (Garthwaite, 2000) however while useful for research they may be very difficult to introduce
for monitoring purposes. Field deployable techniques such as a neuronal network biosensor (Kulagina
et al., 2006) and the use of synthetic resins to adsorb PSTs (Rodriguez et al, 2011) have been published.
This study investigated the use of fluorescence immunoassay planar waveguide as an early warning
detection system for PSTs produced by the Alexandrium spp. The assay has been shown to be rapid,
easy-to-use and is ultra sensitive allowing detection of these toxins at very low algal cell densities. It can
be applied in the field and thus raises the possibility of providing, for the first time, a fit-for-purpose

monitoring tool for coastal regions often affected by HABs.

2. Materials and methods

2.1. Apparatus



A Minimix standard shaker was purchased from Merris Engineering, Maidenhead, UK. The SnapEsi LS
System and microarray cartridges were supplied by MBio Diagnostics Inc. (Boulder, USA). BagPage® + 80

(full surface micro-perforated filter blender bags, filter 280 um) were supplied by Interscience, France.

2.2. Reagents

All chemicals were of Analar grade unless otherwise stated. Phosphate buffered saline (PBS) tablets,
Tween 20, bovine serum albumin (BSA), dimethylsulphoxide, boric acid, tris (hydroxymethyl)
aminomethane, 2,2’-(ethylenedioxy)bis(ethylamine) (jeffamine, MW 148.2) and HPLC grade water and
acetonitrile were purchased from Sigma-Aldrich, United Kingdom.

Polyclonal antibodies against saxitoxin (QUB 5) and neosaxitoxin (QUB 7), (1Img/mL) and toxin protein
conjugates, saxitoxin-ovalbumin and neosaxitoxin-ovalbumin (1mg/mL) were prepared in-house. Alexa
Fluor® 647 goat anti-rabbit IgG, (2mg/mL) and Alexa Fluor® 647 carboxylic acid, succinimidyl ester,
(1mg), were purchased from Invitrogen Ltd, Paisley, Scotland.

PST standards saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), neosaxitoxin (NEO), decarbamoyl
neosaxitoxin (dcNEQ), gonyautoxins (GTX1/4 and GTX 2/3), decarbamoyl gonyautoxins (dcGTX 2/3),
GTX5 (B1) and C1/2 standard solutions were obtained from the National Research Council of Canada,
(NRC), Halifax, Canada. All standards were diluted in PBS (pH 7.2) to prepare working standards for the
immunoassay and HPLC analysis. For the preparation of the toxin protein conjugates, STX and NEO were
also purchased from the NRC.

Strains of Alexandrium tamarense (Lebour) Balech, CCAP 1119/20, 1119/27 and 1119/32 were
purchased from the Culture Collection of Algae and Protozoa, Scottish Marine Institute, Oban, Scotland
(CCAP). Two further strains, Alexandrium fundyense (Lebour) Balech, F14 and GTCA28 were supplied by

the School of Marine Sciences, University of Maine, USA. L1 medium for marine dinoflagellates was



purchased from the CCAP. Fresh natural seawater was obtained from Strangford Lough, Co. Down,

Northern Ireland.

2.3. The assay cartridge and instrument

Assays were performed using the SnapEsi® LS System from MBio Diagnostics Inc. The SnapEsi® System is
a multiplexed, fluorescence immunoassay platform in development for clinical diagnostics and life
sciences applications. It combines single-use disposable cartridges with a simple reader, and is
described in detail elsewhere (Lochhead et al., 2011 ). The system utilizes a novel implementation of
planar waveguide technology. Planar waveguides for immunoassays have been the subject of several
technical reviews (Herron et al., 2005; Ligler., 2009; Mukundan et al., 2009). Briefly, a light source
(typically a laser) is directed into a waveguide substrate where it propagates by total internal reflection
(TIR) at the interface between the high index of refraction waveguide (glass or plastic) and the
surrounding medium (air or aqueous solution). At the TIR interface, an evanescent field is generated
that decays exponentially into the aqueous medium. This provides localized illumination of the assay
surface, minimising effects of the bulk solution, line-of-sight, light scattering, etc.

The key innovation of the MBio Diagnostics planar waveguide system is an optical design that provides
an easy-to-use, reproducible, all plastic disposable cartridge that avoids the cost and alighnment issues

that have limited adoption of planar waveguide technology in high volume applications.

