Self-focusing instability in ionospheric plasma with thermal conduction

Published in:
Physics of Plasmas

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date: 23. Oct. 2023
Self-focusing instability in ionospheric plasma with thermal conduction

Mahendra Singh Sodha*
Disha Academy of Research and Education, Disha Crown, Katchna Road, Shankar Nagar, Raipur 492 007, Chattisgarh, India

Ashutosh Sharma, M. P. Verma, and Mohammad Faisal
Ramanna Fellowship and DST Project Programme, Department of Education Building, Lucknow University, Lucknow 226 007, India

(Received 27 November 2006; accepted 19 March 2007; published online 8 May 2007)

In this communication, an expression for the growth rate of self-focusing instability in the ionospheric plasma has been derived after taking finite thermal conduction into account. The instability arises on account of the depletion of electrons from regions where the irradiance of the perturbation is large. In contrast to earlier work, an appropriate energy balance equation for electrons and ions and the proper dependence of thermal conductivity on electron temperature have been used. The dependence of the growth rate of the filamentation instability on the background irradiation, thermal conductivity, and the wave number of transverse perturbation has been investigated. The mid-latitude daytime ionospheric model of Gurevich has been used for numerical computations, corresponding to a height of 200 km. The gradient of irradiance perturbations is assumed to be along the magnetic field of the Earth. The numerical results have been illustrated graphically and discussed. © 2007 American Institute of Physics. [DOI: 10.1063/1.2727449]

I. INTRODUCTION

There has been considerable interest in the growth of an instability (associated with the propagation (along the z axis) of a high power electromagnetic beam in a nonlinear medium), which is characterized by beam irradiance and electron density fluctuations in a direction (x axis) transverse to that of the beam propagation. The fact that higher beam irradiance in a region causes lower electron density and consequently higher refractive index leads to the increase in irradiance in this region; this is synonymous with self-focusing. Hence, such instabilities are known as self-focusing instabilities. The saturated state of such an instability results in light filamentation. Several publications in this field have appeared in the scientific literature since 1962. Apart from the scientific point of view, the results in this field have a bearing on ionospheric modification experiments, beams from proposed satellite power stations passing through the ionosphere, and laser plasma interaction phenomena.

It is of interest to consider the mechanism of self-focusing instability in a plasma. A small perturbation \(E_1(r) \), superposed on a uniform beam, with electric vector \(E_0 \), causes the electrons to concentrate towards the region, where \(E_1 \) is maximum (\(E_{1\text{max}} \)). This redistribution of electrons causes a refractive index gradient, which if large enough to overcome diffraction, leads to a continuous increase in \(E_{1\text{max}} \) as the beam propagates; this phenomenon is referred to as self-focusing instability.

This communication presents an investigation of the self-focusing instability in the ionosphere. The energy balance of the electrons includes contributions from the solar radiation, Ohmic heating, energy loss in collisions with neutral atoms/molecules/ions, and energy loss by thermal conduction. The energy balance for the ions is obtained by equating the energy gained from the electrons to the energy lost to neutral species. Since the heat capacity (proportional to the number density) of the neutral species is several (10\(^2\) to 10\(^3\)) times the heat capacity of the electrons and ions, the neutral species act as a constant temperature sink. The mid-latitude ionospheric model of Gurevich has been used to provide the basic data for the computations.

Perkins and Valeo were the first to highlight the role of electronic thermal conduction in filamentation; however their analysis ignores the change in the temperature of the electrons on account of the main beam. As may be seen from the present analysis this is a serious omission. Tewari et al. have studied filamentation, in the case, when the electron energy loss by collisions has been neglected; further, the temperature of the electrons in the region where the irradiance of the filament is highest has been implicitly assumed as the temperature in the absence of the beam. Using the available theory of filamentation on account of ponderomotive nonlinearity and taking thermal conduction into account Schmidt has analytically and numerically studied the effect of induced spatial incoherence and random phase screen on controlling filamentation. Cornolti and Lucchesi have considered the energy loss by collisions as well as by electronic thermal conduction in the analysis of filamentation; however, like Perkins and Valeo, they have also ignored the change in the electron temperature on account of the main beam. Epperlein has, in his elegant analysis of filamentation, assumed the electron and ion temperature to be the same, which is not a good approximation for the ionospheric plasma subjected to the field of a high power electromagnetic wave.

