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Abstract

As of 2022, individuals age 65 and older represent approximately 10% of the global population [1], and older adults make up
more than one third of anesthesia and surgical cases in developed countries [2, 3]. With approximately > 234 million major
surgical procedures performed annually worldwide [4], this suggests that> 70 million surgeries are performed on older adults
across the globe each year. The most common postoperative complications seen in these older surgical patients are periopera-
tive neurocognitive disorders including postoperative delirium, which are associated with an increased risk for mortality [5],
greater economic burden [6, 7], and greater risk for developing long-term cognitive decline [8] such as Alzheimer’s disease
and/or related dementias (ADRD). Thus, anesthesia, surgery, and postoperative hospitalization have been viewed as a bio-
logical “stress test” for the aging brain, in which postoperative delirium indicates a failed stress test and consequent risk for
later cognitive decline (see Fig. 3). Further, it has been hypothesized that interventions that prevent postoperative delirium
might reduce the risk of long-term cognitive decline. Recent advances suggest that rather than waiting for the development
of postoperative delirium to indicate whether a patient “passed” or “failed” this stress test, the status of the brain can be
monitored in real-time via electroencephalography (EEG) in the perioperative period. Beyond the traditional intraoperative
use of EEG monitoring for anesthetic titration, perioperative EEG may be a viable tool for identifying waveforms indicative
of reduced brain integrity and potential risk for postoperative delirium and long-term cognitive decline. In principle, research
incorporating routine perioperative EEG monitoring may provide insight into neuronal patterns of dysfunction associated
with risk of postoperative delirium, long-term cognitive decline, or even specific types of aging-related neurodegenerative
disease pathology. This research would accelerate our understanding of which waveforms or neuronal patterns necessitate
diagnostic workup and intervention in the perioperative period, which could potentially reduce postoperative delirium and/
or dementia risk. Thus, here we present recommendations for the use of perioperative EEG as a “predictor” of delirium and
perioperative cognitive decline in older surgical patients.
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An irony of perioperative medicine is that although the
central nervous system (CNS) is the target of most if not
all anesthetic/analgesic drugs, the CNS is the only major
organ system that is not typically evaluated prior to surgery,
nor routinely monitored during anesthetic care in the USA.
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The American Society of Anesthesiology (ASA) calls for
preoperative assessment of cardiac and pulmonary function
[9], and intraoperative evaluation of blood pressure, heart
rate and pulse oximetry [10], yet these guidelines make no
mention of evaluating the brain (or the CNS more broadly)
before surgery nor of monitoring it during surgery. While
unfortunate, these omissions are logical from the perspec-
tive of intraoperative care. Unlike cardiac findings such as
critical aortic stenosis that would lead to specific changes
in intra- and peri-operative anesthetic management, there
is currently no evidence-based anesthetic management
approach to improve outcomes for individuals with preop-
erative cognitive impairment.
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Although not required by ASA guidelines, intraoperative
electroencephalography (EEG) is used by many anesthe-
siologists to titrate anesthetic drug administration. Several
frontal EEG electrode systems are commercially available
and used widely in the USA, Europe, Asia, and Australia.
These frontal electrode arrays have predominantly been mar-
keted for use in anesthetic titration to ensure avoidance of
intraoperative recall (i.e., to facilitate intraoperative amne-
sia) while facilitating rapid emergence from the anesthetized
state. However, their ability to achieve the former has been
questioned [11]. Yet, an emerging body of evidence in both
human neuroscience and perioperative medicine suggests
that these monitors may be useful for a different purpose:
identifying older patients with atypical waveforms indicative
of underlying risk for neuropathologies such as postoperative
delirium and/or long-term cognitive decline and dementia
[12]. In this article, we review both traditional applications
and these novel potential uses of perioperative EEG monitor-
ing, and we discuss how they might be used in the future.