2.4. Microarray construction

Toxin-protein conjugates were printed to chemically activated waveguides (Grainger et al., 2007) at
defined concentrations as depicted in Figure 1. Fluorescently labelled protein conjugate was printed as
a spatial orientation marker, and anti-species antibodies served as procedural controls. Arrays were

printed with a Bio-Dot AD3200 robotic arrayer equipped with a Bio-Jet print head dispensing 20nL



droplets. Spot diameters were approximately 0.5mm and the arrays were printed on a grid with 1mm
centres. For the final array, each toxin-protein conjugate was printed in replicates of four. After
printing, the waveguide arrays were rinsed with a protein-based blocking agent and dried by
centrifugation.

Printed waveguides were assembled into an injection moulded cartridge using die cut double sided
adhesive, forming a 5mm wide fluidic channel with a volume of approximately 30uL. The cartridge inlet
port provides a reservoir for introduction of assay fluids. All assay fluids stay on-board the cartridge
(minimizing biohazard), with total waste volume up to 1 mL irreversibly trapped in an absorbent pad.
The cartridge has been engineered to provide reproducible, passive fluid flow, driven by a combination

of capillary action and hydrostatic pressure.

2.5. Toxin protein conjugates

STX was conjugated to the carrier protein, keyhole limpet haemocyanin (KLH) via a modification of the
Mannich reaction incorporating jeffamine as a spacer compound and polyclonal antibodies (PAb) were
prepared in a similar manner to that reported previously for bovine serum albumin (Campbell et al.,
2007). The antibody was purified by ammonium sulphate precipitation followed by dialysis in 0.15M
saline and the protein concentration was determined by A,g, to be 8.3mg/mL.

For the microarray, neosaxitoxin was conjugated to the carrier protein ovalbumin using the same
conjugation chemistry as above in the following ratios but omitting the jeffamine linker. Ovalbumin
(1mg), neosaxitoxin (146ug) and formaldehyde (4.5uL) were reacted followed by dialysis over 24 h in 3 x

4 L of 0.15M saline solution.

2.6. Labelling the primary antibody with Alexa Fluor® 647 carboxylic acid, succinimidyl ester



In brief, 50ug of the saxitoxin antibody was placed in an Amicon UltraCel 30K membrane centrifugal
filter and 100uL 50mM borate buffer, pH 8.0 added. This was centrifuged twice at 13,400 x g for 10 min,
the protein solution removed and Alexa Fluor® 647 carboxylic acid, succinimidyl ester added (20-30
equivalents of dye to protein). These were mixed vigorously for 2 h at room temperature, shielded from
direct sunlight. The reaction was quenched by the addition of an equal volume of 0.1M tris buffer, pH
8.5 and the contents transferred to another centrifugal filter. The volume was made up to 400uL with
PBS containing 0.05% Tween 20 and centrifuged at 13,400 x g for 10 min. The supernatant was
discarded and 400uL of the above buffer added and centrifuged as before. This process was repeated 3

times until the supernatant was colourless. The labelled antibody was stored at -20°C until use.

2.7. Antibody specificity

Antibody cross-reactivity was determined in assay buffer (PBS, pH 7.2, 1% BSA, 0.05% w/v Tween 20)
spiked with structurally related analytes. The calibration points were 0, 0.02, 0.04, 0.08 and 1.6 ng/mL.
The fluorescence signal obtained for each calibration point (n = 4) was normalized by calculating the
percentage of bound antibody for each, relative to the zero calibration signal observed. The mean
values were plotted using the non-linear four parameter equation using BIA evaluation software. The
midpoint concentration (ICs) of each toxin curve was determined and the cross-reactivity calculated as

a percentage relative to STX.

2.8. Immunoassay procedure
The microarray cartridge was pre-conditioned with assay buffer (150uL) for 10 min. Antibody (100uL)

and STX standard/sample (100uL) were mixed together and 150uL applied to the cartridge for 15 min



followed by two sample rinses using assay buffer (2 x 150uL). The labelled antibody (Alexa Fluor 647
goat anti-rabbit IgG at a concentration of 10ug/mL; in assay buffer) was applied to the cartridge and
incubated for 10 min. Two label rinse steps were performed as before and the data recorded on the
SnapEsi® System. This assay procedure required 45 min to complete. Optimal working dilutions of
antibodies and toxin-protein conjugates were determined experimentally by the checkerboard titration

method using this protocol.

