
AIMD-inspired switching control of computing networks

Vlahakis, E., Jungers, R., Athanasopoulos, N., & McLoone, S. (2023). AIMD-inspired switching control of
computing networks. IEEE Transactions on Control of Network Systems. Advance online publication.
https://doi.org/10.1109/TCNS.2023.3298202

Published in:
IEEE Transactions on Control of Network Systems

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2023 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:26. Jun. 2024

https://doi.org/10.1109/TCNS.2023.3298202
https://pure.qub.ac.uk/en/publications/e050cfad-bef1-4706-a50f-a8aedc0efb90

GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022 1

AIMD-inspired switching control
of computing networks

Eleftherios Vlahakis, Raphaël Jungers, Nikolaos Athanasopoulos, and Seán McLoone

Abstract— We consider the scheduling problem of re-
quests entering a distributed computing network consist-
ing of a set of non-cooperative nodes, where a node is
represented by a queue combined with a computing unit.
Our interaction-free setup between nodes renders decen-
tralised scheduling challenging, with most existing results
focusing on centralised or static solutions. Inspired by con-
gestion control, we propose a new average-based additive
increase multiplicative decrease (AIMD) admission control
policy which requires minimal communication between in-
dividual nodes and an aggregator. The proposed admission
policy infers a discrete-event model expressed as a positive
constrained switching system that is triggered whenever
the queue of the aggregation point of requests vanishes.
We show convergence of the proposed AIMD system under
unknown, peak-bounded workload profiles by analysing the
spectrum of rank-one perturbations of symmetric matrices
and the boundedness of the joint spectral radius of sets
of symmetric matrices. Contrary to methods that address
scheduling and resource allocation asynchronously or via
a two-step approach, our AIMD-based scheme can tackle
both tasks simultaneously. This is illustrated by proposing
a decentralised resource allocation controller coupled with
the scheduling scheme leading to a stable closed-loop con-
trol system, that is guaranteed to avoid underutilisation of
resources and is tunable via the sets of AIMD parameters.

Index Terms— AIMD, scheduling, queueing systems,
discrete-event systems, event-triggered systems, con-
strained switching systems, state-dependent switching
systems, decentralised resource allocation

I. INTRODUCTION

Distributed computing is an important technology that is
emerging to address the ever-growing demand for extensive,
real-time computations at the edge as a result of the prolifera-
tion of end-user devices connected to the edge of the Internet.
Although this emerging paradigm opens new opportunities for
more sophisticated applications [1], it presents several research

This work was supported by the CHIST-ERA grant CHIST-ERA-18-
SDCDN-003 (DRUID-NET). R. Jungers is supported by the European
Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme under grant agreement No 864017-
L2C.

E. Vlahakis is with the Division of Decision and Control Systems,
School of Electrical Engineering and Computer Science, KTH
Royal Institute of Technology, Stockholm, Sweden. R. Jungers is
with ICTEAM institute, UCLouvain, Louvain-la-Neuve, Belgium. N.
Athanasopoulos and S. McLoone are with School of Electronics,
Electrical Engineering and Computer Science, Queen’s University
Belfast, Northern Ireland, UK. Email: vlahakis@kth.se,
raphael.jungers@uclouvain.be, {n.athanasopoulos,
s.mcloone}@qub.ac.uk.

challenges, especially in the context of resource allocation and
control due to latency constraints, limited capacity of edge-
servers, and a decentralized and volatile structure.

In this paper, we consider the joint problem of schedul-
ing and provisioning resources when multiple requests are
offloaded to a system of distributed computing nodes. We
follow a queueing system approach to modelling that is simple,
scalable, and agnostic to each individual node’s specifici-
ties. Arguably, analytical modelling of computer systems is
challenging [2]–[4], with many works relying on application-
specific models obtained via system identification methods [5],
[6]. To model local backlog, we associate each node with
a queue combined with a computing unit. We assume no
direct interaction between nodes and that computing units are
independent of one another. Nodes are only coupled through
a central node, which is key to the proposed modelling and
control approach. We note that such a structural requirement
is not necessarily restrictive but, in fact, practical as it permits
requests to be dispatched from a source acting as aggregation
point [7]–[10].

Scheduling and load balancing algorithms are typically
static or dynamic. Static methods spread the workload over a
set of computing nodes guided by rules set a priori. The work-
load sharing is formulated as an optimisation program [11] or
a static network flow control problem [12]. Optimisers are
obtained with respect to an appropriate cost function typically
under worst-case workload parameters. Static schemes fail to
adapt to unforeseen workload variations. Dynamic methods,
instead, compensate for this drawback at the expense of a
more complex structure. Although open-loop approaches can
operate reliably for well-modelled workloads [7], feedback-
based methods are required for highly volatile request flows
[9]. Continuous monitoring of the entire system’s state for
feedback actions, however, may be challenging, rendering
the study of more efficient schemes necessary for scheduling
control. This challenge motivates our focus on the additive
increase multiplicative decrease (AIMD) algorithm that fits
an event-triggered feedback mechanism with decentralised
structure.

Our approach to scheduling is inspired by the AIMD
algorithm, a celebrated method in network management. The
AIMD algorithm was originally introduced in [13] for tackling,
in a robust and decentralized manner, congestion in computer
networks requiring minimum interaction between nodes. It has
become a fundamental building block of the Transmission
Control Protocol (TCP) widely used across the Internet. An

2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

excellent and comprehensive study of the AIMD algorithm
with several extensions and applications can be found in [14].

In this paper, we first attempt to address the question: Is the
AIMD algorithm compatible with request scheduling and load
balancing tasks where the shared quantity should, on average,
be distributed in full and not in part as in a congestion-
avoidance setup [15], [16]? Roughly, a typical AIMD scheme
relates to resource sharing among self-organised nodes, each
increasing their share until the resource is exhausted (see,
e.g., [17], [18]). When this happens, a one-bit signal is fed to
nodes triggering an instantaneous decrease in their share. The
event-wise dynamics of this increase-decrease pattern induce
an event-driven discrete model. Stability of this system is
guaranteed, in the sense that if the resource capacity is constant
then individual shares converge. It is worth noting that under
this scheme the shared quantity is not fully utilised on average.
Consequently, the scheme cannot straightforwardly be applied
to workload-sharing tasks, because in such a case the backlog
would grow indefinitely.

To address this challenge, we propose a new triggering con-
dition that is compatible with the AIMD logic, and introduce a
novel AIMD-inspired control algorithm for general scheduling
tasks. Berman et al. in [19] and Shorten et al. in [15] show
that a typical AIMD scheme can be modelled at event times as
a positive system, thus, convergence properties can be inferred
from the Perron–Frobenius theorem [14]. Unfortunately, such
properties do not hold here due to a new event-triggered mech-
anism. Instead of capacity constraints, we consider an event-
based mechanism triggered when the backlog corresponding
to the central node of our model vanishes. To the best of our
knowledge, this constitutes a novel triggering condition for
scheduling tasks in the context of distributed computing and
discrete-event systems. By embedding the triggering condition
into the dynamics, we derive a closed form of the admission
control system expressed as a constrained switching system.
Our convergence analysis follows a set-theoretic approach
and relies on a fundamental result in Linear Algebra [20],
[21] involving the eigenproblem of rank-one perturbations of
symmetric matrices (Theorems 4.1 and 4.2), and the bound-
edness of the joint spectral radius of symmetric matrices [22]
(Theorem 4.3 and Proposition 4.1). The admission policy
is locally configurable and convergent irrespective of tuning
and system dimension (number of computing nodes). It also
inherits the fairness feature (see Remark 10) of the standard
AIMD algorithm that is obtained by tuning local parameters
[16].

As a result of the simplicity of the proposed AIMD schedul-
ing policy, we subsequently formulate a resource allocation
strategy defined as a decentralized, stabilising nonlinear feed-
back controller. Under the proposed resource allocation law,
individual queues (local backlogs) are bounded, and converge
to sets of values in finite time. This effectively permits analysis
of Quality of Service (QoS) metrics, e.g., queueing time.
Overall, scheduling and resource allocation lie in the same
control loop leading to a simple decentralized system that
is stable, scalable, and locally configurable. A key asset of
our approach is that the closed-loop dynamics of the overall
system can be tuned by means of two sets of parameters,

namely the AIMD parameters. Centralised algorithms for
optimal AIMD tuning that are in agreement with the schemes
presented in this paper can be found in [23]. The authors
are currently studying decentralised configurations for efficient
AIMD tuning.

Complementing stochastic methods [24], [25], we consider
non-deterministic workloads that are unknown, yet bounded.
Under this assumption, deterministic stability and convergence
properties can be derived using set-theoretic methods [26].
We show that the admission control system under unknown,
bounded workload profiles always converges to a compact set
that is invariant and reachable in finite time irrespective of
the initial conditions. Under the proposed resource allocation
strategy, boundedness is also guaranteed for the local backlog
under bounded time-varying workload. Our control strategy
has successfully been applied to Kubernetes1 under a realis-
tic workload profile outperforming state-of-the-art scheduling
solutions and demonstrating a better resource utilisation by
reducing computing resources by 8%, without any prior tuning
of the related parameters [10].

Preliminary results of this paper have been presented in
[27] under the assumption of constant workload. Here, we
show that a volatile workload profile requires a constrained
switching system modelling approach that is significantly
more complex. This effectively guarantees that the underlying
system is positive. This approach, which involves convergence
analysis in the context of piecewise affine systems, is not
considered in [27].