Ghanshyam and Tripathi have analyzed the phenom-
II. THE ANALYSIS

Let the electric field of a beam of uniform illumination and that of a small perturbation (filament) be represented by \(\vec{j}E_0 \) and \(\vec{j}E_1 \), respectively, so that the resultant field \(\vec{E} \) propagating in the \(z \) direction through a plasma can be expressed as

\[
\vec{E} = \vec{j}(E_0 + E_1) = \vec{j}(A_0 + A_1) \exp(i \omega t - kz),
\]

where \(A_0 \), without loss of generality, is a real constant and \(A_1 |A_1| \ll |A_0| \) is complex. \(\vec{j} \) is a unit vector and \(k \) is the wave number defined later. Neglecting the small contribution \(A_1A_1^* \), one can write

\[
\vec{E} \cdot \vec{E}^* = A_0^2 + A_0(A_1 + A_1^*).
\]

The dielectric function of the plasma depends on \(\vec{E} \cdot \vec{E}^* \) and hence can be expressed as

\[
e(\vec{z}, E, E^*) = e_0(\vec{z}) + e_2(\vec{z})A_0(A_1 + A_1^*),
\]

where

\[
e_2 = \left[\frac{\partial e}{\partial (\vec{E} \cdot \vec{E}^*)} \right]_{\vec{E} \cdot \vec{E}^* = A_0^2}.
\]

The wave equation for the total field can be separated for \(A_0 \) and \(A_1 \). On choosing

\[
k = \frac{\omega}{c} \sqrt{e_0},
\]

the wave equation for \(A_0 \) yields a solution

\[
A_0 = \text{constant};
\]

without loss of generality, \(A_0 \) can be assumed to be real.

The wave equation for \(A_1 \), on neglecting \(\partial^2 A_1/\partial c^2 \) (assuming \(A_1 \) to be slowly varying) and \(A_1A_1^* \), reduces to

\[
-2ik \frac{\partial A_1}{\partial z} + \nabla^2 A_1 + \frac{\omega^2}{c^2} e_2 A_0^2 (A_1 + A_1^*) = 0,
\]

where \(\nabla^2 = \nabla^2 - \partial^2/\partial c^2 \).

To solve Eq. (4), one can express the complex amplitude \(A_1 \) of the perturbation as

\[
A_1 = A_{1r} + iA_{1i},
\]

where \(A_{1r} \) and \(A_{1i} \) are real. Assuming \(A_{1r} \) and \(A_{1i} \) to be independent of \(y \) and proportional to \(\exp(i(qz + q_\perp x)) \), i.e.,

\[
A_{1r} \propto \exp i(qz + q_\perp x), \quad A_{1i} \propto \exp i(qz + q_\perp x),
\]

and following Ghanshyam and Tripathi, one obtains two homogeneous equations in \(A_{1r} \) and \(A_{1i} \), which on elimination of these amplitudes lead to the dispersion relation

\[
q_\perp = \frac{-iq_\perp}{2k} \left(\frac{2e_0^2}{\omega^2 c^2} A_0^2 - q_\perp^2 \right)^{1/2}.
\]

For the sake of convenience, the magnetic field of the Earth is assumed to be along the \(x \) axis and the electron cyclotron frequency to be much less than \(\omega \). As discussed later, in the ionospheric thermal conduction is important only when the magnetic field lies nearly along the \(x \) axis (otherwise it is negligible).