2.9. Algal culturing
L1 medium was prepared according to the manufacturer’s guidelines in filtered seawater.

All glassware and media were sterilized prior to use and subsequent protocols performed in a UV3 HEPA
PCR cabinet. The cultures were grown at 20 °C =

(5 °C) with a 12:12 hour light: dark cycle with a photon flux density of approximately 170 pmol/m?*/s in
L1 medium. Batch cultures of each strain were inoculated from a stock culture that had reached the late
exponential/early stationary phase and the cultures maintained in duplicate under the conditions

described above.

2.10. Algal cell lysis and extraction of PSTs

Chemical and mechanical methods were investigated. Briefly, 10/15mL of culture was filtered using
Millipore hydrophilic mixed cellulose esters filters (0.45um). The algal cells were washed off the filter
prior to reconstitution in 0.9/1.5mL of PBS. For chemical lysis 100uL copper sulphate/Lysozyme was
added to the algal cells for 10 min. Mechanical lysis employed a metal seam roller to crush the cells in
sample bags for 1.5 min. Concentrated cultures were also placed into tubes and whisked for 2 min with
a hand blender. Cell counts were performed prior to and after each treatment as follows. Triplicate

1mL volumes of each culture were collected and fixed with Lugol’s iodine solution. 1mL was transferred



to a Sedgewick-Rafter counting chamber for enumeration. Cell counts were performed manually at x
100 magpnification on an inverted light microscope.

The ‘gold’ standard mechanical lysis method used was based on a modified version of glass bead beating
described by Devlin et al (2011). Briefly 10mL of culture was concentrated by centrifugation, the
supernatant discarded and the cells re-suspended in PBS. Glass beads were added and the samples
placed in a Minimix standard shaker for 10 min. Cell enumeration was performed prior to extraction to
enable the determination of total PST per cell in addition to the culture toxin profiles. Extracts from this

method and the most efficient portable method were analysed by HPLC.

2.11. HPLC analysis of algal extracts
All extracts were analyzed to characterize the toxin profiles and quantify the toxin concentrations in
each. The PSP toxin concentrations from the standard and portable lysis method selected were

compared. The official AOAC method was used (AOAC Official Method 2005.06., 2005).

2.12. Assay performance

Limit of detection (LOD) for the assay was determined by the analysis of a non-toxic strain of
Alexandrium tamarense (Lebour) Balech, CCAP 1119/20 (n = 20) and calculated as the mean of the
measured fluorescence signal minus 3 times the standard deviation of the mean (mean - 3sd). The
detection capability CCB was evaluated by fortification of the non-toxic strain at the concentration
20pg/mL and analyzed according to the assay protocol. The final assay calibration curve was 0, 0.02,
0.04 and 0.08ng/mL prepared by spiking an extract of the non-toxin producing strain at a cell density of

50cells/L. To determine the sensitivity of the assay with respect to cell numbers, both non-toxic and



toxic strains of Alexandrium were subjected to analysis at 50, 10 and 5cells/L (n = 6 for each strain). Cell

counts were performed for each followed by dilutions to the required densities prior to analysis.

3. Results and discussion

The competitive assay format uses a high affinity antibody to paralytic shellfish toxins with a detection
signal generated via a fluorescently labelled secondary antibody.

The developed assay was designed to provide early warning of PSTs in coastal waters and provides
rapid, qualitative results. As such, the sensitivity, specificity, LOD and CCP were evaluated to ensure the
method was fit-for-purpose. The reproducibility of the printed waveguides was ascertained by
performing both buffer and matrix curves over a number of days and using different print batches (see
the supporting information section SI1). The standard deviations associated with these were all less
than 5 with CV values ranging from 8% to 68% (25 and 250pg/mL) for buffer (2 batches) (Table SI1). For
the matrix curves (3 batches) the standard deviations were less than 6 and the CV values ranged from
0.6% to 56% (20 and 80pg/mL) (Table SI2). The ICsy values for the calibration curves were consistent at
24pg/mL. The buffer and matrix curve overlays have been shown in the supplementary section (Figures
SI1 and SI2).

The checkerboard titration method highlighted the QUB 5 polyclonal antibody (at a dilution of 1/8,000)
provided the most sensitive results with the NEO-ovalbumin conjugate (50ug/mL). Under buffer
conditions an ICsp, the concentration of toxin required to cause 50% inhibition of the antibody binding,
of 24pg/mL was demonsrated.

One of the main aims during the assay development was to achieve a short assay time. Initially the
assay procedure was 45 min and considered too lengthy for a rapid test. To accomplish a faster analysis

time, all washes were removed and the incubation times reduced to 7.5 min each for the



antibody/sample followed by the detection antibody. The ICsq was determined as 25pg/mL indicating no
adverse effects yet a marked improvement in assay time was gained.

