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Abstract—Intelligent reflecting surface (IRS)-assisted wireless
communication is widely deemed a key technology for 6G sys-
tems. The main challenge in deploying an IRS-aided terahertz
(THz) link, though, is the severe propagation losses at high
frequency bands. Hence, a THz IRS is expected to consist of
a massive number of reflecting elements to compensate for those
losses. However, as the IRS size grows, the conventional far-field
assumption starts becoming invalid and the spherical wavefront
of the radiated waves must be taken into account. In this work,
we focus on the near-field and analytically determine the IRS
response in the Fresnel zone by leveraging electromagnetic theory.
Specifically, we derive a novel expression for the path loss and
beampattern of a holographic IRS, which is then used to model
its discrete counterpart. Our analysis sheds light on the modeling
aspects and beamfocusing capabilities of THz IRSs.

Index Terms—Beamfocusing, electromagnetics, intelligent re-
flecting surfaces, near-field, THz communications.

I. INTRODUCTION

To overcome the imminent spectrum scarcity, terahertz
(THz) communication is favored for 6G wireless networks
because of the abundant spectrum available in the THz band
(0.1 to 10 THz) [1]. However, THz links suffer from high
propagation losses, and thus transceivers with a massive num-
ber of antennas are needed to compensate for those losses
by means of sharp beamforming [2]. On the other hand, the
power consumption of THz radio-frequency (RF) circuits is
much higher than their sub-6 GHz counterparts, which might
undermine the deployment of large-scale antenna arrays in an
energy efficient manner [3]. Consequently, addressing these
engineering challenges is of paramount importance for future
THz communication systems.

Looking beyond conventional antenna arrays, the advent of
metasurfaces, which can customize the behavior (e.g., reflec-
tion, absorption, polarization, etc.) of electromagnetic (EM)
waves, has paved the way for novel wireless technologies,
such as intelligent reflecting surfaces (IRSs) [4]. Specifically,
an IRS consists of nearly passive reconfigurable elements that
can alter the phase of the impinging waves to reflect them
toward a desired direction [5].

There is a large body of literature that investigates the mod-
eling and performance of IRS-aided systems at the sub-6 GHz
and millimeter wave bands. Nevertheless, the majority of those
works, e.g., [6]–[9] and references therein, focus on the far-
field regime, where the spherical wavefront of the emitted EM
waves degenerates into a plane wavefront. Although the far-

field assumption facilitates mathematical analysis, it might not
be valid for IRSs operating at the THz band. In particular, an
electrically large IRS must be placed close to the transmitter
(Tx) or receiver (Rx) in order to effectively compensate for
the path loss of the Tx-IRS-Rx link. As a result, one of the
link ends is likely to operate in the radiating near-field of
the IRS. Additionally, packing an unprecedented number of
sub-wavelength reflecting elements into an aperture yields a
so-called holographic reflecting surface [10], which can offer
ultra-narrow pencil beams and extremely large power gains.1

A few recent papers [11], [12] proposed a path loss model that
is applicable to near-field using the popular “cosq” radiation
pattern for each IRS element, but considering a discrete IRS.
In a similar spirit, [13], [14] analyzed the power scaling laws
and near-field behavior of discrete IRSs modeled as planar
antenna arrays; note that [14] derived an upper bound on the
near-field channel gain, and hence its applicability is limited.
From the relevant work, we distinguish [15], where the authors
showed that the far-field beampattern of a holographic IRS can
be well approximated by that of an ultra-dense discrete IRS.

To the best of our knowledge, holographic IRSs have not yet
been studied in the near-field region and for arbitrary Tx/Rx
locations. This paper aims to fill this gap in the literature and
shed light on the fundamentals of THz IRSs. Specifically:

• We determine the field scattered by a holographic IRS
in the radiating near-field, i.e., Fresnel zone. More par-
ticularly, we employ physical optics from EM theory to
model the IRS as a large conducting plate, and then derive
the scattered field in closed-form by exploiting the small
physical size of THz IRSs.

• We show that the near-field behavior differs significantly
from its far-field counterpart, and hence the derived chan-
nel model should be adopted for electrically large IRSs.
Moreover, the near-field beampattern of a contiguous IRS
can be accurately approximated by that of an ultra-dense
discrete IRS, thereby enabling the practical realization of
holographic reflecting surfaces.

