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Abstract: This paper presents a comprehensive review that highlights the characteristics of non-
isolated step-up converters based on high boost voltage lifting techniques. The paper categorises
the high boost techniques: multistage/multilevel, switched capacitor, voltage multiplier, voltage lift,
switched inductor and magnetic coupling. The paper also discusses in detail the advantages and
disadvantages for each category such as cost, complexity, power density, reliability and efficiency. The
number of passive and active components, voltage gain, voltage stress, switching frequency, efficiency
and power rating are also compared. Although the paper considers coupling inductors in the context
of the non-isolated converter, the focus of the entire article is on the non-isolated high voltage step-up
techniques. The key contribution in this paper is the review of high boosting techniques rather than
the DC /DC converters. This allows divergence of new ideas and new power converters that will help
provide highly efficient and flexible power converters for several applications where the sending end
voltage is very low as photovoltaic systems. In addition, many applications and control techniques of
DC/DC converters are summarised in this paper.

Keywords: high voltage gain; DC/DC converter; step-up techniques; renewable energy

1. Introduction

With the rise of energy consumption over this rapidly industrialising world, there
is a pressing need for environmentally non-destructive technological solutions that are
economical and efficient at the same time. Forecasting the upcoming challenges like
climate change, renewable energy sources (RES) is becoming increasingly important. The
expansion of the RES market has brought a lot of interest in technologies like fuel cells and
photovoltaics (PVs). PV source is one of the vital energy sources in the world which will
be the most favourable energy generation candidate by 2040 since it is clean, reliable and
has free emission [1,2]. PV grid connected power systems are evolving in many continents
and countries such as Europe, Japan and the US, where such power systems are used in
the residential applications [3]. Unfortunately, the output voltage generated from the PV
panel is very small compared to the ones already dealt in the traditional power system.
This small voltage level also does not meet the requirement for higher voltage electronic
equipment, such as X-ray power generators, some servo-motor drives, computer periphery
power supplies, the DC backup energy system for an uninterruptible power supply (UPS)
and high-intensity-discharge (HID) lamps for automobile headlamps. To obtain higher
DC voltage from PV panel, modules can be connected in series [4], but this approach is
not preferred for low power applications and it increases reliability and shading problems,
which occur by trees, other buildings and clouds [5,6]. For more reliable and efficient
operation, PV panels should be connected in parallel as possible to avoid the impact of
faulty panels [7]. In some applications such as the microinverter, one panel at low power
is enough to be connected to the grid but voltage needs to be highly boosted. In order
to optimise the PV output power and utilise the switch voltage blocking capability, the
cascaded H-bridge multilevel inverters and other multilevel configurations are applied for
grid-connected PV power systems [8,9]. Another method to step up voltage gain utilises
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voltage divider circuits, but this method suffers from low output voltage and efficiency [10].
Instead of using several PV panels in series connection or voltage divider circuits to increase
the voltage conversion ratio, DC/DC converter can be utilised as it is a reliable solution
to perform such job especially in low power applications and to provide a controllable
voltage [11]. The conventional DC/DC converter needs to be reliable and highly efficient
to regulate the DC interface between the source and the DC/AC grid inverter. Typically,
12–48 V from the PV Panel is required to be stepped up to 380 V DC for the full-bridge
inverter in the 220 V AC grid-connected power system.

The conventional boost DC/DC converter is used to step up the input voltage to a
desired higher level within the practical limit required by the load with very few com-
ponents. Stepping up the voltage is achieved by storing the energy in the inductor and
releasing it to the output at a higher voltage. The boost converter is very popular for
capacitive load applications such as photo-flashers and battery chargers. It is also used in
automotive applications, power amplifiers, adaptive control applications, battery power
systems, consumer electronics, DC motor drives and power factor correction circuits. To
obtain a high output voltage, the conventional boost converter must operate at an extremely
high duty cycle, but this comes at the expense of the efficiency of the converter and then it
is not applicable [12]. The extremely high duty cycle causes high conduction and switching
losses; hence, it requires a high current and voltage rated MOSFETs with high ON-state
resistance (RDS(ON)) [13]. It also limits the converter to operate at short off times and
low switching frequencies. Short off time is caused by a severe diode reverse-recovery
current, thus increasing the electromagnetic interference (EMI) level [14]. Lower switching
frequency causes higher ripple current; hence, the output voltage is highly sensitive to
changes in the duty cycle and the size of passive elements will be extremely large. With a
high duty cycle, there is very little scope for control and, therefore, making a compensating
change in the load side is difficult. Furthermore, the conventional boost converter that is
implemented performing pulse width modulation using high current and voltage rated
MOSFET as the switching device has higher MOSFET (RDS(ON)) [15]. The main drawbacks
of conventional high boost converters are the increased size of passive elements, cost and
decreased efficiency.

To overcome the aforementioned drawbacks, there is a need for a topology that could
provide conventional boost DC/DC converter with better dynamics, stability, reliability,
higher efficiency and higher power density. In addition, the converter should provide low
ripple, cost, wide bandwidth, low Electromagnetic Interference (EMI) and fast response to
sudden changes [16]. There is an inevitable demand for reliable, efficient, small size and
weight step-up DC/DC converter for various power applications. A variety of voltage
boosting techniques such as cascaded topologies, interleaved converters, multilevel con-
verters, Switched Capacitor (SC)/Switched Inductor (SL), Voltage Lift (VL) and coupled
inductors have been used to efficiently highly boost the voltage in DC/DC converters. The
permutation and combination of various voltage boosting techniques, along with various
switching topologies and switching cells, create a large range of distinguished topologies.

This paper systematically reviews and categorises high-boosting techniques for DC/DC
power converters. The general framework, boosting mechanism, connections, circuit
topologies, key features, advantages and disadvantages are established, demonstrated
and discussed. Section 2 classifies high step-up techniques. The rest of this paper is
organised as follows. Section 3 discusses multistage/multilevel converter including cas-
caded, symmetric, non-symmetric converters, quadratic boost and interleaved converters.
Sections 4–6 review switched capacitors, voltage multipliers and voltage lift techniques,
respectively. Section 7 discusses switched inductor techniques while Section 8 presents mag-
netic coupling techniques. Section 9 and 10 discuss the applications and control techniques,
respectively. Finally, Section 11 draws the conclusion.
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2. High Step-Up Techniques

High step-up DC/DC converters, which are used for voltage boosting, are mainly
classified as switched capacitors (SCs) (or charge pumps (CPs)), voltage multipliers (VM),
switched inductor (SL), voltage lift (VL) and converters with multistage/multilevel struc-
tures. Depending on the application, these have merits and demerits in terms of cost,
complexity, power density, reliability and efficiency. These classifications are shown in
Figure 1. Some of the families classified are distinct to one known technique such as
switched capacitor, voltage lift and switched inductor. Other families are extended to a
few subfamilies such as the multi-stage family where it has been extended to cascaded,
interleaved and multilevel.

Figure 1. Classification of High Step-Up Techniques Families.

3. Multistage/Multilevel Structures

One of the simplest methods of stepping up voltage is connecting various stages of
a converter. This can be implemented by integrating symmetric or different converter
modules (non-symmetric) with various high voltage gain techniques. The voltage gain
increases linearly as a function of the topology used. Broadly, such topologies can be further
classified as cascaded, interleaved and multilevel.

3.1. Cascaded Topology
3.1.1. Symmetric and Non-Symmetric Converters

In the general setup of cascaded DC/DC converters Figure 2a,b, two or more symmet-
ric or non-symmetric converters that use two or more controllable switches [17–19] or a
single switch [20–22] can be connected to increase the voltage gain without high duty cycle
operation.
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Figure 2. General Configuration of Cascaded DC/DC Converter (a) Symmetric (b) Non-symmetric.

As seen in Figure 3a, the low voltage stress on the power switch in the first stage of
the cascade enables high frequency operation. A low frequency operates in the second
stage [23,24]; hence, the switching losses are reduced [18]. However, a cascaded circuit
has two sets of power devices, which makes it not only complex but also expensive [25].
Moreover, both power devices need to be synchronised to prevent the beat frequency from
causing circuit stability issues [26]. An n-stage cascade boost converter with a single active
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switch is presented in [27,28]; such converters are an alternative solution for decreasing
the total losses caused by active switches, as shown in Figure 3b. Moreover, they have a
simple control circuitry. A comparative study on boost and zeta converters is presented
in [29]. A single switch step-up DC/DC converter based on the new SEPIC technology and
buck/boost converter [30] is shown in Figure 3c. Its voltage gain is higher than those of
SEPIC and buck/boost converters. Therefore, the voltage stress on the power switch is
low, and the input current is continuous. An integrated double boost and SEPIC converter
(IDBS) is presented in [31] as shown in Figure 3d; it can attain a high voltage conversion
ratio at a low duty cycle. The advantages of this combination converter are its capability to
achieve a high step-up voltage gain (boost) and a low input current ripple (SEPIC).
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Figure 3. Cascaded Topologies for Symmetric and Non-symmetric Converters. (a) Double Boost
Converter (DBC), (b) N-Stage Boost Converter, (c) SEPIC based on Buck-Boost Converter and (d)
Double Boost SEPIC Converter.

Table 1 summarises the following details about symmetric and non-symmetric cascade
boost converters: number of components, voltage gain, voltage stress on the main switch,
voltage stress of the output diode, input and output voltages, switching frequency and
power rating, duty cycle, efficiency, the feature of each DC/DC converter and some popular
applications.