Our contributions are summarized as follows.
• We propose a new AIMD-based scheduling solution that
guarantees bounded backlog, allowing self-organised comput-
ing nodes to address time-varying workload profiles dynam-
ically. A novel event-triggered mechanism is introduced that
requires minimal communication with an aggregation point.
• We provide formal guarantees of convergence via set-
theoretic techniques that involve reachability analysis of a
piecewise affine system and differ substantially from typical
positive-system approaches employed in the analysis of AIMD
algorithms. These results can be used in a straightforward
fashion to derive deterministic bounds on important QoS
metrics.
• We propose a new stabilising feedback controller for de-
centralised resource allocation, which prevents resource over-
provisioning and permits scheduling and resource allocation
to be tackled simultaneously, leading to a stable closed-loop
control system.

The remainder of the paper is organized as follows. No-
tation, definitions and assumptions are given in Section II.
The problem considered in the paper is described in Section
III. The main results, namely, the AIMD scheduling strategy
and its convergence analysis, and the resource allocation
control, are presented in Sections IV and V, respectively.
A comparative study of the proposed AIMD-based scheme
with standard scheduling solutions is reported in Section VI.
Section VII discusses our main results and future research.

1Kubernetes is an open-source platform for automatic deployment, scaling,
and management of containerized applications (https://kubernetes.io/).

VLAHAKIS et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (DECEMBER 2022) 3

II. PRELIMINARIES

A. Notation
The sets of nonnegative integers and real numbers are N

and R, respectively, the set of n-dimensional vectors with
real elements is Rn, and the set of n × m real matrices is
Rn×m. The sets of nonnegative and positive real numbers
are R≥0 and R>0, respectively. The set of n-dimensional real
vectors with (non-negative) positive elements is (Rn

≥0) Rn
>0.

The transpose of a vector ξ is ξ⊤. Let a1, . . . , an ∈ R, then,
a = (a1, . . . , an) ∈ Rn, and A = diag(a1, . . . , an) is a
diagonal matrix, where a1, . . . , an are its diagonal elements.
We denote by det(A) the determinant of a square matrix
A. The identity matrix of dimension m × m is denoted by
Im ∈ Rm×m, while the vectors with elements equal to one
and zero are 1 ∈ Rn and 0 ∈ Rn, respectively. Let λi(Φ),
i = 1, . . . ,m, be the ith eigenvalue of matrix Φ ∈ Rm×m. The
spectrum of Φ is σ(Φ) = {λ1(Φ), . . . , λm(Φ)}. Whenever
there exists a nonsingular matrix T ∈ Rm×m such that
Φ̂ = T−1ΦT is a symmetric matrix, we assume, without
loss of generality, λ1(Φ) ≤ λ2(Φ) ≤ . . . ≤ λm(Φ). A
matrix Φ ∈ Rm×m is Schur if all its eigenvalues strictly
lie inside the unit circle, i.e., |λi(Φ)| < 1, i = 1, . . . ,m.
Right matrix products of the form Ajk . . . Aj1Aj0 ∈ Rn×n are
written compactly as

∏0
i=k Aji , with

∏k
i=k Aji = Ajk , and∏k−1

i=k Aji = In. Let Σ = {A1, . . . , Am} ∈ Rn×n be a set of
matrices in Rn×n. The joint spectral radius of Σ is defined
as ρ(Σ) = limk→∞ max(j1,...,jk)∈{1,...,m}k ∥

∏1
i=k Aji∥1/k.

In the sequel, we denote by ρ(Σ) the spectral radius or the
joint spectral radius of Σ if Σ denotes a single matrix or a finite
set of matrices, respectively. The Minkowski sum of sets X1

and X2 is X1 ⊕ X2. The convex hull of a set X is co(X).
Let a, b ∈ R>0. The remainder of the division of a by b is
mod(a, b).

B. Definitions and queue modelling
A request is an individual call for computing resources and

a computing node is the physical or virtual computing envi-
ronment whereby the content of arriving requests is processed.
A distributed computing network (DCN) consists of multiple
computing nodes. We call workload the arrival rate of requests
and egress the departure rate of requests per unit time. A queue
is the waiting mechanism whereby requests entering a node are
temporarily put on hold until they are selected for service. We
consider queues consistent with the First Come First Served
(FCFS) selection principle, and requests associated with a
single application. A queueing system [28], [29] is defined
as the dynamic relationship developed between workload and
egress in the presence of a queue.

We model a DCN as a multi-queue scheme whereby new
requests are first queued in a central node and are subsequently
dispatched to computing nodes. We refer to the queue of the
central node acting as an aggregation point as the buffer, and
to the frequency of requests being dispatched from the buffer
to an individual node as the admission rate. Similarly, we call
service rate the frequency of requests being processed by a
node. The former is the fraction of workload assigned to an
individual node while the latter is the egress of an individual

node. A local queue is associated with an individual node. We
use the term backlog to express queued requests either in the
buffer or in local queues. A request entering a node is queued
before being selected for service unless the backlog of the
underlying node is zero.

III. PROBLEM DESCRIPTION

Throughout the paper, we use the following notation as
shown in Fig. 1. We denote continuous time by t ≥ 0,
and distinct instants by tk ≥ 0, with k ∈ N. We consider
that requests associated with a specific application enter a
DCN at an arrival rate λ(t) ∈ L ⊂ R>0. We call this the
workload of the DCN associated with an application. The
states of the admission system are the individual admission
rates each determining the instantaneous workload share that is
assigned to a node. This assignment task is called scheduling.
We also wish to design a resource allocation strategy that
determines individual service rates ensuring that all requests
are served in finite time and backlog is bounded for all t ≥ 0.
Backlog in the buffer is denoted by δ(t) ∈ N, while the local
backlog in the ith computing node is denoted by wi(t) ∈ N,
i = 1, . . . , n. Admission and service rates associated with the
ith node are represented by ui(t) ∈ R>0 and γi(t) ∈ R>0,
respectively, i = 1, . . . , n. Omitting the time dependency,
aggregate vectors are u = (u1, . . . , un), w = (w1, . . . , wn),
γ = (γ1, . . . , γn). An admission and resource allocation
policy is denoted as (u, γ) ∈ R2n. A multi-queue scheme
representing the dynamical structure of our DCN model is
depicted in Fig. 1.

Remark 1: The adoption of rates for admission and re-
source allocation control induces a fluid modelling approach
where system variables model the evolution of the expectation
of physical quantities of the actual system. Fluid approxima-
tions are typical in management of computing systems (see,
e.g., [7]).

∑
ui(t)λ(t)

δ(t)

γ1(t)
u1(t)

w1(t)

γ2(t)
u2(t)

w2(t)

γn(t)
un(t)

wn(t)

Fig. 1. A DCN as a multi-queue scheme.

A. Event-triggered mechanism
We follow a discrete-event system approach to modelling

a DCN as a multi-queue scheme. An event generator is
introduced as the mechanism indicating instants at which a
well-defined triggering condition is satisfied. The event-wise
evolution of time can be modelled as tk+1 = tk+T (k), where
tk denotes the time at which the kth event occurs (is generated),
and T (k) is called the inter-event period and is permitted
to be time-varying. The obtained discrete-event model is a

4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

result of 1) the presence of a buffer (central queue), and 2)
the admission control policy.

B. Discrete-event model with AIMD dynamics
We consider a set of n computing nodes and assume that a

workload λ(t) enters the system via a central queue (buffer),
as illustrated in Fig. 1. We assume that λ : R≥0 → L is a right-
continuous function, with L ⊂ R>0. The continuous-time dy-
namics of the multi-queue system with backlog [δ(t) w(t)⊤]⊤

can be written in a compact form as[
δ̇(t)
ẇ(t)

]
=

[
1 −1⊤ 0⊤

0 I −I

]λ(t)u(t)
γ(t)

 . (1)

We transform (1) to a discrete-event system by introducing
the following triggering mechanism. An event occurs at tk,
k ∈ N, when the backlog in the buffer vanishes, i.e., when

δ(tk) = 0. (2)

Condition (2) implies that all the requests queued in the
buffer up to time tk have been dispatched to individual nodes.
Hence, the buffer instantaneously vanishes at tk. The sequence
{tk}∞k=0 is non-decreasing, i.e., tk ≤ tk+1. By associating tk
with the kth event, we count events by the sequence {k}∞0 .
The following scheduling logic guarantees the generation of
events. Intuitively, should the buffer be non-empty, individual
nodes attempt to drain the buffer by increasing their admission
rates linearly. When an event occurs at tk, individual admission
rates drop instantaneously. We stress that this is the opposite of
the classic AIMD scheme [13] where individual nodes attempt
to fill up the underlying buffer.

Remark 2: Although the proposed triggering mechanism
may reduce the communication overhead of the DCN in hand,
it is chosen as it enables full workload dispatch in finite time,
which is essential in our setting. Thus, the triggering condition
(2) pertains to a context different from typical event-triggered
transmission schemes [30], [31] whose fundamental objective
is to minimise the use of communication resources by limiting
unnecessary transmissions of data.