• We discuss the implications of the EM-based model and
highlight the importance of beamfocusing in single-user
and multi-user transmissions.

1In this paper, holographic IRS refers to a continuous (or quasi-continuous)
passive aperture, akin to [10].
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Fig. 1: Illustration of the IRS geometry under consideration.

Notation: A is a set, A is a vector field, a is a vector,
ex, ey , and ez denote the unit vectors along the x, y, and
z axes, respectively; er, eθ, and eφ denote the unit vectors
along the radial, polar, and azimuth directions, respectively;
erf(x) = 2√

π

∫ x
0
e−t

2

dt is the error function; sinc(x) = sin(x)
x

is the sinc function; and x ∼ CN (µ, σ2) is a complex Gaussian
variable with mean µ and variance σ2.

II. ELECTROMAGNETICS-BASED CHANNEL MODEL

Consider a holographic IRS of size Ly × Lz , where Ly
and Lz denote the dimensions along the y and z directions,
respectively. The coordinate system is placed at the center of
the IRS, as shown in Fig. 1. Thus, the IRS is represented by
the planar surface S = {(y, z) : |y| ≤ Ly/2, |z| ≤ Lz/2}. In
the sequel, we focus on the Fresnel zone of the IRS, which
refers to all distances r satisfying [16]

0.62
√
L3
max/λ < r ≤ 2L2

max/λ, (1)

where Lmax = max(Ly, Lz) denotes the maximum dimension
of the IRS, and λ is the carrier wavelength.

A. Spherical Wavefront

Consider an infinitesimal dipole antenna emitting a spherical
wave; the dipole is placed parallel to the IRS. The exact
position of the transmit antenna is described by the tuple
(xt, yt, zt) = (rt cosφt sin θt, rt sinφt sin θt, rt cos θt), where
rt is the radial distance, whilst φt and θt are the azimuth and
polar angles of arrival, respectively. The electric field (E-field)
of the spherical wave impinging on the (y, z)th point of the
IRS can be expressed as [16]

Ei = Eθeθ = j

√
ηPtGt
4π

e−jkrt(y,z)

rt(y, z)
eθ, (2)

where η is the wave impedance, k = 2π/λ is the wavenumber,
Pt is the transmit power, Gt is the gain of the transmit

antenna, and

rt(y, z) ,
√
x2t + (yt − y)2 + (zt − z)2

= rt

√
1 +

y2

r2t
− 2 sinφt sin θty

rt
+
z2

r2t
− 2 cos θtz

rt
(3)

is the respective distance. Note that (2) holds for all distances
rt(y, z)� λ, where the radial and azimuthal components Er
and Eφ of the E-field are approximately zero. From Maxwell’s
equations, the magnetic field is specified as

Hi =
j

ηk
∇×Ei =

j

ηk

1

r

∂(rEθ)

∂r
eφ

=
j

η

√
ηPtGt
4π

e−jkrt(y,z)

rt(y, z)
eφ = Hφeφ, (4)

where r = rt(y, z) in the partial derivative for notational
convenience. Owing to the small physical size of THz IRSs,
the amplitude variation 1/rt(y, z) across S is marginal [13];
for example, an electrically large IRS of size 200λ × 200λ
occupies only 20× 20 cm2 at f = 300 GHz. On the contrary,
the phase variation krt(y, z) is significant and cannot be
ignored. In light of these observations, we henceforth consider

e−jkrt(y,z)

rt(y, z)
≈ e−jk(rt+r̃t(y,z))

rt
, (5)

where rt(y, z) ≈ rt + r̃t(y, z), with

r̃t(y, z) =
y2(1− sin2 φt sin

2 θt)

2rt
− y sinφt sin θt

+
z2 sin2 θt

2rt
− z cos θt, (6)

which follows from the second-order Taylor approximation
(1 + x)α ≈ 1 + αx+ 1

2α(α− 1)x2 of (3).