Electronics 2023, 12, 718 5 of 46

Table 1. Comparison of Cascaded Boost Techniques.

Topology
# of Components Voltage

Gain in
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(M)

Voltage
Stress on the
Main Switch
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I/O Voltage
fs & Power
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D η Features ApplicationsPassive Active

Tech. Converter L C L|| S D
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m
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C
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de

Double Boost
Converter

Figure 3a [22,23]
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order of n.
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Figure 3b [28]
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• Total efficiency is high.
• Easier controllability due

to single switch.

• Cellular Tele-
phones.

• Satellite Com-
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Figure 3c [30]
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current.
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• Fuel Cell Sys-
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Figure 3d [31]
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the semiconductors are
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• Low input current ripple.
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limitation during start-up
and overload conditions.

• Integrated inductive com-
ponents in the one core.

• High Step-
Up Voltage
Applications.
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3.1.2. Quadratic Boost Converters (QBC)

Figure 4 illustrates the general setup of a quadratic boost converter which comprises
one switch, three diodes and four passive elements. A high step-up voltage gain can be
obtained by using a quadratic converter Figure 4 at a moderate duty cycle [22,32], but the
main drawback of such converters is that the voltage stress on the power switch is equal to
the output voltage. Therefore, efficiency is compromised. The conventional quadratic boost
converter has a limited voltage gain and is thus unsuitable for high-step-up applications.

−
+Vs

L1
D1 L2

S1

D3

RL

D2

C1 Co

Figure 4. General Setup of Quadratic Boost Converter (QBC).

Figure 5a shows a quadratic boost converter with a modified VL cell [33]; it achieves
a high voltage gain at the output side. Furthermore, it reduces the voltage stress on the
power switch, which is an issue with traditional quadratic boost converters. In the litera-
ture [34–52], many DC/DC converters based on quadratic boost converters and modified
quadratic boost converters have been proposed to inhibit the dominant constraints in
conventional boost converters. A quadratic following boost converter (QFBC) is presented
in [38]. It consists of two switches, three capacitors, three diodes and two inductors, and
it can step up the voltage gain at a moderate duty cycle. In the modified QFBC (MQFBC)
proposed in [39], a bootstrap network is integrated to improve the conventional boost
converter. In Figure 5b, a high voltage gain and reduced voltage stress are achieved by
using a quadratic boost converter with a coupled inductor [40,41]. However, the power
switch suffers from a high voltage stress caused by the leakage inductance of the coupled
inductor. Passive clamping circuits are adopted to reduce this high voltage stress. The
quadratic boost converter and SEPIC topologies in Figure 5c, which are presented in [42],
increase the voltage conversion ratio without an extreme duty ratio. This converter takes
advantage of two well-known DC/DC converters, namely, a quadratic boost converter,
which has a high step-up capability, and a SEPIC converter which can reduce the input
current ripple. A quadratic SEPIC with a switched-coupled inductor, shown in Figure 5d,
is proposed in [43] to increase the voltage gain. In [44], a quadratic boost converter and a
zeta converter are proposed for a high voltage gain and efficiency. Additionally, both the
input and output current ripples are low (features of the quadratic boost converter and zeta
converter, respectively). A quadratic boost converter and a Ćuk converter are combined
in [45] to provide a high step-up voltage. Two configurations of this proposed converter
are shown in Figure 5e,f. The configuration in Figure 5e is called hybrid QBC type I and
its voltage stress is lower than the output voltage of the converter. The configuration in
Figure 5f is called hybrid QBC type II, and its voltage gain is higher than that of hybrid
QBC type I. A novel quadratic boost converter with low inductor currents is proposed
in [46]; it can increase the voltage gain as well as the conventional quadratic boost converter
can. Furthermore, it has a non-pulsating input current and low voltage stress on the power
switch. The main drawback of this converter is its use of two switches. A hybrid cascaded
DC/DC converter usually consists of a quadratic boost converter and voltage multiplier
circuits. A high voltage gain in [47] is achieved by using a quadratic boost converter and a
coupled inductor with an extended voltage doubler cell. Quadratic boost with a voltage
multiplier cell was proposed in [48], the output voltage is much higher under the same
duty cycle of the traditional quadratic boost converter. Moreover, the input current ripple
is low, and the voltage stress is reduced.
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Figure 5. Cascaded Topology of Conventional Quadratic Boost Converter. (a) QBC based on VL,
(b) QBC based on Coupled Inductor, (c) QBC and SEPIC Converters, (d) QBC-SEPIC based on SC
and coupled Inductor, (e) QBC and Ćuk Converter Type-I and (f) QBC and Ćuk Converter Type-II.

Table 2 summarises more details about quadratic boost converter in terms of compo-
nent number, voltage gain, voltage stress on the main switch, voltage stress of output diode,
input and output voltage, switching frequency and power rating, duty cycle, efficiency,
feature of each DC/DC converter and applications.
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Table 2. Comparison of Quadratic Boost Techniques.

Topology
# of Components Voltage

Gain in
CCM
(M)

Voltage
Stress on the
Main Switch

(Vs)

Voltage
Stress on

Output Diode
(Do)

I/O Voltage
fs & Power

Rating
D η Features ApplicationsPassive Active

L C L|| S D

QBC
Figure 4 [22] 2 2 0 1 3

1
(1− D)2

Vin

(1− D)2 Vc2
20 V/98 V

20 kHz/100 W 0.55 74%
• High voltage gain.
• Single Switch.

• Industrial
Applica-
tions

QBC
based on

Voltage Lift
(VL) Figure 5a

[33]
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2

(1− D)2
Vo

2
Vo
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12 V/80 V 0.59 -

• The voltage gain is higher than the QBC.
• The voltage stress on the switch is reduced.
• Low input current ripple.
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Figure 5b

[40]
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• Improve the voltage gain by using coupled in-
ductor.

• Clamp circuit is reduced the voltage stress.
• Low voltage-rating and low RDS(ON) .
• Total power efficiency is improved.

• Renewable
Energy
Sources
(RES).

IQBS
Figure 5c [42] 3 4 0 1 4
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(1− D)2
- - 9 V/30.98 V
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• High voltage gains without extreme duty cy-
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• Low input current ripple.
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• High Step-
Up Voltage
Applica-
tions.
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Figure 5d [43]
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• Step-up and Step-down voltage conversion.

• Renewable
Energy
Sources
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Figure 5e [45]
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• The voltage stress on the switch is reduced.
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the efficiency of type-II.

• Fuel Cell
Vehicles.

HQBC
Type-II

Figure 5f [45]
3 4 0 1 4

1 + D
(1− D)2 Vc1 +

∆Vc1
2 Vc1 +

∆Vc1
2

24 V/200 V
250 W 0.6 93.7%
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3.2. Interleaved Converters

The interleaved step-up DC/DC converter consists of passive or active clamp cir-
cuits and voltage multiplier modules between the input switches and the output diode for
providing a high voltage conversion ratio, as shown in Figure 6. However, this technique de-
creases the current ripple and increases the power density because the input current level in
the step-up DC/DC converters is higher than the output current level. Various interleaved
DC/DC converters with different techniques can be found in the literature [53–62].

−
+Vs

L2a

S2

Dc2

Cc

L1a

S1

Dc1

L1b

Dr

L2b

Cm Do

Co RL

Figure 6. General Setup of Interleaved Converter.

In Figure 7a, the interleaved converter with voltage multiplier cell proposed in [53]
can reduce the input current ripple and improve the power level because the interleaved
structure is employed at the input side. Furthermore, the voltage gain is increased at the
output side because of the voltage multiplier cell. In Figure 7b, a conventional interleaved
boost converter achieves high voltage gain by integrating a voltage multiplier module
consisting of switched capacitors and coupled inductors [54,55]. Additionally, it can reduce
the input current ripple and doubles the power transfer. In order to increase the voltage
gain, the interleaved quadratic boost DC/DC converter has been proposed by using two
structures of quadratic boost converter as shown in Figure 7c. It can achieve the voltage
gain by using a voltage lift capacitor [56]. In [57], an interleaved step-up converter with
a single capacitor snubber is presented. A Winding Crossed Coupled Inductor (WCCI)
has been presented in [58] consisting of three winding coupled inductors to boost the
voltage gain. In addition, the first phase has two windings, while the second phase has
the third winding. To recycle the leakage energy and absorb the voltage spike caused by
the leakage inductance, either a passive clamp or an active clamp is adopted [59]. In [60],
the proposed converter is an interleaved high step-up DC/DC converter combining with
three techniques. However, it takes the advantage of the coupled inductor, switched
capacitor and the conventional interleaved boost converter. In order to increase the voltage
conversion ratio without using a coupled inductor, a non-isolated high gain interleaved
DC/DC converter with reduced voltage stress on semiconductor devices has been proposed
in [61]. In Figure 7d, the proposed converter contains two interleaved modified step-up KY
converters. The voltage gain is higher than the conventional interleaved boost, Ćuk, ZETA
and SEPIC converters. The voltage stress on the semiconductor devices is low; therefore,
the efficiency of the proposed converter is increased due to low on-state resistance and
low conduction loss. A high step-up interleaved DC/DC converter by combining voltage
multiplier and coupled inductor has been proposed in [62]. Two coupled inductors and
voltage multiplier are utilised to provide a very high step-up voltage gain; hence, the input
current ripple is low because the proposed converter uses the interleaved boost converter
at the input side. In addition, it can alleviate the reverse recovery current problem of
the diode, and it recycles the leakage energy. Eventually, the efficiency of the proposed
converter can be improved by implementing low-voltage-rated MOSFETs with a small
on-state resistance which can reduce the conduction loss.
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Figure 7. Interleaved Converters. (a) Interleaved with VMC and Coupled Inductor, (b) Interleaved
with VMC based on SC and Coupled Inductor, (c) Interleaved QBC and (d) Tow Interleaved Modified
Step-Up KY Converters.