The parameter \(q_\perp \) will be imaginary, when

\[
q_\perp^2 < 2(e_0/\varepsilon) A_0^2.
\]

In this case the field of the filament, \(A_1 \exp iqz \) will grow exponentially with \(z \) at a space rate

\[
\Gamma = iq_\perp \frac{q_\perp}{2k} \left(\frac{2e_0^2}{\omega^2 c^2} A_0^2 - q_\perp^2 \right)^{1/2}.
\]

As pointed out earlier, Ghanshyam and Tripathi’s analysis of the dielectric function of the plasma determining \(e_0 \) and \(e_2 \) is not correct because the axial electron temperature \(T_{e0} \) [their Eq. (45)] in the absence of the perturbing field \(E_1 \) involves the coefficient of thermal conductivity and the wave number \(q \) of the perturbing field through the modified electron energy transfer parameter \(\delta' \) [their Eq. (43)]; this is obviously not correct because \(A_0 \) and hence \(T_{e0} \) in the field of the main beam only, do not depend on \((x,y,z) \); hence, thermal conduction should not enter into the expression for \(T_{e0} \). Further, the use of \(\delta' \) makes sense only when the strong dependence of the thermal conductivity on the electron temperature is neglected. This analysis also does not take into account the heating of ions by electron-ion collisions.

III. EVALUATION OF \(\varepsilon_0 \) AND \(\varepsilon_2 \)

A. Energy balance

Following Gurevich, the energy balance for the electrons in the ionosphere in the presence of the electric field \(E \) of a high irradiance electromagnetic wave may be expressed as
$Q + \mathbf{J} \cdot \mathbf{E} = Q + \frac{e^2 N_e \nu_e}{2 m_0 \omega^2} EE^*$

$$= N_e \sum \nu_{em} \delta_{em} \left(\frac{3}{2} k_B T_e - \frac{3}{2} k_B T_i \right) + N_e \nu_{em} \overline{\delta_{et} \left(\frac{3}{2} k_B T_e - \frac{3}{2} k_B T_i \right)} - \nabla \cdot \left(K_e \nabla T_e \right), \quad (9)$$

where Q is the net power per unit volume gained by the electrons from solar radiation, on account of excess energy of electrons, produced by photo-ionization, above the thermal energy $3N_e k_B T_{eo0}/2$.

- The subscript “00” corresponds to the regions away from the beam,
- $\mathbf{J} \cdot \mathbf{E}$ is the time averaged Ohmic loss per unit volume,
- ν_{em} is the collision frequency of electrons with the mth neutral species,
- δ_{em} is the fraction of excess energy of an electron (above that of neutral species) lost in a collision with the mth neutral species,
- ν_{et} is the electron collision frequency with ions,
- $\overline{\delta_{et}}$ is the mean fraction of excess energy of an electron (above that of an ion) lost in a collision with an ion,
- the collision and cyclotron frequency of the electrons is much less than the wave frequency ω,
- K_e is the electronic thermal conductivity,
- N_e is the number density of electrons,
- T_e is the electron temperature,
- T_i is the ion temperature, and
- T is the temperature of neutral species.

It may be remembered (Ref. 19, pp. 212–213) that in the ionosphere, the main contribution of the energy flux is made by thermal conduction $K_e \nabla \cdot (T_e)$ and the contribution of thermal force is negligible. In particular, for heat propagation along the magnetic field of the Earth (x axis), the thermal conduction is the dominant process for heights up to 500 km; the expression for the relevant coefficient of heat conduction is also the same as that for an isotropic plasma.

The energy balance equation for the ions is

$$N_e \nu_{et} \overline{\delta_{et}} \left(\frac{3}{2} k_B T_e - \frac{3}{2} k_B T_i \right) = N_e \nu_{im} \delta_{im} \left(\frac{3}{2} k_B T_i - \frac{3}{2} k_B T_e \right).$$

Hence,

$$T_i = \frac{\nu_{et} \overline{\delta_{et}} T_e + \nu_{im} \delta_{im} T_e}{\nu_{et} \overline{\delta_{et}} + \nu_{im} \delta_{im}}. \quad (10)$$

ν_{im} is the collision frequency of an ion with a neutral molecule/atom and δ_{im} is the fraction of excess energy transferred per ion-neutral species collision. Substituting for T_i from Eq. (10) in Eq. (9), one obtains

$$Q + \mathbf{J} \cdot \mathbf{E} = Q + \frac{e^2 N_e \nu_e}{2 m_0 \omega^2} EE^*$$

$$= N_e \sum \nu_{em} \delta_{em} + \frac{\nu_{et} \overline{\delta_{et}} \cdot \nabla \cdot (K_e \nabla T_e)}{\nu_{et} \overline{\delta_{et}} + \nu_{im} \delta_{im}}, \quad (11a)$$