By denoting

ui(t
−
k) = lim

t→tk
t<tk

ui(t), ui(t
+
k) = lim

t→tk
t>tk

ui(t), (3)

i.e., the admission rate of the ith node right before and right
after the kth event, respectively, we define

ui(t
+
k) = βiui(t

−
k), (4)

where 0 ≤ βi < 1 is called the multiplicative decrease
parameter or drop factor. Intuitively, when the buffer is empty,
individual admission rates are triggered to instantaneously
shrink to a fraction of ui(t

−
k) according to (4). This is called

the Multiplicative Decrease (MD) phase. We note that multiple
successive drops are permitted during the MD phase. Instan-
taneous drops are carried out as long as the buffer remains
empty. Right after the MD phase, i.e., when δ(t+k) > 0, we
require the ith admission rate ui(t) grow in a ramp fashion as

ui(t) = βiu(t
−
k) + αi(t− tk), t > tk, (5)

where the slope of the ramp αi > 0 is called the growth rate
or the increase parameter. Since ui(t) is strictly increasing in
t, there exists a finite tk+1 ≥ tk such that δ(tk+1) = 0, under
a bounded workload. We call T (k) = tk+1−tk the inter-event
period, and the interval (tk, tk+1) the Additive Increase (AI)
phase.

Remark 3: The proposed scheduling scheme 1) prevents
over-provisioning of available resources by limiting the work-
load share during the MD phase, and 2) meets the demand
in finite time by permitting the admission of an ever-growing
number of requests during the AI phase. These conflicting
objectives, which are essential in typical scheduling and
resource allocation systems, are attained by controlling the
backlog of the central queue in an event-triggered fashion. The
construction of meaningful cost functions guiding the selection
of AIMD parameters for optimally achieving such objectives
is possible [23].

Remark 4: The event-wise dynamics of the ith admission
controller can be written as

ui(k + 1) = βiui(k) + αiT (k), (6)

where ui(k) = ui(tk), T (k) = tk+1 − tk, 0 ≤ βi < 1, and
αi > 0. We call the tuple (αi, βi) the AIMD parameters of the
ith node. Note that T (k) is a function, among others, of the
underlying workload. If

∑n
i=1 βiui(tk) ≥ λ(tk), then, T (k) =

0, and ui(k+1) = βiui(k). In this case, the additive increase
phase of the controller is omitted and, instead, a sequence of
multiplicative decreases occurs until requests are queued in
the buffer.

Remark 5: The ith control system (5)-(6) is event-triggered
with varying period T (k) ≥ 0. We assume that the admission
rate function, ui(t), is entirely controlled by the ith individual
node and not by the aggregation node associated with the cen-
tral queue. Under this assumption, a decentralised scheduling
scheme is coordinated as follows. The term 1

ui(t)
specifies

the interval between instants at which the ith node calls for
and admits a request. If a request, dispatched from the central
queue upon ith node’s demand, reaches the ith node, the latter
stays in the AI phase, otherwise instantaneously enters the MD
phase and, in parallel, calls for a new request. In other words,
ui(t) ramps up with new request arrivals or drops after request
call failures.

Remark 6: The AIMD-based algorithm proposed in the
paper is in agreement with a synchronous setting [13]. In
particular, we assume that all computing nodes go through the
MD and AI phases simultaneously. An asynchronous setting
can be modelled by allowing drop factors βi to take on a set of
different values [15]. Convergence properties of asynchronous
schemes will be investigated in future work.

Remark 7: The classic AIMD algorithm [13] with capacity-
related triggering conditions enjoys a decentralised setup at
the expense of resource utilisation. This trade-off is due to
the impossible communication between individual nodes and
their lack of knowledge about the exact resource capacity.
A similar trade-off is present in our AIMD scheme. The
non-deterministic characteristics of the workload render the
introduction of an extra queue necessary. Although this buffer
adds memory to the system, potentially affecting the overall

VLAHAKIS et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (DECEMBER 2022) 5

queueing overhead, it permits decentralised coordination and
full workload dispatch.

By integrating ẇ(t) in (1) in the interval [tk, tk+1] with γi(t)
constant, and ui(t) given by (5), the event-wise dynamics of
the local backlog is written as wi(k+1) = wi(k)+(βiui(k)+
1
2αiT (k)−γi(k))T (k), where γi(k) denotes the constant value
of γi(t) for t ∈ [tk, tk+1]. Letting α = (α1, . . . , αn), and
B = diag(β1, . . . , βn), an event-driven discrete model of the
system shown in Fig. 1, associated with the AIMD admission
policy, is[

u(k + 1)
w(k + 1)

]
=

[
Bu(k) + αT (k)

w(k) + (Bu(k) + α
2 T (k)− γ(k))T (k)

]
,

(7)
where u(k) is the AIMD-controlled variable with triggering
condition δ(tk) = 0, T (k) is the inter-event period, and γ(k)
is the aggregate vector of service rates which are permitted
to be altered at events. In Section V, we propose a stabilising
feedback solution γ(k) for decentralised resource allocation
that ultimately allows model (7) to be simply tuned via the
AIMD parameters. In Section IV, we focus on the admission
control dynamics, which, as seen from (7), are decoupled from
the aggregate vector w(k).

IV. AIMD ADMISSION CONTROL

We consider a time-varying workload λ(t) ∈ L = [λ, λ] ⊂
R>0, t ≥ 0. We define the average workload between two
instants, tk and tk+1, tk+1 ≥ tk ≥ 0, as

λ̂(k) =

{
1

tk+1−tk

∫ tk+1

tk
λ(t)dt if tk+1 > tk,

λ(tk) if tk+1 = tk.
(8)

Thus, we have λ̂(k) ∈ L = [λ, λ].
Under the proposed triggering mechanism, an event occurs

at tk when the backlog is zero, δ(tk) = 0. By integrating δ̇(t)
given in (1) in the interval [tk, tk+1] with boundary conditions
δ(tk) = δ(tk+1) = 0, and with T (k) = tk+1 − tk, and each
ui(t) evolving according to (5), we have

λ̂(k)T (k)−
n∑

i=1

(2βiui(k) + αiT (k))
T (k)

2
= 0, (9)

from which we derive that T (k) = 2 λ̂(k)−β⊤u(k)
1⊤α

, with λ̂(k)

defined in (8). Since λ̂(k) can take any value in [λ, λ], we
define the inter-event period as

T (k) = max

{
0, 2

λ̂(k)− β⊤u(k)

1⊤α

}
. (10)

By substituting T (k) in (6) for the right-hand side of (10), the
aggregate admission control system is

u(k + 1) =

{
Bu(k) if β⊤u(k) ≥ λ̂(k)

Φu(k) +Gλ̂(k) if β⊤u(k) < λ̂(k),
(11)

where u(0) ∈ Rn
>0, λ̂(k) ∈ L ⊂ R>0, and

Φ = B −
(

2

1⊤α

)
αβ⊤, (12)

G =

(
2

1⊤α

)
α, (13)

with α ∈ Rn, β ∈ Rn, αi > 0, 0 ≤ βi < 1, i = 1, . . . , n, and
B ∈ Rn×n as defined in (7).

It is worth noting that the system (11) cannot exhibit a Zeno
behaviour by the boundedness of the workload and the fact that
its mode-1, which corresponds to T (k) = 0, is applied at most

N successive times, with N ≤
⌈

log λ

2λ

log βmax

⌉
(see Proposition 4.2).

Remark 8: System (11) belongs to the family of piece-
wise affine systems, which are well-known for their inherent
complexity [32]. However, this modelling approach permits a
positive system representation, an essential property for an ad-
mission control scheme where individual controlled variables,
ui(t), are non-negative quantities. Positivity of (11) is derived
from (6) and (10). It is also worth noting that the dynamics
(11) is continuous2.

A. Convergence
Before showing that (11) has a uniformly bounded solution,

u(k), for all initial conditions u(0) ∈ Rn
>0, we recall the

following results.
Theorem 4.1 ([20, Theorem 1], [21, Section 5]): Let

C = D + µζζ⊤, where D ∈ Rn×n is diagonal, µ ∈ R, and
ζ ∈ Rn. Let d1 ≤ d2 ≤ . . . ≤ dn be the eigenvalues of D,
and c1 ≤ c2 ≤ . . . ≤ cn be the eigenvalues of C. Then,

1) d1 ≤ c1 ≤ d2 ≤ c2 ≤ . . . ≤ dn ≤ cn if µ > 0,
2) c1 ≤ d1 ≤ c2 ≤ d2 ≤ . . . ≤ cn ≤ dn if µ < 0.

Theorem 4.1 underpins the development of the following
result.

Theorem 4.2: Matrix Φ defined in (12) is Schur for all αi >
0, 0 ≤ βi < 1, i = 1, . . . , n.

Proof: Stability of matrix Φ has be shown in [27] for
0 < βi < 1, i = 1, . . . , n. In Appendix I-A, we provide a
complete proof allowing βi = 0 for some i = 1, . . . , n. If
βi = 0 for all i = 1, . . . , n, the proof is trivial as Φ = 0.
We are now in the position to state a stability result associated
with system (11).

Theorem 4.3: Consider the matrix set Σ = {Φ, B}, where
Φ is defined in (12). Then, ρ(Σ) < 1, for all 0 ≤ βi < 1,
αi ≥ 0, i = 1, . . . , n.