Table 3 summarises more details about the interleaved boost converter in terms of
component number, voltage gain, voltage stress on the main switch, voltage stress of
output diode, input and output voltage, switching frequency and power rating, duty cycle,
efficiency, the feature of each DC/DC converter and some of the common applications.
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Table 3. Comparison of Interleaved Boost Technique.

Topology
# of Components Voltage

Gain in
CCM
(M)

Voltage
Stress on the
Main Switch

(Vs)

Voltage
Stress on

Output Diode
(Do)

I/O Voltage
fs & Power

Rating
D η Features ApplicationsPassive Active

L C L|| S D

Interleaved with
VMC & Coupled

Inductor
Figure 7a [53]

0 3 2 2 4
2N + 1
1− D

Vo

2N + 1
2N

2N + 1
Vo

40 V/380 V
100 kHz/1 kW 0.5 94.1-94.7%

• High step-up voltage.
• Minimized input current ripple and high-power

level.
• Low voltage stress on the switch.
• Low conduction losses due to low voltage rated

MOSFET with low RDS(ON) .
• Low switching losses due to ZCS.

• High Power Applications.

Interleaved with
VMC (SC &

Coupled Inductor)
Figure 7b [54]

0 5 2 2 6
2N + 2
1− D

Vo

2N + 2
NVo

N + 1
40 V/380 V

40 kHz/400 W 0.5 97.1

• High step-up voltage without extreme duty cy-
cle.

• Low input current ripple and low conduc-
tion losses which increase the lifetime of input
source.

• Low cost.
• Large voltage spikes across the main switches

are reduced and efficiency is high.

• Renewable Energy Sources
(RES).

• High-Power Applications.

Interleaved QBC
Figure 7c [56] 4 4 0 2 6

2
(1− D)2

Vo

2
Vin

(1− D)2
24 V /380 V

40 kHz/100 W 0.65 92.5%

• High voltage gains by using a voltage lift capac-
itor.

• Switches operation with a phase-shift 180o .
• Free input current ripples.

• High Power Applications.

Two Interleaved
Modified Step-Up

KY converters
Figure 7d [61]

4 6 0 2 4
1 + 3D
1− D

Vin
1− D

Vin
1− D

29 V/388 V
30 kHz/220 W 0.73 96.2%

• High voltage gains without using coupled in-
ductor.

• Low input current ripple.
• Low voltage stress and high efficiency.
• Low conduction and switching losses.

• High Power Applications.
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3.3. Multilevel Converters

A Multilevel DC/DC converter helps to decrease or nearly eliminate the magnetic
components leading to desirable cost, size, weight, and managing high-temperature opera-
tion [63]. Concerning the input voltage, multiple level converters can be categorised into
single DC and multiple DC sources groups. Single source multilevel structures are majorly
used in electric or fuel cell-based vehicles and traction motors. In contrast, the multiple
DC source multilevel converters with cascaded structures are used in modular renewable
energy sources such as PV or fuel cells [16].

The switch capacitor structures are usually used in multilevel converter. The Capacitor-
Clamped module for multilevel converters in Figure 8a is an essential module for boosting
the voltage level, which contains three switches and one capacitor [64–66]. In [67], double
the DC input voltage can be achieved by utilising two capacitors and four switches, as
shown in Figure 8b. PV modules can increase the output voltage level by using a series
connection; hence, the DC/DC converter should be used with each PV module to maintain
the voltage regulated. The advantages of this connection are higher reliability, higher
safety/protection, low maintenance and lower cost [68]. This converter is well known as
the Modular Multilevel Converter (MMC) [69–71].

−
+V1

S1

C1

S2

S3

S4
C2

S6

S5

S7
C3

S9

S8

S10
C4

S11

S10

S12 C5 −
+ V2 RL

(a) (b)

Figure 8. (a) Multilevel Modular Capacitor Clamped Converter (MMCCC) and (b) 6X Switched Capacitor.

Table 4 summarises details about multilevel boost converter in terms of component
number, capacitor voltage rating, voltage stress on the main switch, voltage stress of
output diode, input and output voltage, switching frequency and power rating, duty cycle,
efficiency, the feature of each converter and most common applications of the converter.

Despite its features such as modularity structure, high power density, reliability, the
MMC can provide high efficiency and high voltage/current levels. The fundamental multi-
stage/level has shortcomings, such as a complex control scheme and many components.
All of this will be relatively heavy, large and bulky. This technique can be used in HVDC
transmission, renewable energy systems, DC microgrids, high power DC supply and space
technology.
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Table 4. Comparison of Multilevel Boost Techniques.

Topology
# of Components Voltage

Gain in
CCM
(M)

Voltage
Stress on the
Main Switch

(Vs)

Voltage
Stress on

Output Diode
(Do)

I/O Voltage
fs & Power

Rating
D η Features ApplicationsPassive Active

Tech. Converter L C L|| S D

Si
ng

le
In

pu
t

Multilevel
Modular
Capacitor
Clamped
Converter
(MMCCC)

Figure 8a [64]

0 5 0 13 0 (1 + N)NVin
2

- - 12 V/60 V - -

• High frequency.
• Low I/O current ripple.
• Low on-state voltage drop and bidirectional

power flow.
-

6X
Switched
Capacitor

Figure 8b [67]
0 6 0 12 0 (1 + N

2 )NVin

2
- - 12 V/68.2 V

100 kHz/456 W - 95.3%

• Low component power rating.
• Small switching device count, low output ca-

pacitance and low current ripple.
• Lower power loss due to two charge pump

paths feed the load directly.
• Small and light converter with high voltage

gain.
• High efficiency and low cost.

• High Voltage Gain
Applications.

M
ul

ti
pl

e
In

pu
t

Cascaded
DC/DC

Converter
Connection of

PV Modules [68]

1 1 0 1 1 - - - 15 V/30 V
369 V/540 W 0.5 -

• Better utilisation on a per module basis.
• Mixing of different sources.
• Better protection pf power sources.
• Redundancy of both power converters and

power sources.
• Better data gathering.

• PV sources.
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4. Switched Capacitor (SC)

Topologies using SCs are majorly used in low power electronic applications, especially
in systems with limited physical dimensions involving higher power density [72]. The
concept of SCs is based on charge pump (CP), which is the number of capacitors used in
SC cell where the high step-up ratio is attainable [73–76]. It comprises only capacitors,
MOSFETs and diodes, and does not include any inductive element. Their characteristics
allow monolithic integration, minimised levels of EMI, and reduced weight and volume [77].
Depending on the non-inverting and inverting cell terms, the polarity of input and output
voltages are the same or opposite [78]. As shown in Figure 9, it consists of two capacitors
and three diodes, and is placed in conventional DC/DC converters (such as Zeta, SEPIC
and Ćuk converters) to build a new converter. The voltage divider circuit describes the
functionality of the new converters. During the ON state of the diodes (D1 and D2), the
capacitors (C1 and C2) are charged in parallel. During the OFF state of the diodes (D1 and
D2), the capacitors (C1 and C2) are charged in series. From Figure 9a,e, non-inverting SC or
inverting SC are used in many different step-up DC/DC converters. Figure 9a,b are non-
inverting and inverting SC cell Zeta converters, respectively. It is developed by utilising
the cell of non-inverting and inverting SC instead of the capacitor, the output inductor
and the output diode of the conventional Zeta converter. As a result of the additional
components, the voltage gain is higher than that achieved by a conventional Zeta converter.
Moreover, there is a lower voltage stress on the power switch. Figure 9c depicts a SEPIC
converter based on a non-inverting SC cell. Instead of the conventional SEPIC converter’s
output diode, the non-inverting SC cell is employed. Compared to a conventional SEPIC
converter, it improves the voltage conversion ratio and decreases the voltage stress on the
main switch. Figure 9d represents an inverting SC cell Ćuk converter. It is established by
modifying the conventional Ćuk converter’s capacitor, output inductor and output diode
with an inverted SC cell. However, it boosts the voltage conversion ratio and decreases
the switch’s voltage stress. While Figure 9e is a similar circuit to Figure 9d, the voltage
doubler cell has been added to the output side. Thus, the voltage gain is higher than the
prior circuit and has lower voltage stress. In addition, the Ćuk converter has inductors
on both sides, so current flows continuously in both directions. Combining both coupled
inductor and switched capacitor [79], an ultra-high step-up DC/DC converter with low
voltage stress and high efficiency has been achieved. It does not need extra windings for an
ultra-high step-up conversion ratio. In addition, the passive clamp circuit can recycle the
leakage energy, which can avoid the voltage spikes across the switch, and the efficiency is
increased. The voltage stress on the main switch is lower than the other converter, and it
maintains steady for the entire duty cycle range. Moreover, the reverse recovery current
problem of the diode is alleviated through the leakage inductance of the coupled inductor.
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Figure 9. Switched Capacitor (SC) Techniques. (a) Zeta Converter based on Non-inverting SC Cell,
(b) Zeta Converter based on Inverting SC Cell, (c) SEPIC Converter based on Non-inverting SC Cell,
(d) Ćuk Converter based on Inverting SC Cell and (e) Ćuk Converter with Voltage Doubler based on
Inverting SC Cell.
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There are five standard techniques based on SC: Voltage Doubler, Ladder, Dickson,
Makowski or Fibonacci, and Series-Parallel. The Voltage Doubler SC is based on two
phases, where the switching devices are turning ON and OFF in complement, and the
output voltage is double the value of the input voltage [80]. The ladder SC consists of
two sets of capacitors. Therefore, the capacitor of the lower ladder is changing the input
voltage node, which is made different voltage gain [80]. The Dickson SC can be utilised
as a voltage multiplier. In the Dickson SC, the diodes are used to charge pumps instead
of active switches. Two strings of pulses with proper phase shift are needed to drive the
switching devices, typically at tens of kilohertz or up to megahertz. Another technique
based on SC is the Makowski SC; it is also known as Fibonacci because its voltage gain can
be boosted according to the Fibonacci number. However, the Makowski SC requires fewer
devices to obtain high voltage gain [16]. The voltage regulation ranges of techniques have
been limited, and the voltage gains of the circuit are predetermined.