Awake/Resting-State EEG Assessment
of Neurocognitive Vulnerability to ADRD

Aside from using EEG for intraoperative anesthetic titra-
tion (and/or for attempting to prevent intraoperative aware-
ness with explicit recall), frontal EEG monitors can be
placed prior to anesthetic induction, either in a preopera-
tive holding area or in the operating room. Although most
anesthesiologists do not formally record baseline drug-
free raw EEG signals or processed EEG values prior to
anesthetic induction, placement of EEG monitors before
induction provides this opportunity. Further, the fact that
patients with dementia have altered preoperative processed
EEG values [13] demonstrates that preoperative EEG con-
tains information about the baseline status of brain health
in our patients.

Indeed, the idea that resting-state EEG contains infor-
mation about brain structure and function has been heavily
explored in the neurology and neurodegenerative disease
fields, partly due to the unmet need for non-invasive, low-
cost biomarkers sensitive to preclinical stages (including
structural markers) of aging-related neurodegenerative
disorders such as Alzheimer’s (AD), Parkinson’s (PD),
Lewy body dementia (LBD), and other types of dementia
[14-16]. Promising candidate electrophysiologic biomark-
ers have been derived from eyes-closed resting-state EEG
rhythms, which may reflect the neurophysiological dys-
regulation of quiet vigilance (i.e., level of consciousness)
in people with AD [17-19]. Indeed, most people with AD
struggle to maintain adequate vigilance while transitioning
to drowsiness when watching a TV program or during a
quiet social conversation [20].

@ Springer

In these resting-state EEG studies, participants typi-
cally sit in a silent, dimly lit room. Participants are asked to
remain awake, to allow their minds to wander freely, and to
abstain from any specific cognitive tasks. The resting-state
EEG recording is typically performed for 3—5 min with eyes
closed and 3-5 min with eyes open to manipulate quiet vigi-
lance with differing levels of visual input. Overall, resting-
state EEG recordings are non-invasive, affordable and avail-
able worldwide [21]. After the resting-state EEG recording,
power (amplitude?) can be calculated from artifact-free
ongoing EEG activity within specific frequency bands,
such as delta (<4 Hz), theta (47 Hz), alpha (8-12 Hz), beta
(13-35 Hz), and gamma (35-45 Hz). The topographical (or
spatial) maps of the power of resting-state EEG rhythms are
thought to reflect the cerebral neurophysiological oscilla-
tory mechanisms underpinning cortical arousal as a balance
of neural excitation/inhibition in (1) neuromodulatory sub-
cortical ascending activating systems, (2) thalamocortical-
corticothalamic loops including thalamocortical relay-mode
and reticular thalamic neuronal populations, and (3) cortico-
cortical circuits [17, 22, 23] (see Fig. 1).

In cognitively normal healthy adults with their eyes
closed, the greatest resting-state EEG signal power occurs
within 8-12 Hz (i.e., the alpha rhythm) over parietal and
occipital scalp regions, which is thought to reflect cortical
inhibition in the posterior visual-spatial cortical areas dur-
ing relaxation and quiet vigilance (see Fig. 2, bottom left
panel). Aside from these alpha rhythms, there is little power
in other resting-state EEG frequencies in cognitively normal
individuals with their eyes closed [17]. When individuals
open their eyes, visual information processing in posterior
visual areas is accompanied by increased cortical excita-
tion in these areas with a mild increase in vigilance level,
which is seen on resting-state EEG as a reduced amplitude
of the posterior EEG alpha rhythms [24]. This phenomenon
is referred to as a desynchronization or block of the posterior
alpha rhythms, and these sensory stimuli induce transient
increases in EEG power in delta, theta, beta, and gamma
frequency bands [17-19, 22].