Proof: See Appendix I-B.
For simplicity, we write (11) as

u(k + 1) = Aσ(k)u(k) + bσ(k)λ̂(k), (14)

where u(0) ∈ Rn
>0, the switching signal is defined as 3

σ(k) =

{
1 if β⊤u(k) ≥ λ̂(k)

2 if β⊤u(k) < λ̂(k),
(15)

and A1 = B, A2 = Φ, b1 = 0 ∈ Rn, and b2 = G.
Theorem 4.3 implies that the linear part of (14), namely,

u(k + 1) = Aσ(k)u(k) is asymptotically stable for all u(0) ∈
Rn

>0 and any switching sequence {σ(k)}∞0 .4 This leads to the
following corollary.

2Continuity is necessary for the construction of compact reachable sets.
3We abuse notation of σ(·) for brevity, as the switching signal is a function

of the state u(k) and λ̂(k), i.e., σ(·) : Rn+1
>0 → {1, 2}.

4This is sufficient, yet not necessary, to guarantee asymptotic stability of the
linear part under constrained switching sequences. Each switching sequence is
uniquely defined for a given initial condition u(0) and an admissible sequence
{λ̂(k)}∞0 .

6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

Corollary 3.1: The solution to (11), equivalently to (14), is
uniformly bounded for all initial conditions u(0) ∈ Rn

>0.
Proof: We show that the quantity limk→∞ ∥u(k)∥ is

bounded for any norm ∥ · ∥. For any N ∈ N, u(0) ∈ Rn
>0 and

an admissible sequence λ̂(0), λ̂(1), . . . , λ̂(N − 1), we have

u(N) =

N−1∏
j=0

Aσ(N−1−j)u(0)

+

N−1∑
j=0

N−2−j∏
ν=0

Aσ(N−1−ν)bσ(j)λ(j). (16)

By Theorem 4.3, ρ = ρ(A1, A2) < 1, thus, for any norm ∥ · ∥
and all vectors x ∈ Rn, there exist scalars Γ ≥ 1 and r > 0
such that ρ ≤ r < 1 and

∥
t−1∏
j=0

Aσ(t−1−j)x∥ ≤ Γrt∥x∥. (17)

Consequently,

∥u(N)∥ ≤ ΓrN∥u(0)∥+ Γ(1 + r + . . .+ rN−1)max
λ̂∈L

∥Gλ̂∥

≤ ΓrN∥u(0)∥+ Γ

1− r
∥Gλ∥. (18)

It follows that limN→∞ ∥u(N)∥ ≤ Γλ
1−r∥G∥, which completes

the proof.
Ignoring switching constraints, the uniform boundedness of

u(k) is shown in Corollary 3.1, which results from Theorem
4.3. Taking account of the state-dependent constraints on the
switching signal, a tighter bound on the solution u(k) can
be established. To this purpose, we introduce the following
state augmentation. Let z(k) = [u(k)⊤ λ̂(k)]⊤ ∈ Rn+1

>0 , and

define matrices Φ̂ =

[
Φ G

01×n 0

]
, B̂ =

[
B 0n×1

01×n 0

]
, Ĝ =[

0n×1

1

]
. Then, a state-dependent switching system equivalent

to (11) and (14) is written as

z(k + 1) = F (z(k)), (19)

where the map F : Rn+1
>0 → Rn+1

>0 is defined as

F (z(k)) =

{
B̂z(k) + Ĝη(k), if c⊤z(k) ≥ 0,

Φ̂z(k) + Ĝη(k), if c⊤z(k) < 0,
(20)

with η(k) ∈ L ⊂ R>0, λ̂(k+1) = η(k), and c =
[
β⊤ − 1

]⊤
.

Asymptotic stability of the linear part of (19)-(20) follows
from the following proposition.

Proposition 4.1: Consider matrices Φ̂, B̂, as defined in
(20). Then, the joint spectral radius of Σ̂ = {Φ̂, B̂} is ρ(Σ̂) <
1.

Proof: Since Φ̂, B̂ have a block upper-triangular
form, from [22, Proposition 1.5], we have that ρ(Σ̂) =
max{ρ({Φ, B}), ρ(0)}, i.e., ρ(Σ̂) = ρ({Φ, B}). Then, by
Theorem 4.3, ρ({Φ̂, B̂}) < 1.

Next, we show that the system (19)-(20) possesses an
invariant set reachable for any initial condition in finite time.

We use the same notation for sets, i.e., F (S) = {F (x) : x ∈
S}, S ⊂ Rn+1. We define

C1 = {z ∈ Rn+1 : z ≥ 0, c⊤z ≥ 0, zn+1 ∈ L}, (21)

C2 = {z ∈ Rn+1 : z ≥ 0, c⊤z ≤ 0, zn+1 ∈ L}. (22)

Proposition 4.2: With the notation introduced in (19) and
(22), consider the set sequence

Zj+1 = Zj ∪ F (Zj), Z0 = C2. (23)

There exists N ∈ N such that ZN is invariant with respect to
(19)-(20). Also, the minimum value of N is upper-bounded

by
⌈

log λ

2λ

log βmax

⌉
, where λ ∈ R>0 and λ ∈ R>0 are the lower

and upper bounds of L ⊂ R>0, respectively, and βmax =
maxi∈{1,...,n} βi.

Proof: We denote by FM (X) the composition F ◦
F ◦ . . . ◦ F of length M . First, we show that C2 is always
reachable from any initial condition in finite time. For any
z(0) = z0 ∈ Rn

>0 × L with ∥z0∥ finite, there exists k∗ ∈ N,
which depends on z0 ∈ C1, such that z(k∗) = F k∗

(z0) ∈ C2.
Suppose that this is not always true. Then, λ ≤ zn+1(k) ≤∑n

i=1 β
k
i zi(0) for all k ≥ 0. Setting βmax = maxi={1,...,n} βi,

and z̄ = maxi={1,...,n} zi(0), we may write nβk
maxz̄ ≥ λ

or k log βmax ≥ log λ
nz̄ or k ≤ log λ

nz̄

log βmax
since log βmax < 0.

However, the latter cannot always be true, since k ≥ 0 can
be arbitrarily large. Consider z(0) ∈ C2. There is N ∈ N,
j ∈ [1, N], such that F j(z(0)) ∈ C2. Since (23) can be written
as Zi = ∪i

j=0F
j(Z0) with Z0 = C2, we have

ZN = Z0 ∪ F (Z0) ∪ . . . ∪ FN−1(Z0). (24)

If z(0) ∈ ZN \ FN−1(Z0), z(1) ∈ ZN . If z(0) ∈ FN−1(Z0),
for any ζ ∈ FN−1(Z0) there is y ∈ Z0 such that ζ =
FN−1(y). Then, for any y ∈ Z0 there is 1 ≤ i∗ ≤ N such that
F i∗(y) ∈ Z0. Thus, we may write F (ζ) = F (FN−1(y)) =
FN (y) = FN−i∗(F i∗(y)) = FN−i∗(ξ) with ξ ∈ Z0. Clearly
FN−i∗(ξ) ∈ ZN .

To obtain an upper bound on the minimum value of N ,
we shall find the trajectory, originating at a point in C2, that
revisits C2 after a course of multiplicative decreases with
maximum length k∗. From (19)-(20),

n∑
i=1

zi(k) ≤ 2λ̂(k) ≤ 2λ (25)

for all k ≥ 0 and z(0) ∈ C2. Consider z(0) = z0 ∈ C2

and z(1) = F (z0) ∈ C1, and let βmax = maxi∈{1,...,n} βi.
Then, we require

∑n
i=1 β

k∗

i zi(1) ≤ λ̂(k∗), which is true if
βk∗

max
∑n

i=1 zi(1) ≤ λ̂(k∗) or, from (25), if βk∗

max2λ ≤ λ̂(k∗).
The latter yields a maximum k∗ if we require λ̂(k) = λ for all

k ≥ 1, i.e., βk∗

max2λ < λ or k∗ >
log λ

2λ

log βmax
. Thus, the minimum

value of N is less than or equal to
⌈

log λ

2λ

log βmax

⌉
.

We are now in the position to define the fixed point of (19)-
(20) in the following theorem.

VLAHAKIS et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (DECEMBER 2022) 7

Theorem 4.4: With the notation introduced in (19), consider
the set sequence {Yj}j with

Y0 = ZN , (26)
Yj+1 = F (Yj), (27)

where ZN is constructed as in Proposition 4.2, and let Y∞ =
limj→∞ Yj . Then, Y∞ =

⋂∞
j=0 Yj exists.

Proof: The sets Yj , j ≥ 0, are compact; indeed,
closedness follows by continuity of (19)-(20) on the switching
surfaces and boundedness follows from the compactness of Y0

and the piecewise affine dynamics. Moreover, the inclusions
Yj+1 ⊆ Yj , j ≥ 0, hold by invariance of Y0 with respect
to (19)-(20) as shown in Proposition 4.2. Consequently, the
sequence {Yj}j is a nonincreasing sequence of compacts sets,
and thus, has a limit Y∞, with Y∞ =

⋂∞
j=0 Yj [33, Lemma

1.8.2].
A corollary of Theorem 4.4 follows.
Corollary 4.1: Suppose that there exists k∗ ∈ N such that

Yk∗ ⊆ C2, where C2 is defined in (22). Then, Y∞ ⊆ C2 is
the minimal invariant set of the second mode of (19)-(20).
Moreover, If C2 is such that L is a singleton, i.e., L = {λ},
λ ∈ R>0, then

Y∞ =
[(
(In − Φ)−1Gλ

)⊤
λ
]⊤

. (28)
Proof: Since Y∞ ⊆ Yk for all k ≥ 0, by assumption, we

have Y∞ ⊆ Yk∗ ⊆ C2. Also, the set sequence (26)-(27) for
j ≥ k∗ is obtained by

Ŷν+1 = Φ̂Ŷν ⊕ Ĝλ, (29)

where ν ≥ 0, Ŷ0 = Yk∗ . By linearity, and asymptotic stability
of Φ̂, it follows that the limit set of (29), namely, Ŷ∞, exists
[34] and is the minimal invariant set of the second mode
of (19)-(20). If, also, L is deterministic and singleton, the
sequence (29), originating at any point in C2, converges to
Y∞ = (In+1− Φ̂)−1Ĝλ. Then, (28) is immediately derived in
view of

(In+1 − Φ̂)−1Ĝλ =

[
(In − Φ)−1 (In − Φ)−1G

01×n 1

] [
0n×1

1

]
λ.