B. Scattered Field in the Fresnel Zone

According to the surface equivalence principle, the obstacle-
free equivalent problem involves an electric current density
J(y, z) (measured in A/m2) and a magnetic current density
M(y, z) (measured in V/m2) on S, which satisfy the boundary
conditions [17, Ch. 7]

n̂×H|x=0 = J(y, z), (7)
n̂×E|x=0 = M(y, z) = 0, (8)

where E = Ei+Es and H = Hi+Hs are the total electric and
magnetic fields, respectively, Es and Hs are the corresponding
scattered fields, and n̂ = ex is the normal vector of S.2

Assuming that S is an infinite PEC, it can be replaced by
a virtual source with n̂ × Hs = n̂ × Hi, hence yielding
J(y, z) = 2n̂ × Hi|x=0.3 Note that the actual IRS exhibits
a surface impedance, which can change the phase of the

2The E-field inside S is assumed to be zero, akin to the perfect electric
conductor (PEC) paradigm. The PEC model is used for simplicity. Our
analysis can readily be applied to the impedance surface model [19].

3We assume that image theory holds for a finite plate. Such an assumption
can be made in our case because the dimensions of the IRS are very large
compared to the wavelength.



surface current density J(y, z). Thus, we model that property
as J(y, z) = (2n̂ ×Hi|x=0)e

jϕ(y,z) [8], [9]. The phase shift
profile ϕ(y, z) is nonlinear due to the spherical wavefront of
the incident wave. To this end, it is decomposed as

ϕ(y, z) = k
(
C1y

2 + C2y + C3z
2 + C4z

)
, (9)

where C1, C2, C3, and C4 are properly selected constants.
Let (xr, yr, zr) = (rr cosφr sin θr, rr sinφr sin θr, rr cos θr)

be the receiver location, where rr is the radial distance, while
φt and θt denote the azimuth and polar angles of departure,
respectively. Next, the scattered E-field at the receiver is
analytically determined using the auxiliary vector potential

A(xr, yr,zr) ,
µ

4π

∫∫
S
J(y, z)

e−jkrr(y,z)

rr(y, z)
dydz

(a)
≈ µe−jkrr

4πrr

∫∫
S
J(y, z)e−jkr̃r(y,z)dydz

=
µe−jkrr

4πrr
(Ãrer + Ãθeθ + Ãφeφ), (10)

where µ is the magnetic permeability of the propagation
medium, (a) follows from the Fresnel approximation of the
distance rr(y, z) ≈ rr + r̃r(y, z), and

Ãr=

∫∫
S
(Jy sin θr sinφr + Jz cos θr)e

−jkr̃r(y,z)dydz, (11)

Ãθ=

∫∫
S
(Jy cos θr sinφr − Jz sin θr)e−jkr̃r(y,z)dydz, (12)

Ãφ=

∫∫
S
Jy cosφre

−jkr̃r(y,z)dydz. (13)

Using the radiation equations for any receive distance rr � λ,
we finally have [17, Eq. (6.122)]

Es = −η
jke−jkrr

4πrr
(Ãθeθ + Ãφeφ). (14)

Proposition 1. The scattered E-field at the receive po-
sition (rr cosφr sin θr, rr sinφr sin θr, rr cos θr), when the
IRS is illuminated by a spherical wave originated from
(rt cosφt sin θt, rt sinφt sin θt, rt cos θt), is given by

Es = −
LyLz
λ

|Ei|e−jk(rt+rr)

rr
cosφt sin θrSyzeθ, (15)

where |Ei| =
√

ηPtGt

4πr2t
is the magnitude of the incident field,

and Syz ∈ [0, 1] is the normalized space factor of the IRS
specified by (16) at the bottom of the next page for

ay =
(1− sin2 φt sin

2 θt)

2rt
+

(1− sin2 φr sin
2 θr)

2rr
− C1,

by = sinφt sin θt + sinφr sin θr + C2, (17)

az =
sin2 θt
2rt

+
sin2 θr
2rr

− C3,

bz = cos θt + cos θr + C4. (18)

Proof. See Appendix.

Remark 1. In the far-field, the parallel-ray approximations

r̃t(y, z) ≈ −y sinφt sin θt − z cos θt, (19)
r̃r(y, z) ≈ −y sinφr sin θr − z cos θr (20)

are employed. Then, ay = az = 0, and the space factor
reduces to [17]

Syz =

∫ Ly/2

−Ly/2

∫ Lz/2

−Lz/2
ejk(byy+bzz)dydz

LyLz
= sinc(Y )sinc(Z),

(21)

where Y , kLyby/2 and Z , kLzbz/2.