Previous studies have also investigated early abnormali-
ties in resting-state EEG rhythms in patients with MCI,
AD, and subjective memory/cognitive complaints (SMC).
Compared with cognitively normal individuals, patients
with MCI and/or AD showed (1) greater power or source
activation in spatially widespread resting-state EEG delta
and theta rhythms, (2) lower power or source activation in
posterior resting-state EEG alpha and beta rhythms, and (3)
lower resting-state EEG alpha peak frequency [25-28] (see
Fig. 1). Those abnormalities were related to structural mag-
netic resonance imaging (MRI) markers of cortical neurode-
generation [29]. Furthermore, those EEG changes were more
prominent in carriers of independent AD risk factors such as
the cystatin C [30] and ApoE &4 alleles [31].
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Resting State EEG Rhythms in Alzheimer's disease

Normal Brain

Alpha dominant
thalamocortico-corticothalamic
synchronizing signals

Fig. 1 A tentative physiological model of resting state EEG oscilla-
tions in the normal and Alzheimer’s disease brain, in the awake state
and in the anesthetized state. The red arrows indicate anteriorization
of the EEG rhythms due to GABAergic anesthetic agents such as
propofol or volatile anesthetics. In the normal brain, dominant EEG
rhythms are observed at alpha frequencies (8—12 Hz), denoting the
background, spontaneous synchronization~ 10 Hz of neural networks

Other studies have investigated the “interrelatedness”
of resting-state EEG rhythms between electrode or source
pairs, via measures such as coherence (the temporal syn-
chronicity of two brain regions), synchronization likelihood
(a measure of both linear and non-linear coupling), and/or
lagged linear connectivity (a computed estimate of func-
tional cortical connectivity), as models of dysfunctional
cortical connectivity in AD patients [32]. For instance, both
MCI and AD patients showed abnormally increased delta
and reduced resting-state EEG alpha “interrelatedness,” both
intra-hemispherically and inter-hemispherically [33, 34].
Similarly, these patients showed decreased parietal-to-fron-
tal “interrelatedness” of resting-state EEG alpha rhythms in
association with subcortical white-matter lesions [35], and
decreased global “interrelatedness” of EEG alpha rhythms
with impairment of ascending cholinergic tracts [36].

Furthermore, among individuals with MCI, abnormal
cerebrospinal fluid (CSF) amyloid 42 levels have been
associated with greater low-frequency (delta and theta)
resting-state global field power (i.e., the standard deviation
of EEG potentials across all electrodes), whereas abnormal
phospho-tau and total tau levels have been associated with
reduced mid-high frequency (alpha and beta) resting-state
EEG global field power [37]. Similarly, when compared
to cognitively normal older adults, people with MCI (and
SMC) who were not tested for brain amyloid deposition
still showed greater delta source activity and reduced poste-
rior resting-state EEG alpha source activity [25]. For indi-
viduals with AD, abnormal p-tau and total tau values were
associated with a reduction in low (delta) and high (beta)

Alzheimer's Brain

1000 ms

Delta-Theta dominant
thalamocortico-corticothalamic
synchronizing signals

that regulate global arousal and consciousness states. These networks
span neural populations of the cerebral cortex, thalamus, basal fore-
brain, and brainstem, including glutamatergic, cholinergic, dopamin-
ergic, and serotoninergic parts of the reticular ascending systems. The
“slowing” of rsEEG rhythms depicted in the Alzheimer’s brain would
mainly reflect a thalamocortical “disconnection.” Adapted from
Babiloni et al., 2021 (courtesy of the Publisher) [19]

frequency global field power, which may suggest that alpha
global field power is more specific to phospho-tau and total
tau-related brain changes in MCI than in AD [37].

In the INSIGHT-preAD study, people with and without
SMC underwent 18F-florbetapir positron emission tomog-
raphy (PET) to detect brain amyloid deposition and also
underwent resting-state EEG. There was only a very mild
association between amyloid deposition and posterior rest-
ing-state EEG alpha power, while no effect was observed on
the “interrelatedness” of resting-state EEG activity at elec-
trode pairs [38]. High education level was associated with
greater parietal, occipital and temporal resting-state EEG
alpha power, and was associated with a “rescue” of the low
posterior resting-state EEG alpha power in amyloid positive
individuals with SMC [39].