Further studies were performed to ascertain if a one-step protocol was possible. Two approaches were
investigated, the first mixing the antibody, sample and secondary antibody together and incubating for
15 min prior to reading the data and the second was labelling the primary antibody with the fluorescent
tag and applying the sample/antibody mixture for 15 min prior to reading. The first approach failed as
very little binding was exhibited and the second, while it proved more successful showed a significant
drop in sensitivity with the 1Csy being calculated as 190pg/mL.

The antibody specificity was evaluated in assay buffer and the cross-reactivities were calculated as
100%, 25%, 28%, 8%, 49%, <0.1%, 7%, 33% and 4 % for STX, C1/2, dcGTX2/3, dcNEO, dcSTX, GTX1/4,
GTX2/3, GTX5 and NEO respectively. The antibody was very specific for STX. Some cross-reactivity was
exhibited towards dcSTX with less specificity towards dcGTX2,3 and dcNEO but this was not of particular
relevance since decarbamoyl toxins are not commonly found in toxic dinoflagellates (Etheridge., 2010).
Of significance was the low cross-reactivity of the antibody with the more potent STX analogues NEO
and GTX1/4 and if present in the sample then ultimately the test could underestimate the results. These
results are fairly consistent with other immunoassay publications (Usleber et al., 2001 and Dubois et al.,

|”

2010) however by use of a “cocktail” of antibodies, as described by Campbell et al (2011b) or two
immunoassays (Chu et al., 1996), these difficulties may be overcome. Alternatively, the multiplexed
nature of the microarray format could allow multiple separate tests to be run, enabling a comprehensive
toxin profile assay.

An innovative approach was taken to develop a simple, rapid sample preparation technique compatible
with the immunoassay. Importantly one of the necessary requirements of this assay was that it would

be field deployable. The study was conducted using 3 cultures of Alexandrium tamarense including F14,

GTCA28 and CCAP 1119/20. Chemical and mechanical lysis techniques were trialled as described and



the most efficient method chosen was initially based on cell counts and percentage lysis rates. Careful
selection of the extraction buffer was fundamental, not only to ensure efficient extraction of the toxins
but also to avoid any interference with the immunological processes. Instead of using acetic acid or
hydrochloric acid as described by Ravn et al (1995), the authors opted for PBS, pH 7.2 (Devlin et al, 2011)
to avoid adverse affects on the immunoassay. The results (Fig. 2) demonstrated the chemical lysis
techniques investigated were not suitable with lysis rates of < 54%. Physical disruption of the cell wall
proved to be successful following crushing of the phytoplankton contained in the BagPage® + 80 sample
bag. A lysis rate of 99.6+ 0.2% was calculated for this method. Removal of the membrane from this
system yielded an 8317.4% lysis rate while using a general laboratory sample bag or the hand blender
provided lysis rates of only 54+2.8% and 18+8.7% respectively. Therefore the BagPage® + 80 and roller
were selected. For analysis a filtration step was included after lysis to remove cell debris. The results
observed using the new protocol were compared against the modified bead beating method (Devlin et
al, 2011), by determining cell counts before and after lysis. Results using the modified bead beating
method showed 100% lysis for all three cultures while 99+ 0.3%, 99+ 0.1% and 98+ 0.2% lysis was
observed for cultures CCAP 1119/20, GTCA28 and F14 respectively using the BagPage® + 80 and roller.
This indicated that the rapid portable method was highly satisfactory. Further investigations to compare
the toxin concentrations using both the laboratory-based and portable methods were completed prior
to validation of the method to confirm agreement. This was performed by repeating the tests as
described and measuring the toxin concentrations by HPLC.

Table 1 highlights the results obtained from this trial. The total concentration of PSTs calculated using
the bead beating method was taken as 100% and those calculated using the portable sample
preparation method were measured against this as a reference. The recovery for the Alexandrium

strains ranged from 71% to 91%, a highly acceptable result. In addition the total toxin concentrations



per cell were calculated for each algal strain, the highest level being produced by Alexandrium
fundyense (F14) at the concentration 14.4 pg/cell.