From Proposition 1, the squared magnitude of the scattered
E-field is calculated as

‖Es‖2 =

(
LyLz
λ

)2 |Ei|2

r2r
cos2 φt sin

2 θr|Syz|2, (22)

where |Syz|2 is the normalized beampattern of the IRS.

C. End-to-End Signal Model

We now introduce the signal model of a holographic IRS-
assisted THz system, where the Tx and Rx are equipped with
a single antenna each. First, recall the relation between the
magnitude of the incident wave |Ei| and the transmit power
Pt, which is |Ei|2/η = GtPt/(4πr

2
t ) [16]. Hence, the power

density (W/m2) of the scattered field is

Ss =
‖Es‖2

η
=

(
LyLz
λ

)2
PtGt
4πr2t r

2
r

cos2 φt sin
2 θr|Syz|2.

(23)
Considering the Rx antenna aperture Ar = Grλ

2/(4π) yields
the received power Pr = SsAr. Lastly, taking into account
the molecular absorption loss at THz frequencies results in
the path loss of the Tx-IRS-Rx link

PL = GtGr

(
LyLz
4π

)2
cos2 φt sin

2 θr
r2t r

2
r

e−κabs(f)(rt+rr)|Syz|2

= PL|Syz|2, (24)

where κabs(f) denotes the molecular absorption coefficient
at the carrier frequency f . From (24), it is evident that the
path loss of an IRS-assisted link follows the plate scattering
paradigm. Combining (15) and (24), the baseband signal at
the Rx is written as

y =
(√

PLe−jk(rr+rt)Syz +
√

PLde−jkrd
)
s+ ñ, (25)

where s ∼ CN (0, Pt) is the transmitted data symbol, Pt is
the average power per data symbol, rd is the distance between
the Tx and Rx, PLd = GtGrλ

2/(4πrd)
2e−κabs(f)rd is the path

loss of the direct Tx-Rx channel, and ñ ∼ CN (0, σ2) is the
additive noise.

III. DISCUSSION

In this section, we discuss in detail the near-field channel
model introduced in Section II.



(a) rr = 2 m and ro = 8 m (b) rr = 6 m and ro = 8 m

Fig. 2: Squared magnitude of the scattered E-field versus observation angle φo; |Ei| = 1, Ly = Lz = 200λ, f = 300 GHz, φt = 36◦,
(θr, φr) = (45◦, 30◦), and (θo, φo) = (45◦, φo).

A. Near-Field versus Far-Field Response

Consider the phase profile (9) with

C1 =
1− sin2 φt sin

2 θt
2rt

+
1− sin2 φo sin

2 θo
2ro

, (26)

C2 = − sinφt sin θt − sinφo sin θo, (27)

C3 =
sin2 θt
2rt

+
sin2 θo
2ro

, (28)

C4 = − cos θt − cos θo, (29)

where (ro cosφo sin θo, ro sinφo sin θo, ro cos θo) is an arbi-
trary observation position, with ro, φo, and θo denoting
the corresponding radial distance, azimuth angle, and polar
angle, respectively. Then, the parameters of the beampattern
|Syz|2 are

ay =
1− sin2 φr sin

2 θr
2rr

− 1− sin2 φo sin
2 θo

2ro
, (30)

by = sinφr sin θr − sinφo sin θo, (31)

az =
sin2 θr
2rr

− sin2 θo
2ro

, (32)

bz = cos θr − cos θo. (33)

We now plot the squared magnitude of the scattered E-field for
the considered ϕ(y, z). From Fig. 2, we first observe that the
peak value is at φo = φr = 30◦, as expected. From Fig. 2(a),
however, we see a mismatch between the near and far scattered
fields of a large IRS. This discrepancy is due to the spherical
wavefront of the incident wave, which makes the beampattern
|Sxy|2 depend on the angles of arrival/departure as well as

the distances between the IRS, the Rx, and the observation
point. This unique feature manifests only in the near-field [18].
It is finally worth stressing that the near-field space factor
in (16) coincides with its far-field counterpart (21) for either
an electrically small IRS or relatively large distances rr and ro,
i.e., Fig. 2(b).