Thus, numerous studies have shown significant changes
in the topography and power of resting-state EEG rhythms
in older patients with AD, PD, LBD, and other related
dementias. A seminal review of resting-state EEG stud-
ies performed between 1980-2009 reported an average
accuracy of 80% in differentiating patients with AD vs.
cognitively normal individuals based on spectral resting-
state EEG measures [40]. However, these authors raised
the issue of a questionable diagnostic utility for routine
clinical applications, as “classification accuracy” does
not mean “diagnosis” [40]. For instance, in a systematic
review of resting-state EEG studies in older patients with
dementia, the Alzheimer’s Association ISTAART Electro-
physiology Professional Interest Area (EPIA) did not rec-
ommend resting-state EEG biomarkers for AD diagnosis,

@ Springer
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Resting state EEG recordings

Preliminary EEG data analysis
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Spectral EEG data analysis

Cortical EEG sources
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Fig.2 An overview of electroencephalographic (EEG) methodology to
investigate cortical rhythm changes related to altered vigilance in older
adults at risk of postoperative delirium and/or mild cognitive impair-
ment due to age-related neurodegenerative diseases. Top left: top down
view of 19 scalp electrodes from the International 10-20 System (Fpl,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TS, P3, Pz, P4, T6, Ol,
and O2). This setup has been used for many rsEEG recordings. In this
figure, Al and A2 indicate the position of linked earlobe reference
electrodes. Top right: example of resting-state electroencephalographic
(rsEEG) activity with artifacts. Bottom left: an example of an EEG
power density spectrum computed at an occipital electrode (i.e., O1) in

since resting-state EEG biomarkers are not direct measures
of brain amyloidosis or tauopathy. Rather, the ISTAART
EPIA suggested using resting-state EEG for assessing
abnormalities in the neurophysiological oscillatory sys-
tems regulating quiet vigilance in patients with MCI or
AD, and in back-translational research in Alzheimer’s dis-
ease and related dementias (ADRD) mouse models [18,
19]. Similarly, the guidelines of the European Federation of
the Neurological Societies (EFNS) state that resting-state
EEG may provide supportive (but not diagnostic) informa-
tion for assessing patients with ADRD [41-43]. In fact,
most if not all clinical guidelines recommended the use of
biomarkers directly reflecting neuropathology, neurode-
generation, and brain hypometabolism to diagnose patients
with dementia; these guidelines either neither advocate for

@ Springer

a healthy control person. Note the EEG power density peak at 10 Hz is
typically called “individual alpha frequency peak (IAFp),” which can
be used to distinguish low- and high-frequency alpha sub-bands within
individuals. Bottom right: an example of cortical source solutions from
rsEEG alpha rhythms computed by the exact low-resolution brain elec-
tromagnetic tomography (eLORETA) freeware. The eLORETA source
solutions can be averaged within cortical lobes of interest and com-
pared among older adults with intact cognitive status (including those
with preclinical Alzheimer’s disease (AD) pathology) and individuals
with AD and related dementias

nor suggest against the use of EEG biomarkers for clinical
diagnosis [44-48].

Thus, while several studies have successfully shown that
spectral resting-state EEG measures computed at scalp elec-
trodes or cortical sources can be used to predict cognitive
decline over time in people with SMC, MCI, and ADRD
(Table 1; Table 2 for data quality ratings), none of these
resting-state EEG measures have sufficient sensitivity and
specificity to be used for diagnosing ADRD. However, this
literature demonstrates that there are resting-state EEG abnor-
malities across the spectrum of disease in ADRD that could
be used as screening tests to identify at-risk patients. Further,
since many of these EEG abnormalities can be detected in just
minutes over frontal electrode sites [49-51] using relatively
inexpensive equipment [21], anesthesiologists could use these
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frontal EEG patterns prior to surgery as screening tests to refer
patients for further neuropsychologic/neurologic workup (and
potential diagnosis) after they recover from surgery.

Preoperative EEG and Delirium
Delirium seems to be the result of an altered external

information processing, due to a derangement of networks
in which acetylcholine is a key modulator, especially in

Table 1 Awake resting-state EEG findings across the ADRD spectrum

regulating the activity of the thalamus together with cortical
areas [60]. In addition to cholinergic impairment, the thala-
mus plays a pivotal role in the pathogenesis of disorders of
consciousness, and its derangement is considered the driver
for the generation of thalamocortical dysfunction (TCD).
The TCD theory postulates that high-order thalamic nuclei,
whose activity is modulated by cholinergic neurons that pro-
ject from the pedunculopontine nuclei (PPN) to the reticular
thalamic nuclei (TNR), enter into a theta burst-firing mode
that drives dysfunctional cortical activity.