In the absence of the wave (i.e., in undisturbed ionosphere) $\mathbf{J} \cdot \mathbf{E} = 0$; hence, Eq. (11a) reduces to

$$Q = N_{e00} \left[\frac{3}{2} k_B T_e - \frac{3}{2} k_B T_i \right] \left(\sum \nu_{em} \delta_{em0} + \frac{\nu_{et} \overline{\delta_{et0}} \nu_{im}}{\nu_{et} \overline{\delta_{et0}} + \nu_{im}} \right). \quad (11b)$$

From Eqs. (11a) and (11b), one obtains

$$\alpha E E^* = 2000 \nu^{-1} \left(\frac{T_e}{T} - 1 \right) \left(\sum \nu_{em} \delta_{em} + \frac{\nu_{et} \overline{\delta_{et}} \cdot \nabla \cdot (K_e \nabla T_e)}{\nu_{et} \overline{\delta_{et}} + \nu_{im} \delta_{im}} \right) - \left\{ \left(\frac{T_{e0}}{T_e} - 1 \right) \left[\frac{N_{e0}}{N_e} \right] \left(\sum \nu_{em} \delta_{em0} + \frac{\nu_{et} \overline{\delta_{et0}} \nu_{im}}{\nu_{et} \overline{\delta_{et0}} + \nu_{im}} \right) \right\} - 2 \frac{\nabla \cdot (K_e \nabla T_e)}{3 k_B N_e T_e}, \quad (12)$$

where $\alpha = 2000 e^2/3 m_0 \omega^2 k_B T$ and the factor 2000 (≈ M_H/m) has been introduced for numerical convenience. M_H is the mass of a hydrogen atom.

B. Distribution of electron density

On account of the nonuniform spatial distribution of the irradiance of the instability, there is a corresponding nonuniform distribution of electron and ion temperatures, which creates pressure gradients of electron and ion gas. Initially these gradients push the electrons and ions from regions of higher irradiance and thus temperature (and hence pressure) to regions of lower irradiance; this transport of electrons and ions continues until a steady state is reached; i.e., when these gradients are balanced by the space charge field. With this reasoning in mind and following earlier workers, one can write

$$\frac{N_e}{N_{e00}} = \frac{T_{e00} + T_{e0}}{T_e + T_i}. \quad (13)$$

This equation is valid (Ref. 19, p. 234) even when the electron-ion force is taken into account. However, the above equation is not quantitatively consistent with the condition of hydrodynamic equilibrium or kinetic theory (for the simple dependence of ν_i on electron density) based on Boltzmann’s transfer equation.

C. Electron temperature

The electron-ion collision frequency and electronic thermal conductivity (for heat propagation along the direction of the magnetic field) may be expressed as

$$\nu_{ei} = \nu_{e00} (N_e/N_{e00}) [T_e/T_{e00}]^{-3/2}, \quad (14)$$
\[K_e = \frac{5N_e k_b T_e}{2m \nu_e}, \]
(15)

and

\[\nu_e = \nu_{ei} + \sum \nu_{em}. \]
(16)

When the magnetic field \(B \) makes an angle \(\theta \) with the direction of heat propagation (say, the \(x \) axis), \(1/\nu_e \) in Eq. (15) is replaced by \(\nu_e/(\nu_e^2 + \omega_B^2 \sin^2 \theta) \), where \(\omega_B = eB/mc \). Since \(\nu_e \ll \omega_B \) for ionosphere, thermal conduction is important only when \(B \) lies almost along the \(x \) axis.

The temperature dependence of \(\nu_{em}, \delta_{em} \), and \(\nu_{Em} \) has been tabulated by Gurevich.\(^{19} \)

In the presence of the electric field with the perturbation given by Eqs. (1) and (5), the electron temperature can be expressed as

\[T_e = T_{eo} + T_{e1} \exp(iqz + iq_{\perp} x), \]
(17)

where \(T_{e1} \ll T_{eo} \).