B. Discrete IRS

It might be difficult to implement a holographic IRS in
practice. Therefore, a contiguous IRS of size Ly × Lz can
be approximated by a planar array of Ny = Ly/L̃y and
Nz = Lz/L̃z reflecting elements, each of size L̃y × L̃z;
the inter-element spacing is negligible, and hence is ignored.
Then, (22) is recast as

‖Es‖2 = N2
yN

2
z

(
L̃yL̃z
λ

)2
|Ei|2

r2o
cos2 φt sin

2 θr|Syz|2,

(34)

where

Syz =

∑Ny
2 −1
n=−Ny

2

e−jk((nL̃y)
2ay−nL̃yby)

Ny

×

∑Nz
2 −1
m=−Nz

2

e−jk((mL̃z)
2az−mL̃zbz)

Nz
, (35)

which follows from (41) in the appendix for y = nL̃y ,
z = mL̃z , Ly = NyL̃y , Lz = NzL̃z , dy = L̃y , and dz = L̃z .
Likewise, the reflection coefficient of the (n,m)th IRS element
is defined as ejϕn,m , where ϕn,m , ϕ(nL̃y,mL̃z). For a

Syz =
π

4jkLyLz
√
ayaz

[
erf
(√

jkay

(
Ly
2
− by

2ay

))
− erf

(√
jkay

(
−Ly

2
− by

2ay

))]
×
[

erf
(√

jkaz

(
Lz
2
− bz

2az

))
− erf

(√
jkaz

(
−Lz

2
− bz

2az

))]
. (16)



(a) Small IRS (b) Large IRS

Fig. 3: Normalized beampattern of holographic IRS and discrete IRS versus observation angle φo; L̃y = L̃z = λ, (rr, θr, φr) = (2, 45◦, 45◦),
(ro, θo, φo) = (8, θo, 45

◦), and f = 300 GHz.

discrete IRS, when the observation direction coincides with
that of the Rx, ay = by = az = bz = 0, Syz = 1, and a power
gain of (NyNz)2 is attained over the Tx-IRS-Rx link.

C. Beamfocusing Capabilities
With proper design of the phase profile ϕ(y, z), we can

cancel out the incident phase and focus the beam into the
Rx point (rr, θr, φr).4 As previously shown, the peak value
of |Syz|2 occurs at (ro, θo, φo) = (rr, θr, φr). From Fig. 3(a)
and Fig. 3(b), we first observe the excellent match between a
holographic IRS and its discrete counterpart with a negligible
inter-element spacing. This implies that we can properly
discretize the holographic IRS without sacrificing its extremely
high spatial resolution. Consequently, (16) and (35) can be
used interchangeably. We further see that the electrically
large IRS can discriminate two points with the same angular
direction (θo, φo) = (θr, φr) but with different distances
ro 6= rr; asymptotically, we have |Syz|2 → 0 as LyLz →∞.
The beamfocusing capability can be exploited in multi-user
transmissions to suppress interference with an unprecedented
way. For example, consider an uplink scenario where two
users, user 1 and user 2, simultaneously transmit. Their
positions from the IRS are (r1, θ1, φ1) and (r2, θ2, φ2), with
(θ1, φ1) = (θ2, φ2) and r1 6= r2. In the far-field, |Syz|2 = 1,
and hence we will have strong inter-user interference at the
Rx. Conversely, in the near-field, |Syz|2 < 1 and the inter-user
interference becomes small at the Rx.

D. Scattering versus Antenna-Based Path Loss Models
Some works in the literature (e.g., [11]) treat an IRS element

as a standard antenna that re-radiates the impinging wave. In
this case, the path loss is calculated as

PL′ = GtGr

(
λ

4π

)4
Ge(θt)Ge(θr)

r2t r
2
r

e−κabs(f)(rt+rr), (36)

where Ge(·) is the radiation pattern of each IRS element. For
a sub-wavelength IRS element, it holds that |Syz|2 ≈ 1, and

4This is in sharp contrast to traditional beamforming, where the IRS acts as
an anomalous reflector that focuses the signal into a desired direction (θr, φr),
rather than into a point (rr, θr, φr) [20].

Fig. 4: In the antenna-based model [11], Ge(θ) = γ cos2q θ, with
γ = π and q = 0.285. The other parameters are: f = 300 GHz,
Ly = Lz = λ/2, rt = 2 m, (θt, φt) = (60◦, 90◦), (θr, φr) =
(45◦, 90◦), Gt = 20 dBi, Gr = 0 dBi, and κabs(f) = 0.0033 m−1.