An inductor can be utilised in this topology by replacing one active switch in the five
standards SC to achieve higher step-up gain and broad voltage regulations [81]. In order
to increase the voltage conversion ratio of step-up DC/DC converter, non-isolated high
step-up soft-switching DC/DC converter by using interleaving and Dickson SC techniques
have been presented [82]. The advantage of this proposed converter is an improved
voltage conversion ratio due to the Dickson SC technique. They can alleviate high current
spikes by adding a small resonant inductor into the Dickson SC technique [83,84]. In
addition, it can reduce the input current ripple and increase the power density due to
interleaving operation.

Table 5 summarises the step-up converter based on the switched-capacitor technique
in terms of component number, voltage gain, the voltage stress on the main switch, voltage
stress of output diode, input and output voltage, switching frequency and power rating,
duty cycle, efficiency, the feature of each DC/DC converter and applications. Despite
its features such as cheap, high, lightweight circuits, and small size, SC can provide the
converters with a high-power density and fast dynamic response. The fundamentals of SC
have shortcomings such as complex modulation and sensitivity to the Equivalent Series
Resistance (ESR) of a capacitor. All of this will provide a lack of output voltage regulation.
This technique can be used in energy harvesting, mobile displays, automotive applications
and high gain DC/DC applications.
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Table 5. Comparison of Switched Capacitor (SC) Techniques.

Topology
# of Components Voltage

Gain in
CCM
(M)

Voltage
Stress on the
Main Switch

(Vs)

Voltage
Stress on

Output Diode
(Do)

I/O Voltage
fs & Power

Rating
D η Features ApplicationsPassive Active

L C L|| S D

Non-inverting
SC cell Zeta

Figure 9a [78]

1 3 0 1 3 1 + D
(1− D)

1 + M
2M

1 + M
2M

- - -

Inverting
SC cell Zeta

Figure 9b [78]

1 3 0 1 3
2− D
(1− D)

M− 1
M

M− 1
M

- - -

Non-inverting
SC cell SEPIC
Figure 9c [78]

2 4 0 1 3
2− D
(1− D)

M− 1
(M)

M− 1
(M)

- - -

• High voltage gain with small out-
put voltage ripples.

• The voltage stress is lower than
the conventional converter.

• High efficiency and high-power
density.

• Simple structure and control.

• Automotive Appli-
cations.

• Energy Harvesting.
• Mobile Displays.
• High Gain DC/DC

Applications.

Inverting
SC cell Ćuk

Figure 9d [78]

1 3 0 1 3
2

(1− D)
1
2

1
2

912 V/90 V
94 kHz/40 W 0.73 90.5%

Inverting
SC cell Ćuk
with voltage

doubler
Figure 9e [78]

2 5 0 1 4
2 + D
(1− D)

1 + M
3M

1 + M
3M

- - -



Electronics 2023, 12, 718 17 of 46

5. Voltage Multiplier

Voltage Multiplier circuits contain diodes and capacitors to provide high DC voltage
at the output side. Hence, it is efficient, low cost and has a simple structure. The Voltage
Multipliers are majorly classified into Voltage Multiplier cells (VMC) and Voltage Multiplier
Rectifier (VMR). VMC can be placed after the main switch to reduce its voltage stress, as
shown in Figure 10a,b. Moreover, a high voltage conversion ratio and higher efficiency
are the other advantages of the VMC. VMR can be placed at the output stage of the
transformer or coupled inductor. However, it helps to rectify the AC or pulsating DC
voltage. Meanwhile, it acts as a voltage multiplier [16]. The general setup of the volage
multiplier rectifier is shown in Figure 10c.
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+Vs

L1

S1

D1 L2

RLCo

D2

C
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C1 D2

D1 C2

(a) (b) (c)

Figure 10. (a) and (b) Voltage Multiplier Cell (VMC), (c) Voltage Multiplier Rectifier (VMR).

In many applications, the multiplication of the input voltage is applied; hence, various
structures have been famous in these cells. In addition, it has low weight, size and cost
even if the operation is at high frequency because the bulky capacitors are not used [85].
Some VMCs are also known as switched-diode capacitor voltage multiplier cells, which
only contain diodes and capacitors, as shown in Figure 11a,b [86]. For a higher voltage
conversion ratio, the inductors of some VMC is required [78]; hence, the power switch
can operate with zero current switching (ZCS) [85]. The modified conventional boost
converter and modified voltage multiplier cell present a high gain non-isolated DC/DC
converter [87]. In [88], a high step-up DC/DC converter based on SEPIC converter is
introduced by adopting a coupled inductor with voltage multiplier cell. Low input current
ripple, high voltage gain and higher efficiency are the advantages of this converter, which
combines two voltage boosting techniques with a SEPIC converter. High step-up DC/DC
converter based on a new modified single switch SEPIC (-SEPIC) is proposed in [89]. The
output voltage gain can be achieved by adding a coupled inductor and voltage multiplier
rectifier (VMR). The advantages of the -SEPIC are continuous input current, zero current
switching (ZCS) and low reverse recovery loss. Therefore, the voltage spike on the main
switch is low.

There are many different configurations of Half-wave [90] or Full-wave voltage multi-
pliers that contain diodes and capacitors [91]. The Greinacher Voltage Doubler Rectifier
(G-VD) is illustrated in Figure 11c, which is used in many DC/DC converters at the out-
put stage of transformer-based converter or multistage converters with modular series
output [92]. The shortage of the VMR is the high voltage stress on diodes, and output
capacitor voltage is equal to the output voltage. The Cockcroft–Walton (CW) is another
voltage multiplier, same as G-VMR, introduced in different year, but it is famous for its
cascading structure [93]. A full-bride voltage doubler rectifier is commonly used in various
DC/DC converters because its voltage stress on the output capacitor is half the output
voltage [94,95]. Sometimes the VMR is considered a voltage triple rectifier; therefore, it can
be used in many ultra-step-up DC/DC converters. In isolated structures and multilevel
output series structures, the VMR can be applied [96]. Despite its features, such as high
voltage ability with simple topology and cell-based structure, voltage multiplier can be
integrated into various converters. The voltage multiplier also has shortcomings, such as
high voltage stress on components. This needs several cells for high voltage application.
This technique can be used in medical (X-ray, laser), high power laser and physics (plasma
research, particle accelerator) applications.
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Table 6 summarises more details about the step-up converter based on voltage multi-
plier technique in terms of component number, voltage gain, voltage stress on the main
switch, voltage stress of output diode, input and output voltage, switching frequency and
power rating, duty cycle, efficiency, the feature of each DC/DC converter and applications.
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Figure 11. Voltage Multiplier Techniques. (a) Boost Converter with VMC M = 1, (b) Boost Converter
with VMC M = 2, (c) I-Parallel O-Series Boost Converter with dual Coupled Inductor and VMR.
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Table 6. Comparison of Voltage Multiplier (VM) Techniques.

Topology
# of Components Voltage

Gain in
CCM
(M)

Voltage
Stress on the
Main Switch

(Vs)

Voltage
Stress on

Output Diode
(Do)

I/O Voltage
fs & Power

Rating
D η Features ApplicationsPassive Active

Tech. Converter L C L|| S D

Vo
lt

ag
e

M
ul

ti
pl

ie
r

C
el

l(
V

M
C

) Boost
Converter with

VMC M=1
Figure 11a [87]

2 3 0 1 3 M + 1
1− D

Vo

2
Vo

2
12 V/100 V

50 kHz/100 W
0.76 93%

• High voltage gain and high efficiency.
• The voltage stress is reduced and Zero Current

Switching (ZCS) turn-on.
• Minimum reverse recovery current problem and

voltage multiplier operates as a regenerative
clamping circuit.

• Lower EMI generation.

• High Power
Applications.