B. Convexification of Y∞

The construction of {Yj}j is challenging as it is generically
a sequence of non-convex sets. Calculating the sequence (26)-
(27) recursively may be difficult to accomplish efficiently
mainly due to the piecewise affine structure of the map F
and the non-convexity of individual members, Yj , j ≥ 1. To
this end, we present a convexified version of the sequence
{Yj}j , the validity of which is stated next.

Proposition 4.3: Consider the set sequence

P 1
j+1 = co (F (Pj) ∩ C1) , (30)

P 2
j+1 = co (F (Pj) ∩ C2) , (31)

Pj+1 = P 1
j+1 ∪ P 2

j+1, (32)

with P0 = P 1
0 ∪P 2

0 , P 1
0 = co(Y0∩C1) and P 2

0 = co(Y0∩C2).
Then,

Pj = co(Yj ∩ C1) ∪ co(Yj ∩ C2), (33)

Fig. 2. Construction of ZN , with N = 6, for AIMD system with α =
(1, 2), β = (0.5, 0.85), and λ̂ ∈ [1, 2.5].

Fig. 3. Calculation of P15 of the sequence (30)-(32), with ZN illustrated
in Fig. 2, for AIMD parameters α = (1, 2), β = (0.5, 0.85), and
λ̂ ∈ [1, 2.5].

for all j ≥ 0.
Proof: See Appendix I-C.

Remark 9: Each set Pj is the union of two convex sets.
Each of these two sets has a convex intersection with either
C1 or C2. Thus, the sequence (30)-(32), originating at P0 =
co(ZN ∩ C1) ∪ co(ZN ∩ C2), can efficiently be calculated
on standard computational geometry software. The set ZN

defined in (24), is the union of N non-convex sets with the
ν th member being F ν−1(Z0), ν = 1, . . . , N , consisting of one
convex polyhedron if ν = {1, 2}, or 2ν−2, generically non-
convex, polyhedra, otherwise.

Example 1: Consider a two-node system with AIMD pa-
rameters α = (1, 2), β = (0.5, 0.85), and workload λ̂ ∈
[1, 2.5]. We wish to approximate Y∞ via the sequence (30)-
(32). We first construct the set ZN , with N = 6, which is
the union of 32 polyhedra as shown in Fig. 2. For kmax = 15
iterations, we obtain P15 which is shown in Fig 3 in yellow. We
also illustrate the orthogonal projection U = {u ∈ R2 : ∃λ ∈
L such that [u⊤ λ]⊤ ∈ P15}, in Fig. 4. Note that P15 = U×L
by the structure of (19)-(20). Trajectories u(k) ∈ R2 for
various admissible sequences {λ̂(k)} are also depicted in Fig.
4.

C. Constant workload
We now focus on the convergence properties of the trajec-

tories of the system (11), under a constant workload. We first

8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

Fig. 4. Orthogonal projections of P1 = P 2
1 ∪ P 2

1 and P15 = P 2
15 ∪

P 2
15 with P1, P15 illustrated in Fig. 3, for AIMD parameters α = (1, 2),

β = (0.5, 0.85), and λ̂ ∈ [1, 2.5].

prove the following invariance property with respect to the
second mode of (11).

Proposition 4.4: Let

u+ = Φu+Gλ, (34)

where u+ denotes the successor state of u, the matrices Φ ∈
Rn×n, G ∈ Rn are as defined in system (11), and λ ∈ R>0

is a positive constant. If

0 ≤ β1 = · · · = βn < 1, or, (A1)
n∑

i=1

βiαi ≤ 0.5

n∑
i=1

αi, (A2)

with αi > 0, 0 ≤ βi < 1, i = 1, . . . , n, being the AIMD
parameters, then, the set

U = {u ∈ Rn : β⊤u ≤ λ, 1⊤u ≥ λ, u ≥ 0}, (35)

is invariant with respect to (34).
Proof: If u ∈ U then 1⊤u+ ≥ λ and u+ ≥ 0. To show

that β⊤u+ ≤ λ when the AIMD parameters satisfy (A1) or
(A2) we proceed as follows. Consider the linear program

max
u∈U

J(u), with J(u) = β⊤(Φu+Gλ). (36)

By linearity of J(u) in u ∈ U and the convexity of U , the
solution of (36) lies at the boundary of U . We can write

J(u) =

n∑
i=1

βiui

(
βi − 2

n∑
i=1

βiᾱi

)
+ 2

n∑
i=1

βiᾱiλ, (37)

where ᾱi = αi/(1
⊤α). If (A1) is true, let β̄ = β1 = β2 =

· · · = βn. Then, J(u) = −β̄21⊤u+ 2β̄λ is maximised at any
point ū ∈ U for which 1⊤ū = λ. Then, J(ū) = β̄(2−β̄)λ < λ
since β̄(2 − β̄) < 1 for all 0 ≤ β̄ < 1. If (A2) is true,∑n

i=1 βiαi ≤ 0.5
∑n

i=1 αi, i.e., 2
∑n

i=1 βiᾱi ≤ 1, we may
write J(u) =

∑n
i=1 β

2
i ui + 2

∑n
i=1 βiᾱi(λ −

∑n
i=1 βiui) <

J̄(u) =
∑n

i=1 β
2
i ui + λ −

∑n
i=1 βiui which is maximised at

one of the n vertices ui = eiλ, where ei ∈ Rn is the ith

vector of the canonical basis of Rn. Clearly, J(u) ≤ J̄(ui) =
(β2

i − βi + 1)λ ≤ λ, which is true since −.25 ≤ β2
i − βi ≤ 0

for all 0 ≤ βi < 1

An immediate consequence of Proposition 4.4 is the con-
vergence of all trajectories of the system (11) with constant
workload to a unique fixed point. This is stated next.

Theorem 4.5: Let the AIMD system (11), equivalently (14),
have a constant workload λ∗ ∈ R>0. If (A1) or (A2) is true,
then, for any initial condition u(0) ∈ Rn

>0, the underlying state
trajectories converge to u∗ = (I − Φ)−1Gλ∗.

Proof: From Proposition 4.4, U defined in (35) is
invariant with respect to u(k+1) = Φu(k)+Gλ∗, and hence,
if u(0) ∈ U , limk→∞ u(k) = u∗. Therefore, it suffices to
show that all trajectories originating at u(0) /∈ U converge to
U in finite time. Let U1 = {u ∈ Rn

≥0 : β⊤u > λ, u ≥ 0},
U2 = {u ∈ Rn

≥0 : 1⊤u < λ, u ≥ 0}, and Ū = U1 ∪ U2.
Clearly, U ∪ Ū = Rn

≥0. Consider that u(0) ∈ U1 with finite
∥u(0)∥. Similarly to Proposition 4.2, there is a finite κ > 0
such that β⊤u(κ) ≤ λ, with ui(κ) = βκ

i ui(0). Suppose
u(κ) /∈ U but u(κ) ∈ U2. Then, u(κ + 1) = Φu(κ) + Gλ∗,
and, by Proposition 4.4, 1⊤u(κ+1) > λ and β⊤u(κ+1) < λ,
i.e., u(κ + 1) ∈ U . Thus, for any initial condition, the
system trajectories enter U in finite time and converge to
u∗ = (I − Φ)−1Gλ∗. The uniqueness of u∗ is a result of the
invertibility of I − Φ following from ρ(Φ) < 1 by Theorem
4.2.

We claim that Theorem 4.5 is true under much milder as-
sumptions. In fact, from extensive simulations using different
system dimensions and AIMD-parameters configurations, the
set sequence (26)-(27) always converges to a unique fixed
point when the workload is constant, if αi > 0, 0 ≤ βi < 1,
i = 1, . . . , n. This is stated formally next.

Conjecture 4.1: Consider the AIMD system (11) with a
constant workload λ̂(k) = λ ∈ R>0 for all k ≥ 0. Then,
for any value of the parameters αi > 0, 0 ≤ βi < 1,
i = 1, . . . , n, the solution (16) converges to a unique fixed
point u∗ = (I − Φ)−1Gλ.

Remark 10: The fixed point claimed in Conjecture 4.1 is
written element-wise as u∗

i = αi

1−βi
T ∗, where T ∗ > 0 is

the associated inter-event period. Under Conjecture 4.1, or
when conditions (A1) or (A2) hold, the fixed point u∗ can
be controlled by appropriately tuning the AIMD parameters
(αi, βi), i = 1, . . . , n, permitting objectives, such as weighted
fairness, to be efficiently achieved.