Study Groups EEG electrode type Main Finding

Gouw et al., 2017 [52] SCD (n=63) 21 electrodes 1 Delta and theta power and | alpha power
Vs 3 systems: Nihon Kohden digital EEG and peak frequency associated with
MCI (n=142) (EEG 2100; 2 versions of OSG digital clinical progression from SCD

equipment (BrainLab, BrainRT)

Prichep et al., 2006 [53] Non-Decliners (n=17),
remained at SCD after

>7 years

19 monopolar Ag/AgCl electrodes
referenced to linked earlobes
Brain State Analyzer (Cordis Corporation)

-53% (n=108) of subjects progressed from
SCD to MCIl/dementia or from MCI to
dementia after 2.1 years

Baseline 1 theta power and slowing of
mean frequency was seen in people with
cognitive decline

Vs or Spectrum 32 (Cadwell Laboratories)

Decliners (n=27) who
worsened to MCI or
dementia

Jelic et al., 2000 [54] MCI progressed to
clinically manifest AD

(n=14)

MCI stable

(n=13)

Healthy controls (n=16)

AD reference (n=15)

Brain Atlas

Huang et al., 2000 [55] Mild AD (n=18)
MCI (n=31)

Healthy controls (n=24)

Brain Atlas

Luckhaus et al., 2008 [56] MCI (n=88)

Mild probable AD (n=42)

Rossini et al., 2006 [57]  MCI (n=69)

Nobili et al., 1999 [58]  Probable AD (n=72)

Moretti, 2015 [59] MCI (n=174)

20 electrodes, computer-based Bio-Logic

20 electrodes, computer-based Bio-Logic

32-Channel EEG

19 AgCl cup electrodes

19 electrodes referenced to both mastoids

-MCI subgroups and controls had no
differences in baseline EEG

-MCI subgroups had significantly | baseline
theta power compared to reference AD
group

-Posterior alpha and theta power combined
with mean frequency predicted cognitive
deterioration at 1 year follow up

-Patients with AD had 1 delta and theta
GFP and | alpha GFP compared to
controls

-Patients with AD had | alpha and beta
GFP compared to MCI subjects

-Anteroposterior localization of alpha
source activation was best predictor of
future development of AD

| Posterior alpha power was most highly
predictive of MCI and AD, predicting
cognitive decline by 1-year follow-up

Subjects with 1 temporal delta source
activation more likely to progress to
dementia at~ 14 months later

16 scalp electrodes but only 2 channels for Loss of ADLs predicted by delta power;
each hemisphere selected

incontinence predicted by right-sided
alpha power

1 Ratios of high/low EEG alpha power
were associated with more cortical
atrophy, | temporo-parietal perfusion,
and a greater probability of developing
dementia at 3-year follow-up

AD Alzheimer’s disease, Ag silver, AgCl silver chloride, EEG electroencephalogram, GFP global field power, MCI mild cognitive impairment,

SCD subjective cognitive decline
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From a neurophysiological point of view, TCD is char-
acterized by the progressive appearance of a pre-alpha
or theta rhythm on EEG. This EEG rhythm is also con-
sidered a main hallmark of LBD, has been associated
with fluctuations of consciousness even in the prodromal
stages of the disease, and has been reported as a support-
ive biomarker for the diagnosis of LBD [60]. Therefore,
considering that a disturbance of consciousness is an
essential prerequisite for diagnosing delirium, and tak-
ing into account the role of thalamocortical system in
consciousness, attention and awareness, TCD (unveiled
by the appearance of pre-alpha rhythm) could play a role
in delirium pathophysiology and could be an underpin-
ning of prodromal LBD-related delirium.