Boost
Converter with

VMC M=2
Figure 11b [87]

2 5 0 1 5 M + 1
1− D

Vo

2
Vo
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24 V/400 V

40 kHz/400 W
0.76 95%
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I-Parallel
O-Series

Boost
Converter with
dual coupled
inductor and

VMR
Figure 11c [92]

0 4 2 2 4 2(N + 1)
(1− D)

Vo

2(N + 1)
NVo

(N + 1)
18-36 V/200 V
40 kHz/500 W - 92.7%

• Much higher voltage gain.
• Very low the voltage stress of the main switches and

Zero Current Switching (ZCS) turn on.
• Low input current ripple. • Industrial Applications.
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6. Voltage Lift (VL)

The presence of parasitic elements restricts the output voltage and causes poor transfer
efficiency of DC/DC converters. The voltage lift technique provides an excellent opportu-
nity to improve circuit characteristics. The basic structure of the voltage lift is shown in
Figure 12. A popular converter that uses VL technique is Luo converter which has been
introduced in [97,98]. The capacitor is charged to a specific voltage, and the output voltage
is lifted with the voltage level of a charged capacitor.

L1
D1

C

L2D2

Figure 12. Basic Structure of Voltage Lift (VL) Cell.

Depending on the number of capacitors in the circuit, the output voltage can be
further re-lifted, triple-lifted and quadruple lifted by reapplying the method as shown in
Figure 13a [99–101]. The significant advantages of this topology are high power density,
high efficiency and cost-effectiveness. In addition, the output voltage ripple is small for
high voltage applications. In the literature, various converters, namely, the Ćuk, SEPIC and
Zeta converters apply the VL technique [102,103]. The N-Stage quadratic boost converter
based on the voltage life technique and voltage multiplier (NQBC-VLVM) described in [37].
By replacing the input inductor of NQBC-VLVM with the VL technique, the voltage
conversion ratio with a small duty cycle can be improved. Additionally, the voltage gain
can be multiplied by two, which is a benefit of VM, and the voltage stress on the main switch
is half the output voltage, leading to higher efficiency. A quadratic boost converter with
voltage doubler and voltage life technique is presented in [104,105], which increases the
voltage gain four times by utilising the VL technique as shown in Figure 13b. In addition, it
can double the voltage gain by using a voltage doubler cell and reduce the voltage stress
to half of the output voltage on the main switch. The quadratic boost converter based on
the elementary VL technique is proposed in [106] to obtain high voltage gain. Depending
on the number of inductors, the proposed converter can exponentially step up the voltage
gain. Therefore, the voltage gain of the double lift circuit in Figure 13c is eight times the
input voltage, and the voltage gain of the triple lift in Figure 13d is nearly 16 times the input
voltage. In contrast, the efficiency decreases with the increase of the number of inductors.
In [107], cascaded boost converter based on the double VL technique is proposed. The
first stage output of this converter becomes the second stage’s input voltage; hence, it can
achieve high voltage gain and low voltage stress on the switches at a low duty cycle.

Table 7 summarises more details about step-up converter based on voltage lift (VL)
technique in terms of component number, voltage gain, the voltage stress on the main
switch, voltage stress of output diode, input and output voltage, switching frequency and
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power rating, duty cycle, efficiency, the feature of each DC/DC converter and applications.
VL technique has some features such as simple structure, less voltage stress on the switch
and high-power density, the fundamentals of VL have some drawbacks such as the need
for more passive components. This technique can be used in mid-range DC/DC converters
and high gain DC/DC applications.
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Figure 13. Voltage Lift (VL) Techniques. (a) Boost Converter based on VL, (b) QBC based on Voltage
Doubler and VL, (c) QBC based on elementary VL (Double Lift) and (d) QBC based on elementary
VL (Triple Lift).
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Table 7. Comparison of Voltage Lift (VL) Techniques.

Topology
# of Components Voltage

Gain in
CCM
(M)

Voltage
Stress on the
Main Switch

(Vs)

Voltage
Stress on

Output Diode
(Do)

I/O Voltage
fs & Power

Rating
D η Features ApplicationsPassive Active

L C L|| S D

Boost
Converter

based on VL
Figure 13a

[99]

2 3 0 1 3
1 + D
1− D

- - 12 V/36 V
10 kHz 0.5 96%

• High voltage gain.
• Simple structure of VL and cheapness.
• High efficiency.
• High power density.

• Renewable Energy Applica-
tions

QBC with
VD and VL
Figure 13b

[104]
5 6 0 1 9

8
(1− D)2

4Vin

(1− D)2
4Vin

(1− D)2
25 V/400 V

50 kHz/200 W 0.3 92.7%

• Four times higher voltage gain by using VL tech-
nique.

• Double voltage gain by using voltage doubler cell.
• The voltage stress on main switch is half of the out-

put voltage.

• Industrial Applications (UPS,
PV, HID Lamps, Fuel Cells).

QBC based on
elementary VL
(Double Lift)

Figure 13c
[106]

3 3 0 1 5 1
(1− D)3

- - 15 V/120 V
50 kHz
8 times

0.5 92%
• Largely increase the output voltage depends on the

number of the inductors.
• High power density.
• Simple structure of VL.

• Industrial Applications.
• Solar Energy System.

QBC based on
elementary VL

(Triple Lift)
Figure 13d

[106]

4 4 0 1 7 1
(1− D)4

- - 15 V/240 V
50 kHz

10 times

0.5 89%
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7. Switched Inductor (SL)

The basic Switched Inductor (SL) cell is illustrated in Figure 14. The main operation
of such cell is that inductors are charged in parallel and discharged in series. This kind of
operation was first introduced in [86]. The input inductor replaces a hybrid boost converter
in a conventional boost converter to switched inductor circuit. Hence, it provides a higher
voltage gain than the conventional boost converter.

D2 L2

Do

D1

L1

Figure 14. Basic Switched Inductor (SL) Cell.

These two inductors can be integrated into a single inductor because they have the
same inductance, which helps reduce the size and weight of the converter. Recently, a high
voltage conversion ratio DC/DC converter has been achieved by adding a small resonant
inductor to the primary VL cell’s circuit and replacing the output diode (Do) [108]. A
simple structure and high efficiency are the main advantages of this converter. The self-lift
SL cell is formed by implementing the elementary VL cell in the SL cell, and the double
self-lift SL cell is formed by adding another diode and capacitor to the self-lift SL cell [109].
Therefore, the double self-lift SL cell switch is an operation in reverse using (So) instead
of (Do) the primary SL cell. For high voltage gain, a transformer-less step-up DC/DC
converter based on a switched inductor (SL) and switched capacitor (SC) techniques have
been proposed in [110]. Furthermore, it can reduce the voltage stress on the semiconductor
switches, but the cost will increase because of the two switches. In Figure 15a, another
topology that can provide a high step-up single switch DC/DC converter integrated with a
switched inductor (SL) and switched capacitor was presented in [111]. The advantages of
this converter are using only a single switch, and the coupled inductor is not required to
achieve the voltage gain and low voltage stress on the switch. The XY converter family is
introduced in [112] as shown in Figure 15b,c. They use one or more high step-up techniques
at the same time, such as a single inductor, switched inductor (SL), voltage lift switched
inductor (VL-SL) and modified voltage lift switch inductor (MVL-SL). This family can attain
higher output voltage compared to the traditional converter. Meanwhile, it can provide
negative output voltage using a single switch. It is suitable for high step-up applications
such as photovoltaic multilevel inverter systems and high voltage automotive applications.
In Figure 15d, a high voltage gain is achieved using a switched inductor and voltage
multiplier [113]. This is achieved by designing N-level DC/DC converter that contains
2N-1 capacitors, 2N+2 diodes, two inductors and only one switch. However, the voltage
gain of this converter depends on the number of levels on the output side.
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Figure 15. Switched Inductor (SL) Techniques. (a) Boost Converter based on SC and SL, (b) XY
Converter (L-SL), (c) XY Converter (SL-SL) and (d) N-level boost Converter with SL and VM.

Table 8 summarises more details about the step-up converter based on switched
inductor (SL) technique in terms of component number, voltage gain, voltage stress on
the main switch, voltage stress of output diode, input and output voltage, switching
frequency and power rating, duty cycle, efficiency, the feature of each DC/DC converter
and applications. Despite its features (high boost ability and being amenable in many
converters), SL needs more passive components. This kind of converter is not preferable for
high power applications. The SL technique can be used in mid-range DC/DC converters
and high gain DC/DC applications.
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Table 8. Comparison of Switched Inductor (SL) Techniques.

Topology
# of Components Voltage

Gain in
CCM
(M)

Voltage
Stress on the
Main Switch

(Vs)

Voltage
Stress on

Output Diode
(Do)

I/O Voltage
fs & Power

Rating
D η Features ApplicationsPassive Active

L C L|| S D

Boost
Converter
based on

SC and SL
Figure 15a

[111]

2 4 0 1 5
4

1− D
Vo

2
Vo

2
5 V/36.1 V

20 kHz 0.5 91.8%

• Single Switch.
• High voltage gain without a cou-

pled inductor.
• Low voltage stress on the main

switch.
• High efficiency.

-

XY Converter
(L-SL)

Figure 15b
[112]

3 2 0 1 6
(D2 − 3D)

(1− D)2
- - 10 V

50 kHz/100 W 0.6 -
• Single switch.
• Negative output voltage.
• High conversion ratio without high

duty cycle.
• Non-isolated topology and modular

structure.

• Photovoltaic Multilevel Inverter
System.

• High Voltage Automotive
Applications.