Example 2: We consider an AIMD system with 1000 nodes
and constant workload λ = 1. Let individual AIMD parame-
ters be randomly drawn from the uniform distribution in the
intervals 0.1 ≤ αi ≤ 10 and 0 ≤ βi ≤ 0.9, respectively.
Convergence and the randomly picked weighted fairness are
demonstrated in Fig. 5.

V. RESOURCE ALLOCATION CONTROL

Resource allocation in DCNs pertains to strategies ensuring
that critical performance metrics (e.g., execution and response
times) are bounded as more requests are added to the system.
In this section, we provide a resource allocation law for con-
trolling individual service rates γi(k), i = 1, . . . , n. We focus
on stability as a qualitative property, in the absence of which,
other objectives may be impossible to attain. We present a
resource allocation strategy coupled with the admission control

VLAHAKIS et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (DECEMBER 2022) 9

Fig. 5. Convergence and weighted fairness of the one-thousand-node
AIMD system described in Example 2.

policy (11), originally introduced for constant workload in
[27]. We show that the proposed resource allocation control
law is compatible with time-varying workload profiles.

First, we provide an upper bound on the inter-event period
T (k). We rewrite (10) as

T (k) = max

{
0, 2

−c⊤z(k)

1⊤a

}
, (38)

where c is as defined in (20), and z(k) is the solution to (19)-
(20) with z(0) ∈ C1∪C2. From Proposition 4.2, for any initial
condition z(0), the solution z(k) is confined in ZN , defined
in (24), which is invariant with respect to (19)-(20). Thus,
we focus on an upper bound on T (k) obtained by maximising
(38) over z(k) ∈ ZN . From the invariance and compactness of
ZN , we derive boundedness of T (k) being a piecewise linear
function of z(k). Also, ZN = (ZN ∩C1)∪(ZN ∩C2). Clearly,
if z(k) ∈ ZN ∩ C1, T (k) = 0. Thus, T (k) is linear in z(k)
for z(k) ∈ ZN ∩ C2 and an upper bound may be obtained
efficiently. This is provided by the following linear program
with convex constraints:

max
z

{
2
−c⊤z

1⊤α

}
subject to z ∈ co(ZN ∩ C2). (39)

We denote by Tmax the upper bound obtained from (39). We
are now in a position to state the following theorem.

Theorem 5.1: Consider a workload λ̂(k) ∈ L = [λ, λ] ⊂
R>0 for all k ≥ 0, and let (αi, βi) be the AIMD parameters,
with αi > 0, 0 ≤ βi < 1, i = 1, . . . , n, and γi(k), i =
1, . . . , n, denote service rates at the kth event, respectively.
The event-based dynamics of the backlog of the ith node is
written as

wi(k+1) = wi(k)+(βiui(k)+
αi

2
T (k)−γi(k))T (k), (40)

where wi(0) ≥ 0, ui(k) is the ith state of system (11), T (k)
is the associated inter-event period, and k ≥ k∗ such that
[u(k)⊤ λ̂(k)]⊤ ∈ ZN , and T (k) ≤ Tmax. Let the resource
allocation policy be

γi(k) = βiui(k) +
√

2αiwi(k). (41)

Then, the set Wi = [0, ai

2 T
2
max] is invariant with respect to

(40)-(41). Also, for wi(0) /∈ Wi, there is κ > 0 such that
wi(κ) ∈ Wi.

Proof: One may check that (40)-(41) is nonnegative, and
wi(k + 1) ∈ [0, αi

2 T (k)2] if wi(k) ∈ [0, αi

8 T (k)2] and
wi(k + 1) ≤ wi(k) if wi(k) ≥ αi

8 T (k)2. Since, Tmax ≥
T (k) for all k ≥ k∗, we have that wi(k + 1) ∈ Wi if
wi(k) ∈ [αi

2 T (k)2, αi

2 T 2
max], and hence, Wi is invariant. The

last statement of the theorem follows from [27, Theorem 3].

We highlight appealing characteristics of the proposed re-
source allocation scheme as follows.

Remark 11: The positivity of (40)-(41) implies that re-
sources are not over-provisioned under the control (41).
Trajectories of (40)-(41) are globally attracted to Wi =
[0, ai

2 T
2
max] in finite time. See Example 3. The bound on

Tmax may be improved by solving (39) over z ∈ co(Y∞∩C2).
The boundedness of local backlogs and the boundedness of the
AIMD system trajectories make it feasible to obtain bounds
on performance metrics, e.g., queueing time. The latter may
be computed locally, see [27, Section VI].

Remark 12: The resource allocation (41) is decentralised as
only local information is required. Moreover, it is scalable with
respect to the number of computing nodes. Stability properties
of (40)-(41) are independent of the particular tuning of AIMD
parameters αi, βi, and the workload function λ̂(k) ∈ L.

Example 3: Consider a system with three nodes, AIMD pa-
rameters α = (1, 1.5, 2), β = (0.8, 0.5, 0.3), varying workload
λ̂ ∈ [90, 100], and initial local backlog w(0) = (10, 20, 30).
Let individual backlogs be regulated via the resource allocation
control (41). The evolution of local backlogs, wi(k), i =
1, 2, 3, k ≥ 0, is depicted in Fig. 6. By Theorem 5.1, invariant
sets are computed as W1 = [0, 125.08], W2 = [0, 187.63],
W3 = [0, 250.17], with Tmax = 15.82 obtained by (39). The
maximum values of the sets Wi, i = 1, 2, 3, are illustrated
with dashed lines. Tighter bound on Tmax is attained by solving
(39) over an approximation of co(Y∞∩C2), as pointed out in
Remark 11. The improved maximum values of Wi, i = 1, 2, 3,
are shown with solid lines.

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

Fig. 6. Local backlogs of a three-node system described in Example 3.

VI. COMPARATIVE STUDY

The proposed control scheme has been successfully inte-
grated into Kubernetes1 as the core architecture of a resource
autoscaling mechanism established in a small edge infras-
tructure [10]. In addition to demonstrating the superiority of

10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

the proposed framework to Kubernetes’ baseline solution, the
experiments presented in [10] also highlight how the frame-
work can be customised to address practical challenges such
as workload identification and quantification of scheduling
decision variables. Here, we provide a direct comparison of the
proposed AIMD-based solution against standard scheduling
principles, namely, the Weighted Random (WR) scheduler,
the Weighted Round-Robin (WRR) scheduler [35], and the
Join-the-Shortest-Queue (JSQ) scheduler [36]. Our numerical
experiment is carried out in Matlab, hence we avoid noisy
observations potentially emerging in real deployments. Ac-
cording to the WR scheduler, a request is assigned to a node
randomly (e.g., by flipping a biased coin), whereas according
to the JSQ scheduler, a request joins the node with the least
backlog (in case of ties, WR scheduling is applied). The
WRR scheduler has a cyclic behaviour where, in each cycle,
a request joins a node based on the previous choice and the
weights associated with the nodes.

In our experiment, we consider a Poisson workload profile
with a mean inter-arrival rate λ [requests/sec], that is, a
request flow with random inter-arrival intervals drawn from
an exponential distribution with mean value 1

λ . This stochastic
workload setup differs from the analysis in the previous
sections, highlighting the versatility of our approach. We
consider a three-node system with node-2 having two times
the resource size of node-1 and node-3 having three times
the resource size of node-1. In our numerical study, whenever
a non-AIMD solution is considered, the service rate of each
node is fixed. Specifically, we choose γ1 = 1

6λρ, where ρ > 1,
γ2 = 2γ1 and γ3 = 3γ1. Let p(j) be the node index to which
the jth request is assigned. According to the WRR scheduler,
the node index is updated as p(j) = mod (j−1, 6)+1, where
p(j) ∈ {1} indicates assignment to node-1, p(j) ∈ {2, 3}
indicates assignment to node-2, and p(j) ∈ {4, 5, 6} indicates
assignment to node-3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

Fig. 7. Queueing times of 10000 requests entering a three-node
system as a Poisson workload with a mean inter-arrival rate λ = 100
[requests/sec], and scheduled according to the WR, WRR, JSQ, and
AIMD methods.

We assess the performance of the four schemes by mea-
suring the resulting queueing time at the request level for
a Poisson workload with a mean inter-arrival rate λ = 100
[requests/sec] and a total duration of 100 seconds. In the WR,
WRR, and JSQ solutions, the requests are assigned to nodes

right after their arrivals. In contrast, in the AIMD system, the
requests are required to wait for a period of time before being
dispatched to a computing node, thereby inducing a queueing
overhead. We report the results of an AIMD configuration
against the non-AIMD schedulers in Fig. 7, where the dis-
tributions of queueing times are shown as histograms. In the
figure, we denote by AIMD a three-node system with AIMD
parameters α = (40, 80, 120), β = (0.5, 0.5, 0.5).

By comparing the histograms of the four schemes in Fig. 7,
the worst performance is observed for the WR scheduler,
which indicates the highest mean queueing time (0.412 sec)
and the widest dispersion. The WRR and JSQ schedulers result
in similar performances producing mean queueing times of
0.138 sec and 0.134 sec, respectively, and similar dispersion.
Guided by simulations, our choice of AIMD parameters results
in an AIMD solution that outperforms the other three schemes
achieving the lowest mean queueing time, namely, 0.112 sec,
and significantly less average dispersion. Last, it is worth
noting that the WR, WRR, and JSQ algorithms lead to
overprovisioning of resources on average for 12%, 9%, and
7% of the time, respectively, whereas the AIMD method, by
construction, prevents this phenomenon.