PL = GtGr

(
LyLz

4π

)2
cos2 φt sin

2 θr
r2t r

2
r

e−κabs(f)(rt+rr) 6= PL′, as
shown in Fig. 4. Consequently, simplistic path loss models
may not always capture the unique features of IRS-aided
propagation.

IV. CONCLUSIONS

We have studied, for the first time, the near-field response
of holographic IRSs operating at the THz frequency band.
To have a physics-consistent channel model, we leveraged
EM theory and derived a novel closed-form expression for
the scattered field. Unlike existing works, our model accounts
for arbitrary incident and reflection angles. Capitalizing on our
analysis, we then compared the near-field response with its far-
field counterpart and revealed a significant discrepancy, which
makes the use of the former necessary for electrically large
IRSs. We finally discussed the beamfocusing property, which
manifests on the near-field regime, and highlighted its potential
in multi-user transmissions and interference suppression. For
future work, it would be interesting to study the coupling
effects in ultra-dense discrete IRSs and their connection with



super-directive antenna arrays. Moreover, it would be inter-
esting to derive a circuit theory-based model for the power
consumption of THz IRSs.
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APPENDIX

The magnetic field in (4) is written in Cartesian coordi-
nates as

Hi = −Hφ sinφtex +Hφ cosφtey. (37)

The current density induced on the IRS is

J(y, z) = (2ex ×Hi|x=0)e
jϕ(y,z)

= 2Hφ cosφte
jϕ(y,z)ez

=
2j

η

√
ηPtGt
4π

e−jkrt

rt
e−jkr̃t(y,z) cosφte

jϕ(y,z)ez

=
2j

η
Eie
−jkr̃t(y,z) cosφte

jϕ(y,z)ez

= Jze
jϕ(y,z)ez, (38)

where Ei =
√

ηPtGt

4π
e−jkrt

rt
. Then, (12) and (13) give

Ãθ = −jLyLz
2Ei
η

cosφt sin θrSyz, (39)

Ãφ = 0, (40)

where

Syz =

∫∫
S e
−jk(r̃t(y,z)+r̃r(y,z)−ϕ(y,z)/k)ds

LyLz

=

∫ Ly/2

−Ly/2

∫ Lz/2

−Lz/2
e−jk(ayy

2−byy+azz2−bzz)dydz

LyLz
, (41)

with

ay =
(1− sin2 φt sin

2 θt)

2rt
+

(1− sin2 φr sin
2 θr)

2rr
− C1,

by = sinφt sin θt + sinφr sin θr + C2, (42)

az =
sin2 θt
2rt

+
sin2 θr
2rr

− C3, (43)

bz = cos θt + cos θr + C4. (44)

We now use the identity∫
e−jk(ay

2−by)dy =

√
π

2
√
jka

erf
(√

jka

(
y − b

2a

))
, (45)

which follows from the definition of the error function, some
algebrain manipulations, and a change of variables. Using (45),

the expression (16) for Syz is derived. The scattered E-field
is finally given by

Es = −η
jke−kjrr

4πrr
(Ãθeθ + Ãφeφ)

=
j2LyLzkEie

−kj(rt+rr)

2πrr
cosφt sin θrSyzeθ

= −LyLz
λ

|Ei|e−kj(rt+rr)

rr
cosφt sin θrSyzeθ, (46)

which completes the proof.
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[20] E. Björnson, Ö. Özdogan, and E. G. Larsson, “Reconfigurable intelligent
surfaces: Three myths and two critical questions,” IEEE Commun. Mag.,
vol. 58, no. 12, pp. 90-96, Dec. 2020.

http://arxiv.org/abs/1912.06759

	I Introduction
	II Electromagnetics-Based Channel Model
	II-A Spherical Wavefront
	II-B Scattered Field in the Fresnel Zone
	II-C End-to-End Signal Model

	III Discussion
	III-A Near-Field versus Far-Field Response
	III-B Discrete IRS
	III-C Beamfocusing Capabilities
	III-D Scattering versus Antenna-Based Path Loss Models

	IV Conclusions
	References