• Industrial Drives.XY Converter
(SL-SL)

Figure 15c
[112]
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N-level boost
Converter

with SL and
VM Figure 15d

[113]

2 5 0 1 8 (N − 1) + (N + 1)D
1− D

- - 24 V/480 V
50 kHz/450 W 0.75 -

• High voltage gain without using
transformer and high duty cycle.

• The voltage stress across each de-
vice is less and using low voltage
rating.

• Fuel Cell Applications.
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8. Magnetic Coupling

One of the most popular voltage boosting techniques is magnetic coupling, which
is used in many DC/DC converters as either non-isolated or isolated converters. The
outstanding feature of magnetic coupling is its ability to achieve a higher voltage gain
in the output by turning the windings beside the switch duty cycle [114]. The magnetic
coupling though has some problems such as leakage inductance [115]. Broadly, it can be
further classified as transformer, coupled inductor or multi-track topologies.

8.1. Transformer

An electrical isolated DC/DC converter requires a medium/high frequency transformer,
as shown in Figure 16. There are several isolated DC/DC converters that use such device
such as full or half-bridge converter, forward converter, push-pull converter and flyback
converter. In the past decade, the performance of the conventional DC/DC converter for
many applications has been enhanced by using isolated DC/DC converters [116–122]. Since
this literature review intensely focuses on non-isolated DC/DC converters, we will not
expand on more detail for isolated topologies.

−
+Vs

L1

D1

LP

S1

D2

D3

L2

RLLS

M

Figure 16. General Setup of the Transformer-Based Converter.

8.2. Coupled Inductor

Since isolation is not required in many applications, coupled inductor circuits can
take the advantage of transformer coupling without isolation to increase the voltage in
DC/DC converters [123–132]. Figure 17 shows a general setup for a step-up converter with
coupled inductor. The voltage source is a secondary winding, while the clamp capacitor
and diode are used to recover the leakage energy recycled directly or through the secondary
winding to the load [123]. In addition, a snubber circuit can be used to absorb the energy of
the leakage inductance and to improve efficiency [124] as shown in Figure 18a. In [125],
a higher voltage gain can be achieved by using a combination of the charge pump and
switched capacitor voltage multiplier with a coupled inductor, as shown in Figure 18b,
which is helpful in distributed generation systems. A non-isolated high step-up DC/DC
converter with continuous input current integrating coupled inductor is introduced in [133]
and shown in Figure 18c. It consists of three diodes, three capacitors and one inductor.
Further, the coupled inductor in this converter is employed, which achieves higher voltage
gain and low input current ripple because the inductor is connected in series to the input.
The clamp circuit reduces the voltage stress on the main switch. As a result, low on-state
resistance RDS(ON) can be achieved, which helps to reduce the conduction losses. Therefore,
the switching loss is reduced when the switch is turned on under zero current. A single
switch high voltage gain and high-efficiency DC/DC converter are proposed in [134]. The
voltage gain is achieved by charging the intermediate capacitors through the coupled
inductor in parallel and discharging in series. In [135], a high step-up DC/DC converter
based on three winding coupled inductors using two Cockcroft–Walton was proposed, as
shown in Figure 18d. Impedance (Z-) source is another area of research in high step-up
DC/DC converters. It can increase the voltage gain by using a small duty cycle [136–140].
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Figure 17. General Setup of the Coupled Inductor Circuit.
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Figure 18. Coupled Inductor Techniques. (a) Boost Converter based on Coupled Inductor, (b) Boost
Converter based on Two Capacitors and Coupled Inductor, (c) Boost Converter based on a Coupled
Inductor and (d) Boost Converter with 3-winding Coupled Inductor.

Table 9 summarises some details on the step-up converter based on the coupled
inductor technique in terms of component number, voltage gain, voltage stress on the main
switch, voltage stress of output diode, input and output voltage, switching frequency and
power rating, duty cycle, efficiency, the feature of each DC/DC converter and applications.
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Table 9. Comparison of Coupled Inductor Techniques.
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8.3. Multi-Track Structure

A DC/DC converter can be classified into single-stage structure and multi-stage
structure. A single-stage structure can perform multiple functions in a single stage; hence,
it is not a complex circuit and has simple control. However, single-stage structure cannot
achieve high performance with a wide range of operations. A multi-stage structure can
perform one or more function in each stage, which is better in terms of system performance.
In contrast, the number of components in this structure is high and the complexity increases.

In the literature [141–144], the basic block diagram of the multi-stage structures has a
switched capacitor, switched inductor and magnetically coupled circuits, which is consid-
ered one of the essential solutions. The switched inductor circuits are used for providing
voltage regulation, but their size is large and the performance at high voltage conversion
ratios, and their power density is limited. The switched capacitor circuits are used for pro-
viding balance efficiency, but they cannot have voltage regulation capability. The magnetic
circuits provide a high voltage conversion ratio, galvanic isolation and soft switching, but
they cannot keep high performance across a wide range of operations. Cascaded two-stage
structures for laptop power supply are presented in [145] to provide a high performance.
The first stage has a switched capacitor voltage divider, inductor-less, soft switching and
high-power density [146]. The second stage is a buck converter in which the power density
is lower than the voltage divider, and it can provide regulated bus voltage.

Multi-Track integrates various high voltage techniques with magnetic circuits. In [147],
multi-track power conversion is proposed by integrating switched capacitors and mag-
netics. It merges a hybrid switched capacitor/magnetics circuit structure that splits the
wide voltage conversion range into smaller ranges, delivers power in multiple tracks and
functionally merges the regulation and isolation stages.

Magnetic coupling has some attractive features such as high design freedom and
versatility in boost ability due to tuneable turns ratios of magnetic coupling. Furthermore,
providing the converters with a switch can be implemented at the low voltage side to
help reduce conduction loss and high efficiency in soft switched operation. However,
converters with magnetic coupling have some shortcomings such as adverse effects of
leakage inductance, which provides a high voltage spike. In addition, such converters are
considered bulky due to the magnetic elements included in their design. This technique
can be used in high power/voltage DC supply, high voltage applications, DC microgrids,
telecommunication and data centres, regenerative (elevator, tram/trolleybus) and bidi-
rectional (Fuel Cell (FC), PV, UPS, Plug-in Electric Vehicle (P-EV), Hybrid Electric Vehicle
(H-EV), Vehicle to Grid (V2G)) applications.

9. Applications

DC/DC converters are essential to the growth of technology in many areas, such as
consumer electronics, portable devices [148,149], medical implantable devices [150,151],
lighting technology [152–155], automotive and railway technology [156–158], information
technology (IT), communications and data centres [159,160], space [161], electrical network,
aircraft [162,163], renewable energy [69,164], industrial drives, robotics [165] and high
voltage technology (physics research, medical and military) [166,167]. The development
of DC/DC converter topologies aims to provide low cost, high efficiency, reliable control
switching techniques, elimination of losses and high-power density. Furthermore, boost
DC/DC converters are used in ultra-low-power and high-power applications to enhance
the voltage of micro energy harvesting sources [168,169] that generate only small amounts
of voltage (such as solar [170], microbial FC [171], thermoelectric [172], motion and vi-
bration [173] and piezoelectric energy [174]). In many applications, the step-up DC/DC
converters are either unidirectional or bidirectional, depending on the power flow direction,
as shown in Figure 19.



Electronics 2023, 12, 718 30 of 46

Figure 19. Classification of Applications depending on Power Flow Direction.

9.1. Portable and Medical Implantable Devices

PWM boost DC/DC converters and other topology converters are commonly used in
such applications because of their uncomplicated nature, small size and low weight. In [175],
a 1.5 V alkaline or NiMH battery has a low voltage incompatible with the microprocessor
voltage range of 3.3 to 5 V in portable electronic devices or MOSFET gate drivers. Therefore,
a single system-on-a-chip (SOC) is employed to enhance the voltage from low to high.
Wireless power transfer (WPT) technology is growing a broad application sector in various
low power electronics (such as smartphones and laptops [176,177]) and implantable medical
devices [150,151]. To achieve WPT requirements for supplying DC load, high step-up
DC/DC converters are implemented.

9.2. Lighting Technology and Automotive

High-efficiency DC/DC converters are in high demand in the lighting industry as
power supply and driver circuits, for instance. A new generation in lighting has begun
with the invention of light-emitting diodes (LED). In [154,155], LED systems provide
better lighting because they have a longer life, smaller size and improved robustness.
Additionally, LEDs are appropriate for mobile display applications due to their low cost
and low energy consumption [152]. Step-up DC/DC converters are utilised as a power
supply driver for plasma display panels or as backlight power modules for liquid crystal
displays (LCD) [91,154], making them another lighting-related technology. In [156], the
low voltage of car batteries (12 V) is required the step-up DC/DC converters to enhance
the voltage level for automotive lighting systems that drive high-intensity discharge (HID)
lamps and LED spotlights. In [118,178–180] the electrification systems such as EV, FC-EV
and P-HEV are other examples of automotive transportation in which the range of the
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battery storage is 180–360V, and the loads are 400–750V. However, the voltage level of the
battery should be boosted to match the load’s voltage level.

9.3. Information Technology (IT), Communications, and Space

Different configurations are being developed as a result of the expanding market
for IT and telecommunications hardware [159]. Traditional 48-V DC distribution systems
have been gradually replaced by 380-V DC systems during the past decade. Therefore,
there is a growing need for high step-up DC/DC converters in network servers and data
centre applications [160]. In contrast, space shuttle and satellite applications are required
high voltage levels of around kilovolts [161,181]. In order to effectively meet the voltage
requirements, several different DC/DC converters are utilised in space applications.