The LOD of the assay was determined as described and a value of 12pg/mL was calculated. The lowest
concentration of STX (CCP) that could be accurately detected was assessed by fortifying blank samples
at 20pg/mL and the results presented in Fig. 3. The mean fluorescence signals for each sample were
divided by the signal generated by the zero standard and multiplied by 100. The average normalized
fluorescence signal + 2sd were calculated for each population. No overlap was observed between
them, the lower limit exhibited for the blank population was 80% while the upper limit for the spiked
population was 68%. The Student’s T Test was applied to the two sets of data and the p-value
calculated as 3.9 x 10 *°, confirming the populations were significantly different. The intra-assay
variation and extraction recovery were determined by the analysis of the samples spiked at 20pg/mL.
The coefficient of variation (% CV) was calculated as 11.3% and the recovery rates ranged from 86% -
123%. Analysis of the Alexandrium strains at various cell densities allowed assessment of assay
sensitivity. No guidelines exist for the measurement of toxin in algal cells however shellfish may begin
to show signs of toxicity at about 100cells/L, and above 1000cells/L the toxin level in mussels may be
above the regulatory limit (Blasco et al., 2003). Therefore, the ability to detect toxin in 50cells/L would
allow significant early warning for potential contamination of shellfish. To assess if the assay could
accurately determine if a sample was positive or negative at a cell density of 50cells/L, the cultures were
diluted, cells lysed and the assay performed (n = 6) for each strain and the results are detailed in Table 2.
In addition, the performance of the assay was investigated at lower cell densities of 10cells/L and
Scells/L. Total toxin concentrations determined by HPLC for the cell densities investigated were found
to be greater than 20pg for cultures GTCA28, F14, CCAP 1119/27 and CCAP 1119/32. For CCAP 1119/20
(non-producer), the concentrations were less than 20pg. At 50cells/L and 10cells/L, the assay

performance was exceptional, distinguishing between the negative and positive cultures. However at a



cell density of 5cells/L, although all the toxin producing algal strains were correctly identified, 2 samples
of the non-toxin producing strain gave false positive results. Thus it can be concluded that the assay can
perform very satisfactorily at detecting PST production in as low as 10cells/L and at this cell density no
false negatives were observed during the validation study. Examining STX only, the assay performed
well (Table 3). At 50cells/L there was complete agreement between the HPLC results and those
obtained using the portable assay. At 10cells/L, the STX concentrations in the toxin-producing cultures
by HPLC were all found to be below 20pg, while the portable assay found these to be positive, i.e. above
the cut-off of 20pg. This is not surprising as the portable assay, although highly specific towards STX, will
still pick up other toxins present due to the cross-reactivity profile of the antibody. With low levels of
C1/2, GTX2/3, NEO and GTXS5 in these algal samples, the portable assay will detect these and display

positive results.

4. Conclusions

Monitoring of coastal waters for PSTs produced by marine dinoflagellates is of paramount importance to
provide an early warning of risk. Rapid, on-site qualitative assays are advantageous in this situation
because they are cost-effective and the generation of results is rapid. In this study a rapid, easy-to-use,
portable fluorescent planar waveguide immunoassay has been developed and validated to meet these
requirements. In conjunction with a novel sample preparation, the total time required to test a sample
is approximately 20 minutes. The lowest detectable limit of the assay was in the low pg/mL range
making it an ultra sensitive method. The assay has been designed to detect toxin levels in Alexandrium
spp. known to have global distribution however the method is also likely to be applicable to other PST

producing organisms in both the marine and freshwater environments.
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Figures

Fig, 1 Schematic of the array layout and representative images of a negative (A) and positive (B) control.

Fig. 2 Bar chart showing the % lysis rates of Alexandrium spp. cells after both chemical and mechanical

treatments.

Fig. 3 Graph detailing the results observed after the analysis of 20 blank samples and 20 samples spiked

at 20 pg/mL.

Table 1. Comparative study of the laboratory-based bead beating method and the portable method for

lysis of Alexandrium cells.

PSP Toxin Concentration ng/ml

Alexandrium Lysis GTX1/4 C1/2 NEO GTX2/3 GTX5 STX Total % Total
Strain Method Recovery  toxin
pg /cell
GTCA28 Bead
beating 350 1718 255 251 6 329 2909 100 13.3
BagPage®
+80 237 1552 279 193 7 376 2644 91 12.1
F14 Bead
beating 106 475 59 502 10 169 1321 100 14.4
BagPage®
+ 80 89 366 55 238 12 179 939 71 10.3
CCAP Bead 0 0 0 0 0 0 0 100 0
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Table 2. Qualitative assessment of the portable assay at Alexandrium spp. cell densities of 50, 10 and

Scells/L.