To proceed further, it is useful to express (empirically) \(\nu_e [\Sigma \nu_{em} \delta_{em} + \nu_{ei} \delta_{ei} + \nu_{Em}/(\nu_{ei} \delta_{ei} + \nu_{Em})] \) and \(T_e + T_i \) as a polynomial in \(T_e/T_{eo} \) using Eqs. (10) and (12)–(17) and the database of Gurevich\(^{19} \) (Tables 1, 2, 6, 8, and 11) for an isospheric height of 200 km. Thus,

\[\sum \nu_{em} \delta_{em} + \nu_{ei} \delta_{ei} + \nu_{Em} \]
(18a)

\[\nu_e = b + \frac{T_{e1}}{T_{eo}} B \exp(iqz + iq_{\perp} x), \]
(18b)

\[T_e + T_i = \left[\frac{T_e}{T_{eo}} (2 \nu_{ei} \delta_{ei} + \nu_{Em}) + \frac{T_i}{T_{eo}} \nu_{Em} \right] \frac{T_{eo}}{(\nu_{ei} \delta_{ei} + \nu_{Em})} = d + \frac{T_{e1}}{T_{eo}} D \exp(iqz + iq_{\perp} x), \]
(18c)

where

\[a = a_0 + a_1 \left(\frac{T_{eo}}{T_{eo}} \right)^2 + a_2 \left(\frac{T_{eo}}{T_{eo}} \right)^3, \]

\[A = a_1 + 2a_2 \left(\frac{T_{eo}}{T_{eo}} \right)^2 + 3a_3 \left(\frac{T_{eo}}{T_{eo}} \right)^3, \]

\[b = b_0 + b_1 \left(\frac{T_{eo}}{T_{eo}} \right)^2 + b_2 \left(\frac{T_{eo}}{T_{eo}} \right)^3, \]

\[B = b_1 + 2b_2 \left(\frac{T_{eo}}{T_{eo}} \right)^3, \]

\[d = d_0 + d_1 \left(\frac{T_{eo}}{T_{eo}} \right)^3, \]

\[D = d_1, \]

where the parameters \(a_0, a_1, a_2, a_3, b_0, b_1, b_2, d_0, \) and \(d_1 \) can be evaluated, as indicated above. Substituting for \(N_e/N_{eo}, K_e, T_e, T_{eo}, [\Sigma \nu_{em} \delta_{em} + \nu_{ei} \delta_{ei} + \nu_{Em}/(\nu_{ei} \delta_{ei} + \nu_{Em})], \nu_e, \) and \(T_e + T_i \) from Eqs. (13), (15), (17), and (18a)–(18c) in Eq. (12) and equating the terms with and without \(\exp(iqz + iq_{\perp} x) \) on both sides of the resulting equation, one obtains

\[T_{eo}/T = \left[\frac{\alpha A_0}{2000} + \frac{\beta A_1 (T_{eo}/T - 1)}{b + \gamma (T_{eo}/T + 1)} \right], \]
(19)

and

\[T_{e1}/T = \frac{\alpha A_0 (A_1 + A_1)}{F(q_{\perp})}, \]
(20)

where

\[A = \sum \nu_{em0} \delta_{em0} + \nu_{em0} \delta_{em} + \nu_{Em0} \]
(21a)

\[\Lambda = \sum \nu_{em0} \delta_{em0} + \nu_{em0} \delta_{em} + \nu_{Em0} \]
(21b)

and \(q_{\perp} \gg q_{\parallel} \).

D. Dielectric function

The dielectric function \(\epsilon \) can now be obtained from the equation

\[\epsilon = 1 - 4\pi N_e e^2/m \omega^2 \]

by expressing \(N_e \) in terms of the electron temperature \(T_e \) [Eq. (13)] and using Eqs. (17) and (20); Thus

\[\epsilon = 1 - \frac{\omega_p^2 (T_{eo} + T_{eo})}{\omega^2} + \frac{\omega_p^2 (T_{eo} + T_{eo}) D A_0 (A_1 + A_1)}{\omega^2 F(q_{\perp})}. \]
(22)

Comparing Eqs. (3) and (22), one obtains

\[\epsilon_0 = 1 - \frac{\omega_p^2 (T_{eo} + T_{eo})}{\omega^2}, \]
(23a)

and

\[\epsilon_2 = \frac{\omega_p^2 (T_{eo} + T_{eo}) D A_0 (A_1 + A_1)}{\omega^2 F(q_{\perp})}, \]
(23b)

where \(\omega_p \) is the plasma frequency in absence of the electromagnetic field.
IV. GROWTH OF INSTABILITY

The condition for the growth is given by Eq. (7), with \(\varepsilon_2 \) expressed by Eq. (23b).