VII. CONCLUSION

We have proposed an AIMD-based control method for
general scheduling and load-balancing problems in distributed
computing networks. By introducing a central queue acting as
the aggregation point of requests, we design an admission con-
trol system with AIMD dynamics that is triggered whenever
the central queue vanishes. Under this triggering condition,
requests are distributed in full, thus overcoming the limitation
of a straightforward application of the AIMD algorithm. The
resulting AIMD control scheme is a positive constrained
switching system, which is convergent under peak bounded
workload profiles irrespective of the AIMD parameters or the
number of nodes. In view of the simplicity of the scheduling
method, we have proposed a stabilising resource allocation
strategy with decentralised architecture leading to a closed-
loop scheduling and resource allocation control system con-
figurable simply by the set of AIMD parameters. Establishing
an optimisation framework for guiding the selection of AIMD
parameters driven by meaningful trade-offs and cost functions
related to, e.g., the maximum triggering frequency and the
average queueing time, is important and will be pursued in
future work.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Archi-
tecture and Computation Offloading,” IEEE Communications Surveys
and Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[2] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and
A. Leva, “Controlling software applications via resource allocation
within the Heartbeats framework,” in Proceedings of the 49th IEEE
Conference on Decision and Control, 2010, pp. 3736–3741.

[3] E. Kalyvianaki, T. Charalambous, and S. Hand, “Adaptive resource pro-
visioning for virtualized servers using kalman filters,” ACM Transactions
on Autonomous and Adaptive Systems, vol. 9, no. 2, pp. 1–35, 2014.

[4] E. Makridis, K. Deliparaschos, E. Kalyvianaki, A. Zolotas, and T. Char-
alambous, “Robust Dynamic CPU Resource Provisioning in Virtualized
Servers,” IEEE Transactions on Services Computing, vol. 15, no. 2, pp.
956–969, 2022.

VLAHAKIS et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (DECEMBER 2022) 11

[5] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-Based Control
for Dynamic Sizing of Resource Partitions,” in Ambient Networks,
J. Schönwälder and J. Serrat, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 133–144.

[6] M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavassiliou,
“Adaptive resource allocation for computation offloading: A control-
theoretic approach,” ACM Transactions on Internet Technology, vol. 19,
no. 2, pp. 1–20, 2019.

[7] J. Tang, W. P. Tay, and Y. Wen, “Dynamic request redirection and elastic
service scaling in cloud-centric media networks,” IEEE Transactions on
Multimedia, vol. 16, no. 5, pp. 1434–1445, 2014.

[8] T. Sandholm and K. Lai, “Dynamic Proportional Share Scheduling
in Hadoop,” in Job Scheduling Strategies for Parallel Processing,
E. Frachtenberg and U. Schwiegelshohn, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 110–131.

[9] S. Ranjan and E. Knightly, “High-performance resource allocation and
request redirection algorithms for web clusters,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 9, pp. 1186–1200, 2008.

[10] D. Spatharakis, I. Dimolitsas, E. Vlahakis, D. Dechouniotis, N. Athana-
sopoulos, and S. Papavassiliou, “Distributed Resource Autoscaling in
Kubernetes Edge Clusters,” in 18th International Conference on Network
and Service Management. IEEE, 2022, pp. 163–169.

[11] A. N. Tantawi and D. Towsley, “Optimal Static Load Balancing in
Distributed Computer Systems,” Journal of the ACM, vol. 32, no. 2,
pp. 445–465, 1985.

[12] S. H. Low and D. E. Lapsley, “Optimization flow control - I: Basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, 1999.

[13] D. M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol. 17, no. 1, pp. 1–14, 1989.

[14] M. Corless, C. King, R. Shorten, and F. Wirth, AIMD Dynamics and
Distributed Resource Allocation. Society for Industrial and Applied
Mathematics, 2016.

[15] R. N. Shorten, D. J. Leith, J. Foy, and R. Kilduff, “Analysis and design
of AIMD congestion control algorithms in communication networks,”
Automatica, vol. 41, no. 4, pp. 725–730, 2005.

[16] R. Shorten, F. Wirth, and D. Leith, “A positive systems model of TCP-
like congestion control: Asymptotic results,” IEEE/ACM Transactions
on Networking, vol. 14, no. 3, pp. 616–629, 2006.

[17] S. Studli, E. Crisostomi, R. Middleton, and R. Shorten, “A flexible
distributed framework for realising electric and plug-in hybrid vehicle
charging policies,” International Journal of Control, vol. 85, no. 8, pp.
1130–1145, 2012.

[18] M. Corless and R. Shorten, “An ergodic AIMD algorithm with applica-
tion to high-speed networks,” International Journal of Control, vol. 85,
no. 6, pp. 746–764, 2012.

[19] A. Berman, R. Shorten, and D. Leith, “Positive matrices associated
with synchronised communication networks,” Linear Algebra and Its
Applications, vol. 393, no. 1-3, pp. 47–54, 2004.

[20] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, “Rank-one modification
of the symmetric eigenproblem,” Numerische Mathematik, vol. 31, no. 1,
pp. 31–48, 1978.

[21] G. H. Golub, “Some Modified Matrix Eigenvalue Problems,” SIAM
Review, vol. 15, no. 2, pp. 318–334, 1973.

[22] R. Jungers, The Joint Spectral Radius, ser. Lecture Notes in Control and
Information Sciences. Springer Berlin Heidelberg, 2009, vol. 385.

[23] W. Ren, E. Vlahakis, N. Athanasopoulos, and R. Jungers, “Optimal Re-
source Scheduling and Allocation in Distributed Computing Systems,”
in Proceedings of the 2022 American Control Conference. IEEE, 2022,
pp. 2327–2332.

[24] S. T. Maguluri and R. Srikant, “Scheduling jobs with unknown duration
in clouds,” in Proceedings of the IEEE INFOCOM, 2013, pp. 1887–
1895.

[25] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource
allocation algorithms for cloud computing clusters,” Performance Eval-
uation, vol. 81, pp. 20–39, 2014.

[26] F. Blanchini and S. Miani, Set-Theoretic Methods in Control, ser.
Systems & Control: Foundations & Applications. Birkhäuser, 2015.

[27] E. Vlahakis, N. Athanasopoulos, and S. McLoone, “AIMD scheduling
and resource allocation in distributed computing systems,” in Proceed-
ings of the 60th IEEE Conference on Decision and Control, 2021, pp.
4642–4647.

[28] L. Kleinrock, Queueing systems, Volume I: Theory. Wiley-Interscience,
1975.

[29] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. Springer US, 2008.

[30] W. Xin, J. Sun, G. Wang, and L. Dou, “A Mixed Switching Event-
Triggered Transmission Scheme for Networked Control Systems,” IEEE
Transactions on Control of Network Systems, vol. 9, no. 1, pp. 390–402,
2022.

[31] X. Wang, J. Sun, G. Wang, F. Allgöwer, and J. Chen, “Data-Driven
Control of Distributed Event-Triggered Network Systems,” IEEE/CAA
Journal of Automatica Sinica, vol. 10, no. 2, pp. 351–364, 2023.

[32] S. V. Raković, P. Grieder, M. Kvasnica, D. Q. Mayne, and M. Morari,
“Computation of invariant sets for piecewise affine discrete time systems
subject to bounded disturbances,” in Proceedings of the 43rd IEEE
Conference on Decision and Control, 2004, pp. 1418–1423.

[33] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, 2nd ed.
Cambridge University Press, 2013.

[34] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of dis-
turbance invariance sets for discrete-time linear systems,” Mathematical
Problems in Engineering, vol. 4, pp. 317–367, 1998.

[35] W. Wang and G. Casale, “Evaluating Weighted Round Robin Load
Balancing for Cloud Web Services,” in 16th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing. Timisoara,
Romania: IEEE, 2014, pp. 393–400.

[36] V. Gupta, M. Harchol Balter, K. Sigman, and W. Whitt, “Analysis
of join-the-shortest-queue routing for web server farms,” Performance
Evaluation, vol. 64, no. 9, pp. 1062–1081, 2007.

APPENDIX I
A. Proof of Theorem 4.2

Matrix Φ is Schur if 0 < βi < 1, i = 1, . . . , n,
see [27, Theorem 2]. Without loss of generality, assume
that β1 = . . . = βp−1 = 0 and 0 < βi < 1, i =
p, . . . , n. Then, it is easy to see that Φ is a block upper-
triangular matrix with diagonal blocks {0, . . . , 0,Φp} where
Φp = diag(βp, . . . , βn)− 2

1⊤α
(αp, . . . , αn)

⊤(βp, . . . , βn), and
σ(Φ) = {0, . . . , 0, σ(Φp)}. Thus, we only need to show
that Φp is a Schur matrix. Note that Φp = (I − 2Ap)Bp,
where Ap = α̂p1

⊤ with α̂p = (αp, . . . , αn)/1
⊤α, and

Bp = diag(βp, . . . , βn). Note also that Ap is a rank-one
matrix with σ(Ap) = {α̂⊤

p 1, 0, . . . , 0} and 0 < α̂⊤
p 1 < 1.