Furthermore, aside from this role in identifying patients
at risk for ADRD (and who merit intervention), awake pre-
operative EEG abnormalities have been identified in indi-
viduals who later developed postoperative delirium. For
example, preoperative EEG slowing has been associated
with subsequent postoperative delirium [61].

Additionally, predisposing factors that have been asso-
ciated with increased risk for delirium (e.g., older age,
cognitive impairment, alcohol misuse, physical status
and functional impairment [62]) have been associated
with decreased alpha connectivity strength [63] between
EEG electrodes in older adults without delirium. Finally,
arecent pilot study found that the magnitude of preopera-
tive alpha attenuation at posterior EEG electrodes (i.e.,
the reduction in alpha power when older adults go from
the eyes-closed, awake state to the eyes-open, awake
state) was associated with the severity of postoperative
delirium [64].

Similar to the state of EEG changes in patients with
SMC, MCI, and AD, preoperative EEG alterations have
been demonstrated in patients who later developed post-
operative delirium. In both cases, while these alterations
may not have sufficient sensitivity and specificity to
predict exactly which patients would develop a disorder
(i.e., either ADRD or postoperative delirium), periopera-
tive EEG changes could nonetheless be used to identify
patients at higher risk who could then be selected for
further workup. In the case of postoperative delirium,
this is particularly important because there are behavio-
ral interventions that can reduce delirium risk (such as
the HELP program [65] and the ABCDEF bundle [66]),
but these interventions are often too resource-intensive to
apply universally to all older surgical patients. Thus, pre-
operative EEG could be used as an additional screening
test to identify which older patients are at increased risk
for postoperative delirium, and thus who might benefit
most from the HELP or ABCDEF interventions.

Traditional Uses for Intraoperative EEG—
Preventing Awareness with Explicit Recall
and Titrating Anesthetics

Intraoperative EEG monitoring (typically with 2—4 fron-
tal electrode arrays) are used at many medical centers for
anesthetic titration. EEG can be used for anesthetic titra-
tion because anesthetic drugs with GABA-A agonist activ-
ity (such as propofol and the halogenated volatile agents:
isoflurane, sevoflurane and desflurane), produce charac-
teristic EEG waveform changes, i.e., delta (<4 Hz) and
alpha (8—12 Hz) oscillations at frontal scalp sites, with the
halogenated volatile agents also producing theta oscilla-
tions. In contrast, drugs with other mechanisms of action
such as alpha-2 adrenergic receptor agonists (i.e., dexme-
detomidine) or NMDA (N-methyl-D-aspartate) antago-
nists (i.e., nitrous oxide, ketamine, and xenon [67]) tend
to produce other characteristic EEG waveform patterns
(reviewed in [68]).

With increasing dosage of inhaled anesthetics and
propofol, frontal EEG waveforms progress through a
period of paradoxical excitation marked by increased
beta oscillation power (12-30 Hz) before slow-delta
(<4 Hz) and alpha oscillation power (8—12 Hz) become
dominant and beta and gamma (> 30 Hz) oscillation
power diminishes significantly. This pattern of high
amplitude slow-delta and alpha oscillations in ongoing
EEG activity is thought to be associated with both a low
incidence of patient movement in response to noxious
stimuli and a low incidence of intraoperative awareness
with explicit recall [68—71]. This behavioral state is
generally considered the desired end point for general
anesthesia. Further increases in inhaled anesthetic dosage
then lead to decreases in frontal alpha power [72], fol-
lowed by the emergence of burst suppression—an inter-
mittent isoelectric (flat line) EEG signal between bursts
of delta and/or alpha oscillations [73].