Substituting for \(\varepsilon_2 \) from Eq. (23b) in Eq. (8), one obtains an expression for the growth rate \(\Gamma \) of the perturbation in terms of \(q \). Thus,

\[
\frac{c}{\omega} \Gamma = \frac{q}{2 \sqrt{e_0}} \left(\frac{2 \omega^2}{\omega^2} (T_{e00} + T_{i00}) \frac{D \alpha A_0^2}{q^2 F(q)} - q^2 \right)^{1/2},
\]

where \(q = (c/\omega)q_1 \).

\[
F(q) = 2000 \left[\frac{a}{b} \left(\frac{T}{T_{e00}} \right) \left(\frac{T_{e00}}{T} + \left(\frac{A - B}{a} \right) \left(\frac{T_{e0}}{T} - 1 \right) \right) \right.
\]

\[
- \left. \left(\frac{\Lambda T}{b} \frac{D - Bd}{T_{e00}} \left(\frac{T_{e00}}{T} + 1 \right) \frac{T_{e00}}{T} \right) + \beta q^2 \frac{T_{e0}}{T} \right],
\]

and \(\beta = (10k_B T \omega^2/3mc^2)(1/b^2) \).

For the instability to occur, \(\Gamma > 0 \); thus, the critical value of \(q = (c/\omega)q_1 \), below which the instability occurs (viz., \(q_{\text{critical}} \)) is given by putting the right-hand side of Eq. (24) equal to zero.

For \(\Gamma \) to be maximum, the optimum value of \(q \); i.e., \(q_{\text{opt}} \) is given by

\[
\frac{d\Gamma}{dq} = 0,
\]

which yields

\[
q_{\text{opt}}^2 [F(q_{\text{opt}})]^2 = \frac{a \omega^2}{\omega^2} (T_{e00} + T_{i00}) \frac{D \alpha A_0^2}{q^2 F_1},
\]

where

<table>
<thead>
<tr>
<th>Height (km)</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>5.8 \times 10^3</td>
<td>-1156.9</td>
<td>218.9</td>
<td>-7.6</td>
</tr>
<tr>
<td>90</td>
<td>8.3 \times 10^3</td>
<td>-226.4</td>
<td>47.8</td>
<td>-2.1</td>
</tr>
<tr>
<td>100</td>
<td>2.15 \times 10^3</td>
<td>-60.6</td>
<td>13.7</td>
<td>-0.6</td>
</tr>
<tr>
<td>110</td>
<td>1.1 \times 10^3</td>
<td>-40.0</td>
<td>7.87</td>
<td>-0.35</td>
</tr>
<tr>
<td>120</td>
<td>30.8</td>
<td>-10.1</td>
<td>2.634</td>
<td>-0.1</td>
</tr>
<tr>
<td>130</td>
<td>9.9</td>
<td>-3.2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>-2.9</td>
<td>4.46</td>
<td>-1.16</td>
<td>0.1</td>
</tr>
<tr>
<td>200</td>
<td>0.05</td>
<td>0.2</td>
<td>-0.05</td>
<td>0.067</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Height (km)</th>
<th>(b_0)</th>
<th>(b_1)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>141 666.66</td>
<td>977 954.54</td>
<td>-13 257.57</td>
</tr>
<tr>
<td>90</td>
<td>25 983.33</td>
<td>144 990.15</td>
<td>-2 200.75</td>
</tr>
<tr>
<td>100</td>
<td>9 116.66</td>
<td>41 827.42</td>
<td>-611.36</td>
</tr>
<tr>
<td>110</td>
<td>3 465.00</td>
<td>9 762.04</td>
<td>-144.31</td>
</tr>
<tr>
<td>120</td>
<td>1 949</td>
<td>4 782.40</td>
<td>-72.5</td>
</tr>
<tr>
<td>130</td>
<td>1 070.83</td>
<td>1 951.70</td>
<td>-29.35</td>
</tr>
<tr>
<td>150</td>
<td>761.16</td>
<td>606.23</td>
<td>-6.40</td>
</tr>
<tr>
<td>200</td>
<td>516.73</td>
<td>-16.68</td>
<td>6.31</td>
</tr>
</tbody>
</table>

TABLE II. Dependence of \(b_0, b_1, \) and \(b_2 \) on height [refer to Eq. (18b)]; mid-latitude daytime ionosphere.