Thus, σ(I − 2Ap) = {ξ, 1, . . . , 1} with ξ = 1 − 2α̂⊤
p 1 and

−1 < ξ < 1. We consider the following two cases.
i) Let ξ = 0. Then, det(Φp) = 0 since det(Φp) =
det(I − 2Ap) det(Bp) and σ(I − 2Ap) = {0, 1, . . . , 1}.
This implies that the product ϕpϕp+1 . . . ϕn = 0, where
{ϕp, . . . , ϕn} = σ(Φp). Letting now Âp = diag(ᾱp, . . . , ᾱn),
where ᾱi = αi/1

⊤α, ∀i, and defining T̂p = Â
1
2
p B

− 1
2

p , it
is true that σ(Φp) = σ(Φ̂p) where Φ̂p = T̂−1

p ΦpT̂p and
Φ̂p = Bp − 2zpz

⊤
p with zp = (

√
ᾱpβp, . . . ,

√
ᾱnβn). Without

loss of generality, assume that ϕp ≤ ϕp+1 ≤ · · · ≤ ϕn. Then,
by Theorem 4.1, we may write that

ϕp ≤ βp ≤ ϕp+1 ≤ βp+1 ≤ . . . ≤ ϕn ≤ βn. (42)

Thus, 0 < ϕi < 1, i = p+1, . . . , n and ϕp = 0, implying that
Φp is a Schur matrix.
ii) Let now ξ ̸= 0. Then, (42) still holds imply-
ing that 0 < ϕi < 1, i = p + 1, . . . , n. Then,
since det(Φp) = det(I − 2Ap) det(Bp) we have that
ϕpϕp+1 . . . ϕn = ξβpβp+1 . . . βn which further implies that
|ϕp| ≤ |ξ|βn < 1 since ϕp+1 . . . ϕn ≥ βp . . . βn−1 from (42).
Thus, matrix Φp is Schur. This completes the proof.

B. Proof of Theorem 4.3
We will consider the following two cases. i) Assume that

0 < βi < 1 ∀i. Define matrix A = 1
1⊤α

diag(α1, . . . , αn) and

12 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

transformation matrix T = A
1
2B− 1

2 , and let Σ̄ = T−1ΣT =
{Φ̄, B̄}, where Φ̄ = T−1ΦT and B̄ = T−1BT = B. Due
to invariance of the joint spectral radius under a similarity
transformation [22, Proposition 1.3], we have ρ(Σ) = ρ(Σ̄).
Matrix Φ̄ is a symmetric matrix. Thus, Σ̄ is a set of two
symmetric matrices and, thus, from [22, Corollary 2.3], we
have ρ(Σ̄) = max{ρ(Φ̄), ρ(B)}. Clearly, since Φ̄, B are Schur
matrices, it follows that ρ(Φ̄) < 1, ρ(B) < 1, and, thus,
ρ(Σ̄) = ρ(Σ) < 1. ii) Without loss of generality, assume that
β1 = β2 = . . . = βp−1 = 0 and 0 < βi < 1, i = p, . . . , n. It
is easy to see that Σ = {Φ, B} is a set of two block upper-
triangular matrices with their lower diagonal blocks being of

identical dimensions. In fact, Φ =

[
0(p−1)×(p−1) ∗

0(n−p+1)×(n−p+1) Φp

]
with Φp ∈ R(n−p+1)×(n−p+1) as defined in the proof
of Theorem 4.2, and B = diag(0(p−1)×(p−1), Bp) with
Bp = diag(βp, βp+1, . . . , βn) ∈ R(n−p+1)×(n−p+1). From
[22, Proposition 1.5], we have that ρ(Σ) = ρ({Φp, Bp}),
while from [22, Proposition 1.3] we have that ρ({Φp, Bp}) =
ρ({Φ̂p, B̂p}) where Φ̂p = T−1

p ΦpTp and B̂p = T−1
p BpTp =

Bp, with matrix Tp similarly defined as T̂p in the proof of
Theorem 4.2. Since Σ̂p = {Φ̂p, Bp} is a set of symmet-
ric matrices, from [22, Corollary 2.3], we have ρ(Σ̂p) =
max{ρ(Φp), ρ(Bp)} for which, by Theorem 4.2, we know that
ρ(Σ̂p) < 1. Thus, ρ(Σ) = ρ(Σ̂p) < 1.

C. Proof of Proposition 4.3
Considering (30) for j = 0, we get P 1

1 = co
(
F (co(Y0 ∩

C1)∪ co(Y0 ∩C2))∩C1

)
= co

(
F
(
co(Y0 ∩C1)

)
∪F

(
co(Y0 ∩

C2)
)
∩C1

)
. Since F

(
co(Y ∩C1)

)
= B̂co(Y ∩C1)⊕ ĜL and

F
(
co(Y ∩C2)

)
= Φ̂co(Y ∩C1)⊕ĜL are affine maps, we have

that F
(
co(Y0∩C1)

)
= co

(
F (Y0∩C1)

)
and F

(
co(Y0∩C2)

)
=

co
(
F (Y0 ∩ C2)

)
. Thus,

P 1
1 = co

(
co
(
F (Y0 ∩ C1)

)
∪ co

(
F (Y0 ∩ C2)

)
∩ C1

)
. (43)

We may also write

co
(
F (Y0) ∩ C1

)
= co

(
F
(
(Y0 ∩ C1) ∪ (Y0 ∩ C2)

)
∩ C1

)
= co

(
F (Y0 ∩ C1) ∪ F (Y0 ∩ C2) ∩ C1

)
= co

(
co
(
F (Y0 ∩ C1)

)
∪ co

(
F (Y0 ∩ C2)

)
∩ co(C1)

)
= co

(
co
(
F (Y0 ∩ C1)

)
∪ co

(
F (Y0 ∩ C2)

)
∩ C1

)
. (44)

From (43), (44), we have P 1
1 = co(F (Y0)∩C1) = co(Y1∩C1).

Similarly, we obtain P 2
1 = co(Y1 ∩ C2), which allows us to

write P1 = co(Y1 ∩ C1) ∩ co(Y1 ∩ C2). Following the same
line of reasoning and applying (32) for all j ≥ 1, the result
follows.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. Most of the research was carried
out when E.V. was with Queen’s University Belfast, UK.

Eleftherios Vlahakis is a Postdoctoral Re-
searcher with the Division of Decision and Con-
trol Systems, KTH Royal Institute of Technology,
Stockholm, Sweden. He was a Research Fel-
low (2020-2022) with the School of EEECS at
Queen’s University Belfast, UK. He obtained a
Ph.D. (2020) in Control from the City, University
of London, UK, an MSc degree (2014) in Energy
Management and Production from the National
Technical University of Athens, Greece, and an
MEng degree (2007) in Electrical and Computer

Engineering from Aristotle University of Thessaloniki, Greece. Dr. Vla-
hakis has worked (2009-2015) in various industrial roles in large-scale
power networks and renewable energy systems. His research interests
include distributed control, hybrid systems, and multi-agent control.

Raphaël Jungers is a Professor at UCLouvain,
Belgium, currently on sabbatical leave at Oxford
University. His main interests lie in the fields of
Computer Science, Graph Theory, Optimisation
and Control. He received a Ph.D. in Mathemat-
ical Engineering from UCLouvain (2008), and
a M.Sc. in Applied Mathematics, both from the
Ecole Centrale Paris, (2004), and from UCLou-
vain (2005).

He has held various invited positions, at the
Université Libre de Bruxelles (2008-2009), at the

Laboratory for Information and Decision Systems of the Massachusetts
Institute of Technology (2009-2010), at the University of L´Aquila (2011,
2013, 2016), and at the University of California Los Angeles (2016-
2017).

Prof. Jungers is a FNRS, BAEF, and Fulbright fellow. He has been an
Editor at large for the IEEE CDC, Associate Editor for the IEEE CSS
Conference Editorial Board, and the journals NAHS (2015-2016), Sys-
tems and Control Letters (2016-2017), IEEE Transactions on Automatic
Control (2015-2020), Automatica (2020-). He was the recipient of the
IBM Belgium 2009 award and a finalist of the ERCIM Cor Baayen award
2011. He was the co-recipient of the SICON best paper award 2013-
2014, the HSCC2020 best paper award, and an ERC 2019 laureate.

Nikolaos Athanasopoulos received the
Diploma and the Ph.D. degree in Electrical
and Computer Engineering from the University
of Patras, Patras, Greece, in 2004 and 2010,
respectively. He is currently a Senior Lecturer
with the School of Electronics, Electrical
Engineering and Computer Science, Queen’s
University Belfast, U.K. His main interests lie
in the control of cyber-physical systems, with a
focus on hybrid systems, resource-aware control
and set-based methods. Dr. Athanasopoulos

is the recipient of an IKY and a Marie Curie fellowship and has
held researcher positions in Eindhoven University of Technology,
the Netherlands (2011-2014), and University of Louvain, Belgium
(2015-2017).

Seán McLoone (S′94 – M′88 – SM′02) received
an M.E. degree in Electrical and Electronic Engi-
neering and a PhD in Control Engineering from
Queen’s University Belfast, Belfast, U.K. in 1992
and 1996, respectively.

He is currently a Professor and Director of
the Energy Power and Intelligent Control Re-
search Centre at Queen’s University Belfast. His
research interests are in Applied Computational
Intelligence and Machine Learning with a partic-
ular focus on data based modelling and analysis

of dynamical systems, with applications in advanced manufacturing
informatics, energy and sustainability, connected health and assisted
living technologies.

Prof. McLoone is a Chartered Engineer and Fellow of the Institution
of Engineering and Technology. He is a Past Chairman of the UK and
Republic of Ireland (UKRI) Section of the IEEE.