9.4. Renewable Energy Sources (RESs) and Aircraft

PV, FC and wind turbines are renewable energy sources that provide power generation
flexibility, reliability and portability. In addition, it is considered a free source and emits
no CO2. Variable and low voltage (typically 12 to 48 V) is the output voltage of renewable
energy sources, which is unsuitable for utility use. Before inverting to an AC grid-connected
power system, the DC link voltage must be raised from 350 to 400 VDC [182–184]. The
most common voltage needs for aircraft electrification [162,163] are a 28-V DC load bus
and a 270-V high-voltage DC bus; hence, to achieve low voltage inputs to a high voltage
DC bus, high step-up DC/DC converters are commonly used in aircraft systems.

10. Control Techniques

The term control technique plays a significant role in power system operations’ stable
and smooth functionality. Herein, if an appropriate and robust design for the controller
does not support it, it could result in disturbances and grid instability. Many control
techniques are used in the different topologies of the step-up DC/DC converters, and the
purpose of the control is to achieve stability at the output side. On the basis of operating
conditions and grid behaviour, there are commonly seven types of controllers, namely,
linear, nonlinear, predictive, intelligent, robust, adaptive and hybrid control, as illustrated
in Figure 20 [185,186].

Figure 20. Classification of Control Techniques.
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10.1. Linear Control

Concerning the stability of Micro-Grids (MG) or industrial applications, several linear
controller methods are utilised, including Classic Controller (CC) [187–190], Proportional
Resonant Controller (PR) [191], and Linear Quadratic Gaussian Controller (LQG).

10.1.1. Classic Controller (CC)

The CCs are generally considered a basis for linear control techniques in step-up
DC/DC converters. The classic controllers’ advantages, which are widely used in many
commercial and industrial applications, are their simple structure, easy implementation
and realisation. Hence, these generally included Proportional (P), Proportional-Integral
(PI) [187–189] and Proportional-Integral-Derivative (PID) [190] types. Table 10 summarises
some details on classic control in terms of rise time, steady-state error, overshoot, settling
time, structure of controller, accuracy, stability and applications.

Table 10. Comparison of Classic Control.

Controller Equation Rise Time
Steady-

State
Error

Overshoot Settling
Time Structure Accuracy Stability Applications

P u(t) = Kp Decrease Small
Change Increase Decrease Easy Low Low Lighting

Technology

PI u(t) =
Kp + Ki

∫
dt

Decrease Change Increase Increase Easy High Low Electronic
Devices

PID

u(t) = Kp +

Ki
∫

dt +

Kd
d
dt

Minor
Decrease

Minor
Change

Minor
Decrease

Minor
Decrease Complex No Change High

Medical
Implantable

Devices

10.1.2. Proportional Resonant Controller (PR)

PR controllers have been very popular for the past few years, leading to enhanced
usage in grid-connected Photovoltaic (PV) systems. PR controllers are highly similar to
PI controllers, although in two different operating frames. In this relation, a PR controller
generally enables the function of sinusoidal signal tracking in reference frames. In contrast,
a PI controller allows for the DC signals tracking in the reference frame. Besides this,
another significant difference between PR and PI controllers comes in the integration part.
Since PR controllers only integrate frequencies adjacent or near to the resonant frequency,
no stationary magnitude errors and phase shifts occur [191].

10.1.3. Linear Quadratic Gaussian Controller (LQG)

The Kalman filter and LQ regulator generally combine to create the LQG controller.
Under LQG controllers, functionality and operations are executed evenly and steadily in
time-variant and invariant systems [192]. As a state-space technique for developing optimal
dynamic regulators, LQG control has advanced significantly in recent years. Instead of
focusing on regulation performance and control effort, it considers process disturbances
and measurement noise. According to the separation principle of LQG, it is designed and
computed separately.

10.2. Non-Linear Control

In contrast to linear controllers, nonlinear controllers execute astounding operations,
performance and high dynamic responses. However, such controllers commonly have
complicated realisation and design. Apart from this, nonlinear controllers are bifurcated
into Sliding Mode Controllers (SMC) [193–197], Partial or Full Feedback Linearisation
Controllers (PFL or FFL) [198–200] and Hysteresis controllers (HC) [201–204].
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10.2.1. Sliding Mode Controller (SMC)

SMCs are employed for the voltage regulation of Pulse-Width Modulation (PWM)
inverters and the variable variation and load disturbances did not influence the SMC con-
troller. In this respect, SMC can be regarded as an adaptive and robust controller operating
for system parameter fluctuations on the basis of operating conditions. Consequently,
a steady-state response can be realised in-varying systems through SMC in appropriate
circumstances. Considering these factors, there is a growing demand for using SMC con-
trollers in PV systems. However, because the controller struggles to adjust to the nonlinear
system’s unpredictable dynamic and fluctuating behaviour, it optimises the settings de-
pending on the output ripple waves in order to prevent this problem. Despite all of these
benefits aforementioned, SMCs also have some limitations. Firstly, the effectiveness of SMC
varies depending on the sliding surface, and choosing an appropriate sliding surface is an
extremely difficult task. Secondly, choosing an appropriate sampling time is crucial because
insufficient sampling time leads to elevated distortion and degrades the effectiveness of
SMC. Thirdly, the SMC main drawback is the chattering effect identified during the track-
ing process [193]. As a result, to separate the chattering effects, several other controllers
are employed along with SMC direct power control as proposed in [194]. This practice
removes the disadvantages associated with SMC and facilitates superior control over the
active and reactive current and waveforms without incorporating any supplementary
current loop. Nevertheless, an undesirable broadband gap of harmonic is formed in this
topology. Furthermore, Adaptive, Fuzzy Logic (FLC) and SMC Controllers are combined;
hence, the chattering effect could be significantly reduced [195]. In this relation, the FLC
is utilised to evaluate the unforeseeable disturbances that emerge because of atmospheric
variations, whereas the SMC is employed to manage the inverter performance. Concerning
indemnifying the system uncertainties and improving the performance of the inverter, a
Fuzzy-Neural Network (FNN) in addition to Fast Terminal Sliding Mode Control (FTSMC)
has been proposed in [196]. In [197] SMC is proposed with integrating PI structure in
sliding surface, enabling quick response for the system and reducing the steady-state error.

10.2.2. Partial or Full Feedback Linearisation Controller (PFL or FFL)

Under the PFL method, system non-linearities are removed due to the conversion into
a partial or complete linear system from the nonlinear system. In this respect, a partially
transformed system with non-linearities is referred to as PFL, although, if the system is
completely transformed, it would be regarded as an FFL controller. Apart from this, the
non-linearities of a system can also be cancelled by instituting nonlinear terms into the
system. As a result, they are not restricted to a particular operating point. The grid-injected
current and DC link voltage are regulated by employing an FFL controller, as presented
in [198]. Concerning structural complexity, system nonlinear features are altered into linear
subsystems, and afterwards, a control law is implemented in these subsystems. However,
it complicates the PV system and makes it challenging to manage the shifting properties.
In the literature [199,200], they updated the control architecture to address these issues.

10.2.3. Hysteresis Controller (HC)

When the reference and grid current is instantly compared, HC can provide the regu-
lated switching pluses for Voltage Source Inverter (VSI). Simplicity, fast transient response,
load parameter independence and resilience to changeable parameters are all readily ac-
complished [201]. The hysteresis controller can function depending on the relay operation,
and the signal is filtered for the system’s optimal operation. The controller further reduces
the system’s Total Harmonic Distortion (THD) and has an intrinsic current protection
system. Nonetheless, HC-controlled systems hold a fundamental issue associated with
keeping the measured current inside its band limitations since doing otherwise results in
an unwanted fluctuation in the switching frequency. To solve this issue, the literature has
a variety of HCC approaches; for instance, a hysteresis controller for grid-tied inverters,
as presented in [202,203], could facilitate a stable switching frequency by eliminating the



Electronics 2023, 12, 718 34 of 46

management of the hysteresis band. Furthermore, to preserve a quick transient response,
reduce the steady-state error and obtain high resilience, a hybrid solution combining SMC
and variable band HCC is also proposed [204].

10.3. Predictive Control (PC)

A PC forecasts the future behaviour of the parameters that must be regulated. It
is renowned for its capacity to manage the system’s non-linearities. In addition, the PC
can provide the ability to manage current with low harmonic noise distortion because it
has a quick dynamic response. However, implementing a PC is more challenging than
classic controllers because it requires extensive calculations, and the specific load must be
matched [205]. PC is classified into Deadbeat Controller [206–209] and Model Predictive
Controller (MPC) [210–212].

10.3.1. Deadbeat Controller

The deadbeat controller is the earliest kind of PC in the category and is utilised in
various contemporary applications. In contrast to other digital controllers, a fine-tuned
deadbeat controller offers a quick dynamic response. However, one sample delay allows for
regulation of the current that it reaches its reference at the end of the following switching
cycle. Thus, it is a valuable controller for the inverter current control. High bandwidth is
another benefit of the deadbeat controller, providing the system with immediate and instant
tracking of the current at essential points. Similarly, a deadbeat controller provides a critical
advantage to the system by compensating for errors in the inverter current. Moreover, its
sensitivity towards network parameters is also more than other controllers [206–209].