Alexandrium Strain (n = 6)

Negative Positive

50 Cells

10 Cells

5 Cells

Negative Positive Negative Positive

Alexandrium tamarense 1119/20
Alexandrium tamarense 1119/27
Alexandrium tamarense 1119/32
Alexandrium fundyense GTCA28

Alexandrium fundyense F14

6

0

6

0

4

Negative refers to concentrations <20pg/cell, Positive refers to concentrations >20pg/cell
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Table 3. Performance of the portable assay for the qualitative determination of STX in Alexandrium spp.
at 50 and 10cells/L.

50 Cells 10 Cells
Alexandrium Strain HPLC Portable Assay HPLC Portable Assay

(STX pg/50  Negative/Positive  (STX pg/10  Negative/Positive

cells) cells)

Alexandrium tamarense 0 Negative 0 Negative
1119/20

Alexandrium tamarense 82 Positive 16 Positive
1119/27

Alexandrium tamarense 48 Positive 10 Positive
1119/32

Alexandrium fundyense GTCA28 76 Positive 15 Positive
Alexandrium fundyense 93 Positive 19 Positive
F14

Negative refers to concentrations <20pg/cell, Positive refers to concentrations >20pg/cell
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Sl Procedure: Assessment of the reproducibility of the printed waveguides.

The reproducibility of the printed waveguides was determined as follows. Under buffer conditions, two
batches of waveguides were tested on four separate occasions over a period of several months (n = 16)
for each calibration point whereas matrix calibration curves were repeated three times using three
different batches over three days (n = 12). The fluorescence signal for each calibration solution was
normalized by calculating the percentage of bound ligand (antibody) for each calibration point relative
to the zero calibration fluorescence signal, the mean values plotted and the results indicate that the
print procedure was both repeatable and reproducible for both buffer (Figure SI1) and matrix (Figure
SI2). In addition, the results have been tabulated (buffer curves, Table SI1 and matrix curves Table SI2),
highlighting the standard deviations and %CVs for each. For pg levels of toxin, the CV values are
acceptable and the highest CV values occur at the high concentrations, i.e. where the calibration curves
flatten out and almost 100% inhibition is observed. Please note the buffer calibration curves were
performed during the early assay development stages and the points used were different from the final
assay. For buffer the calibration points used were 0, 0.025, 0.05 and 0.25ng/ml while for matrix they

were changed to 0, 0.02, 0.04 and 0.08ng/ml.
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Fig SI1. Buffer calibration curves performed using 2 batches of printed microarrays over a period of
several months (September to March).

*Colour reproduction on the Web.
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Fig SI2. Matrix calibration curves performed using 3 batches of printed microarrays over 3 different

occasions.

*Colour reproduction on the Web.
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Table SI1. Assessment of waveguide reproducibility by comparing buffer calibration curves on 2 batches

(4 occasions) over several months.

Concentration Day 1 Day 2 Day 3 Day 4 Mean sd cv
(ng/mL) Normalised Normalised Normalised Normalised (%)
Signal Signal Signal Signal
(n=4) (n=4) (n=4) (n=4)
0 100 100 100 100 100 n/a n/a
0.025 54.5 48.5 44.7 51.5 49.8 4.2 84
0.05 22.0 15.0 15.0 17.1 173 33 193
0.25 8.1 6.9 6.4 0 53 3.6 681
ICs0 (ng/mL) 0.025 0.023 0.022 0.026
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Table SI2. Assessment of waveguide reproducibility by comparing matrix calibration curves on 3 batches
over 3 days.

Concentration Batch 2 Batch 3 Batch 4 Mean sd CV (%)
(ng/mL) Normalised Signal Normalised Signal Normalised Signal
(n=4) (n=4) (n=4)
0 100 100 100 100 n/a n/a
0.02 62.3 61.7 62.3 621 0.3 0.56
0.04 36.0 35.6 33.9 352 11 3.2
0.08 5.5 16.3 8.3 10.0 5.6 55.9
ICso (ng/mL) 0.026 0.022 0.025
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Paralytic shellfish toxins can enter the food web risking human health.

Coastal monitoring of Alexandrium spp. can provide an early warning of risk.

A highly innovative sample preparation method was developed.

A sensitive rapid, portable assay was developed for paralytic shellfish toxins in seawater.

The test was proven to accurately detect toxin presence in algae an unprecedented cell density.
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ACCEPTED MANUSCRIPT

Fig. 2.
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Fig. 3.
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