Several commercial EEG monitors also produce pro-
cessed index values, typically on a scale of 0 to 100, in
which awake conscious individuals typically have val-
ues in the 90-100 range. The manufacturers of several
of these devices (most notably the BIS, or Bispectral
Index monitor [74]) have marketed them with the claim
that using these processed EEG monitors (and titrating
anesthetic drug delivery to maintain the processed EEG
within the target range) would help reduce intraoperative
awareness with explicit recall. Despite this claim, the
evidence supporting the use of processed EEG monitors
for the prevention of intraoperative awareness is incon-
sistent, and may depend on the patient population in
which the monitor is utilized. There is evidence that use
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of the BIS monitor in patients at high risk of awareness
[75] and receiving total intravenous anesthesia (TIVA)
[76] might reduce the incidence of intraoperative aware-
ness. However, there appears to be no additional benefit
provided by BIS monitoring in patients receiving inha-
lational anesthesia with continuous monitoring of end-
tidal gas concentrations [77]. Overall, the consensus in
the field is that intraoperative EEG monitoring may help
reduce intraoperative awareness rates when used in TIVA
cases, but not for cases performed with volatile anesthet-
ics with end-tidal gas monitoring [78].

Interestingly, there is also evidence to suggest that the
use of processed EEG monitors—such as Narcotrend
(Narcotrend®; MonitorTechnik, Bad Bramstedt, Germany),
the BIS monitor (BIS®; Aspect Medical Systems, Newton,
MA), or Sedline (Masimo Corporation, Irvine, CA)—that
provide measures of a patient’s level of consciousness may
help speed up emergence from anesthesia. Studies have found
that use of these monitors results in shorter time to eye open-
ing, faster extubation, higher orientation upon arrival to the
recovery room/area, and earlier qualification for discharge
from the anesthesia recovery room/area [79-82]. Although
trials have examined whether intraoperative BIS monitor use
reduces delirium risk (discussed below in the section titled
EEG Monitoring for Reducing Postoperative Delirium Risk),
observational studies have generally not observed different
intraoperative BIS values among patients with vs. without
delirium [83, 84] (see Table 3 for data quality ratings of
observational intraoperative EEG studies discussed here).

Intraoperative EEG Monitoring to Identify
Patients at Increased Delirium Risk

Aside from their original proposed role in reducing the
incidence of intraoperative awareness (and for accelerating
emergence from general anesthesia), there are two related
intraoperative EEG features that have been associated with
postoperative delirium: decreased alpha power and increased
burst suppression. Decreased intraoperative alpha power
(i.e., in response to inhaled anesthetics or propofol) has been
shown to correlate with preoperative cognitive impairment
[85], which is a known predisposing factor for postoperative
delirium [86]. Subsequent work corroborated this finding
[87], and went on to show that decreased intraoperative alpha
power was associated with the severity of postoperative sub-
syndromal delirium [88]. Separately, several studies found
that increased incidence and duration of intraoperative burst
suppression (i.e., intermittent periods of a flat line EEG sig-
nal) were associated with increased delirium risk [89-94].
Interestingly, subsequent work has shown that increased inci-
dence and duration of burst suppression were also associated
with decreased intraoperative EEG alpha power [95, 96].

Aside from specific EEG features such as alpha power
and burst suppression, EEG complexity, a measure of tem-
poral fluctuations or irregularities in the EEG signal, has
also been studied with respect to delirium. Acker and col-
leagues found that overall EEG complexity, quantified by
multi-scale entropy (MSE), was not associated with delir-
ium. However, they found a “crossover” point where the
preoperative and intraoperative MSE curves intersected.
This crossover point represented the time scale at which the
preoperative and intraoperative complexity or entropy of the
EEG signal was equal. Interestingly, when correlating preop-
erative to intraoperative MSE crossover point with delirium
severity, individuals with crossover points at shorter time
scales trended toward greater delirium symptomatology
[97]. Similarly, reduced EEG complexity as measured by
Lempel-Ziv Complexity (considered to represent a proxy
for cortical information content) has also been correlated
with delirium in a scalp-wide fashion [98].