<table>
<thead>
<tr>
<th>Height (km)</th>
<th>(d_0)</th>
<th>(d_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>90</td>
<td>190</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>210</td>
<td>240</td>
</tr>
<tr>
<td>110</td>
<td>270</td>
<td>320</td>
</tr>
<tr>
<td>120</td>
<td>360</td>
<td>400</td>
</tr>
<tr>
<td>130</td>
<td>460</td>
<td>500</td>
</tr>
<tr>
<td>150</td>
<td>670</td>
<td>800</td>
</tr>
<tr>
<td>200</td>
<td>1100</td>
<td>1300</td>
</tr>
</tbody>
</table>

TABLE III. Dependence of \(d_0 \) and \(d_1 \) on height [refer to Eq. (18c)]; mid-latitude daytime ionosphere.

V. NUMERICAL RESULTS AND DISCUSSIONS

All the numerical results obtained by us correspond to a height of 200 km for the mid-latitude daytime ionospheric model of Gurevich;\(^{19}\) the collision frequency and the cyclotron frequency of the electrons are also assumed to be much less than the wave frequency. Computations for other cases can be likewise made by using Tables I–III for the characterization of the electron temperature dependence on the parameters \(a, b, \) and \(d \) occurring in Eqs. (18a)–(18c) at different heights.

Figure 1 illustrates the dependence of the critical value of the wave number of the disturbance \(q_{\text{critical}} \) on the dimensionless irradiance \(\alpha A_0^2 \) of the main beam. This may be
readily understood as follows. As q increases, the width of the disturbance (\propto the wavelength) decreases, diffraction becomes more important, requiring larger magnitudes of non-linearity, corresponding to larger values of the irradiance αA_0^2 of the main beam.

Figure 2 illustrates the dependence of the growth rate Γ of the self-focusing instability with the wave number $q=(c/\omega)q_1$ in the transverse direction for different values of the dimensionless background irradiance $\alpha A_0^2=1, 5, 10, 20, 30, 40, 50,$ and 100 for an ionospheric height of 200 km in the daytime.

It is seen that corresponding to a certain value of the beam irradiance (αA_0^2), there is an optimum value of q for which the growth rate is maximum; this is evident from a cursory look at Eq. (24).

Figure 3 expresses the dependence of the maximum growth rate Γ_{max} on the background irradiance αA_0^2 for the daytime mid-latitude ionosphere height of 200 km. The monotonic dependence is also evident from Eq. (26).

It may be reiterated that in the upper ionosphere (height, greater than 150 km), the electron collision frequency is much less than the electron cyclotron frequency due to the Earth’s magnetic field. Hence, if the magnetic field is not along the x axis, the relevant thermal conductivity, for conduction along the x axis will be much lower than that in the case considered here and the role of thermal conduction will be at best marginal.

ACKNOWLEDGMENT

The authors are grateful to Department of Science and Technology, Government of India for financial support.

FIG. 1. Dependence of critical wave number q_{critical} of a perturbation on dimensionless background irradiance αA_0^2 in daytime mid-latitude ionosphere at a height 200 km.

FIG. 2. Dependence of the dimensionless growth rate $(c/\omega)\Gamma$ of self-focusing instability on q, the dimensionless wave number of the perturbation in the transverse direction corresponding to the dimensionless background irradiance $\alpha A_0^2=1, 5, 10, 20, 30, 40, 50,$ and 100 in daytime mid-latitude ionosphere at a height 200 km.

FIG. 3. Dependence of the dimensionless maximum growth rate $(c/\omega)\Gamma_{\text{max}}$ on dimensionless background irradiance αA_0^2 in daytime mid-latitude ionosphere at a height 200 km.