10.3.2. Model Predictive Controller (MPC)

MPC controller focuses on current parameter precise tracking and reduction in fore-
casting error. In this sense, MPC facilitates advantages involving balancing all the nonlinear
and general network constraints surrounding multiple inputs/outputs. Moreover, based
on the parameter’s pre-defined values, MPC forecasts future network values focusing on
the stability of its operation. In [210], MPC and finite control set (FCS) are designed for
LCL-filtered grid-tied inverters, allowing high-quality current waveforms. However, it is
very complex and economical, following many sensor requirements to compute the current
(grid injected and invertor side) and voltage (capacitor and grid). Conversely, the proposed
FCS-MPC controllers in [211,212] are implemented to 02-level inverters due to their fast-
dynamic response, simple structure and capability to easily manage non-linearities and
constraints.

10.4. Intelligent Control

Intelligent controllers refer to biological intelligence processed through the automation
of things. Intelligent controllers run without using the mathematical modelling system to
face single datasets with peculiar information. Intelligent controllers can be classified into a
chain of networks which form a path to the overall control strategy of intelligent controllers.
These chains of networks include Neural Network Controllers (NNC) [213–215], Repetitive
Controllers (RC) [216,217] and Fuzzy Logic Controllers (FLC) [218–223].

10.4.1. Neural Network Controllers (NNC)

The NN controller is an interlinked approach to control data systems. It is formed
of various artificial neurons that emanate from the biological brain system and functions
like a human nervous system. In a control system, NN can be used either online or offline
to transfer the data through the processes of the controlling system. However, similar
to the human psyche, NN also faces work delays, which supports this control strategy’s
smooth working. The input and output layer, weights, activation function and closed-loop
method for transmitting the information without executing errors in the desired function
are the elements in the architectural chain of the NN controlling system. As an adaptive,
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intelligent and self-improvised controller, NN offers a flexible control system with few
designs and operating conditions. NN also ensures stable behaviour and a fast decision-
making process to help attain stabilisation in MG [213]. Due to a simplified modelling
system, NN controllers are used in various industrial applications [214]. In this respect,
wavelet approaches and probabilistic fuzzy neural networks (PFNN) have been used in
the NN controlling system to regulate the grid system by handling its reactive power [215].
More importantly, it aims to perform a low-voltage ride throughout the grid system.

10.4.2. Repetitive Controllers (RC)

RCs are also known as internal model principles that facilitate error elimination or
reducing strategies. It represents data in pole pairs standing in selected frequencies to
highlight errors. The literature studies have indicated a combination of integral controllers,
proportional controllers, and resonant controllers as repetitive controllers by connecting
in parallel. Their significant advantage is the stability of MG, which aims at harmonising
different elements of a grid system, including voltage and current [216]. The repetitive
controller is a good performer under non-linear-periodic load, even though its transient
response is not highly attractive. However, repetitive controllers can be improved by
integrating them in a cascaded or parallel structure of hysteresis and deadbeat. In [217],
PI and RC controllers are combined and used in a grid system to tie the PV modules with
the inverters. Similarly, in order to enhance the suitability of repetitive controllers in a grid
system, m as a weighting factor is used in the PV. It improves the grid system’s capability,
agility to respond and resilience.

10.4.3. Fuzzy Logic Controllers (FLC)

FLCs deal with the linguistic values to eliminate the logic of the crisp value in decision
making. The FLCs are commonly used in MG, providing highly robust and simple execu-
tion. In addition, it minimises overshooting and improves the tracking performance in a
grid system [218–222]. In this context, human knowledge is used in forming limits control
to identify control parameters and is implemented in control dynamics in the grid system.
Four components of forming limits control include Rule base, Fuzzification, Interference
mechanism and De-fuzzification [223].

10.5. Robust Control

Based on the principles of Control theory, robust controllers are associated with sys-
tem uncertainties. In this respect, robust controllers’ goal is based on achieving robust
performance and stability even during the imperfect modelling errors are happened. Conse-
quently, a robust controller ensures the balanced performance in single and multi-variable
systems. The robust controller is divided into µ-Synthesis Controller and H-Infinity Con-
troller (H∞).

10.5.1. µ-Synthesis Controller

This method considers the effects of uncertainties—both structured and unstruc-
tured—on system performance. This strategy bases the idea of a controller structure on
a singular value, which might be an unstructured or structured valve. A µ-synthesis
controller is created for 3-phase grid-tied inverters and discusses its significance in vari-
ous power-related applications [224]. However, this specific controller is not feasible for
grid-connected systems because of the imbalanced load situations and large voltage sags.

10.5.2. H-Infinity Controller (H∞)

The (H∞) controller is one of the robust controller types. It is called the optimal
algorithm for achieving the system’s stabilisation and good performance. This controller
is commonly used in actuators. The controller’s main goal is to eliminate the parameter
responsible for the system’s disruption. The controller’s benefits include decreased error, a
simpler implementation and robustness in the face of unknown parameters. According to
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this approach, a control issue can only be solved once it is presented as an optimal problem
by the controller designer. In addition, the (H∞) approach also has a high computing cost
and may tackle problems involving several variables. In order to manage the voltage of the
grid-connected Voltage Source Inverters (VSIs), the researchers in [225] recommended a
hybrid strategy using repeated H∞ controllers and controllers.

10.6. Adaptive Control

According to the operational conditions of the system, the adaptive controllers can au-
tomatically modify the control actions. The load voltage of a 3-Φ inverter is developed with
an adaptive controller and a fourth-order load current observer, which exhibits very decent
performance even when under non-linear, imbalanced, and abrupt load variations [226].
The high computational complexity of this controller, though, is one of its key drawbacks.
The zero steady-state current error in grid inverters is demonstrated [227] using a combined
adaptive and deadbeat controller technique. The adaptive controller manages error correc-
tion, and both controllers operate simultaneously to maintain a quick dynamic response.
By analysing the load and capacitor currents using a single sensor, an adaptive control
system based on a resonating filtration system to handle system leading and to offer com-
pensation for the harmonic distortion was proposed [228]. In [229], a non-linear adaptive
controller was presented to regulate a grid-connected inverter’s active and reactive power.
The controller functions effectively in a variety of atmospheric situations.

10.7. Hybrid Control

Hybrid control is a combination of different types of control techniques. The aim
of hybrid control takes any controller’s features to attain the system’s stabilisation. In
addition, it achieves a fast response and minimises steady-state error. Many methods of
hybrid control are proposed in [191,195,196] and the literature [230–234].

11. Conclusions

Power electronics high boost DC/DC converters are presented to overcome the sig-
nificant drawbacks of power conversion systems. Non-isolated high boost converters are
preferable due to their reduced cost, high efficiency and uncomplicated nature. However,
this claim is not accurate for all types of non-isolated converters. This paper analyses, sum-
marises and classifies the advantages and disadvantages of a wide range of state-of-the-art
step-up converters based on voltage boosting techniques. The paper categorises the high
boost techniques to multistage/multilevel, switched capacitor, voltage multiplier, voltage
lift, switched inductor and magnetic coupling. Each category in this paper is discussed
in detail, including the advantages and disadvantages of cost, complexity, power density,
reliability and efficiency. Meanwhile, this paper also compares the number of passive and
active components, voltage gain, voltage stress, switching frequency, efficiency and power
rating in Tables 1 to 9. This paper focuses on high boosting techniques rather than the
DC/DC converters, allowing divergence of new ideas and new power converters that will
help provide highly efficient and flexible power converters for several applications where
the sending end voltage is very low, such as photovoltaic systems.

The significant challenges of any step-up DC/DC converter include achieving high
voltage gain and reducing the current ripple due to the extreme duty cycle. Moreover,
reducing the voltage stress on the power switch can provide a low cost and conduction
losses of the power device because the voltage rated and RDS(ON) MOSFET are not required
to be high. Hence, the switching losses reduce by using soft switching and reverse recovery
losses by alleviating the output diode reverse recovery problem.

To achieve the aforementioned challenges, the topology could be integrated with one
or two DC/DC converters such as Boost, Ćuk, SEPIC, Zeta and QBC based on one or more
techniques such as SC, SL, VL and Voltage Doubler Cell; hence, it allows to take the features
of both DC/DC converter and the boosting technique in a single-stage conversion system.
In order to obtain eight times voltage gain without operating at an extremely high duty
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cycle, the Quadratic Boost Converter (QBC) based on the Voltage Doubler Cell and the
Voltage Lift (VL) technique is used. Moreover, the voltage doubler cell can double the
voltage gain by two times and the voltage stress on the power switch reduces to half of the
output voltage. Thereby, it requires a lower voltage rating and RDS(ON) MOSFET switch
for conduction losses. Hence, reducing switching allows the use of Schottky rectifiers to
alleviate the reverse recovery current problem and, thus, the efficiency can be improved.

Another topology increases the conversion ratio without operation at an extremely
high duty cycle and high turns ratio; it utilises a coupled inductor and two capacitors with
a high step-up DC/DC converter. In addition, the passive clamp circuit recycles the leakage
inductance energy of the coupled inductor that can reduce the voltage stress on the power
switch. Therefore, it reduces the conduction losses, enabling low resistance RDS(ON).

Eventually, a high step-up conversion ratio, low cost, high efficiency and high-power
density are significant DC/DC converter characteristics. However, this paper introduces a
clear vision of the general law and framework for the next generation of non-isolated high
step-up DC/DC converters.
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