In contrast to these clear-cut associations between com-
plexity measures (and other intraoperative EEG features)
with postoperative delirium, as noted above, observational
and retrospective studies have generally not found an asso-
ciation between intraoperative BIS index values and post-
operative delirium. This is surprising, partly because the
BIS index algorithm itself partly relies on burst suppression
measurements [99]. A potential explanation may lie in the
principle that BIS index values, like the processed EEG fea-
tures described above, reflect both the preoperative structure
and function of the patient’s brain as well as its responses to
surgical stimuli and varying anesthetic drug dosage [100].
To effectively control for anesthetic dosage effects on BIS
values and isolate the effect of preoperative neurocognitive
impairment on these BIS values, a recent report studied the
effect of dividing case average BIS values by the difference
between the maximum inhaled anesthetic dose likely to be
given in clinical practice (2.5 aaMAC, where aaMAC is the
age-adjusted end-tidal minimum alveolar concentration) and
the actual mean inhaled anesthetic dose received by a given
patient [83]. Low values on this anesthetic resistance scale,
calculated by [BIS/(2.5-aaMAC)], imply that a patient has
lower BIS values than would be expected for a given inhaled
anesthetic dose (see Box 1). Low values on this anesthetic
resistance scale were highly associated with postoperative
delirium incidence in a combined cohort of older patients
from two different institutions [83]. Interestingly, low values
on this anesthetic resistance scale [BIS/(2.5-aaMAC)] were
independently associated with delirium risk in multivari-
able adjusted analyses, even though neither BIS nor aaMAC
themselves were associated with delirium risk.

Similarly, Fritz and colleagues found that increased
intraoperative anesthetic sensitivity (i.e., an increased pro-
pensity for burst suppression at low anesthetic doses; see
Box 1) was highly associated with postoperative delirium,

@ Springer



984

M. Berger et al.

while burst suppression alone (i.e., without adjustment for
anesthetic dose [89]) was not associated with postoperative
delirium in this study. Taken together, these two studies sug-
gest that both processed and raw EEG features adjusted for
the anesthetic dose received by individual patients may be
more closely associated with postoperative delirium than
the unadjusted versions of these indices, thus emphasizing
the importance of using “anesthetic-adjusted” EEG indices
in future studies relating intraoperative EEG parameters and
postoperative delirium. Further, there is reason to think that
studying preoperative “unprovoked” resting-state EEG activ-
ity together with EEG responses to anesthetic administra-
tion may be more indicative of brain structure and function
among older adults than either type of EEG recording alone,
since a general principle of geriatrics is that physiologic
responses to a stressor (i.e., provocative tests) provide an
informative test of functional capacity (or reserve) within
relevant organ systems [101].

model [108]. Yet, the authors of this meta-analysis con-
cluded their meta-analysis abstract by noting that, related
particularly to the four study models listed above, “high
clinical heterogeneity limits the inferences from this and
any future meta-analyses” [108] on the effect of processed
EEG-based anesthetic titration on postoperative delirium
risk. To date, no published studies have examined the effect
of anesthetic titration based on EEG alpha power on postop-
erative delirium risk, although one randomized trial found
that anesthetic titration based on maximizing frontal alpha
power led to decreased hospital length of stay (an explora-
tory outcome in this study [109]). An additional study com-
paring the effect of anesthetic titration to maximize EEG
alpha power vs usual care on delirium outcomes is currently
underway, with results expected in 2023 [110, 111].

One reason for the high heterogeneity mentioned above
across the studies using processed EEG monitoring to
reduce postoperative delirium rates is that clinicians were

Box 1 Select anesthetic-adjusted EEG measures

Citation Anesthetic-adjusted EEG measure equation
(Cooter Wright et al., 2022) _ 1
[83] DARS = BIS 2.5-aaMAC
- ] ; 1
(FI']tZ et dl" 2018) [89] log ll(SR > O)I‘J = 1+~ Po-+uo;+P1 (ETAC); ;+ P (Propofol Dose); +P3 (Midazolam Dose);+f4 (Opioid Dose);+Ps (Nitrous Oxide);)

anesthetic concentration

DARS Duke Anesthesia Resistance Scale, BIS Bispectral Index, aaMAC age-adjusted end-tidal minimum alveolar concentration, logit a
log-odds function used to represent probability as a value from O to 1 in logistic regression models, SR suppression ratio, ETAC end-tidal

EEG Monitoring for Reducing Postoperative
Delirium Risk

The associations between delirium and processed EEG
values that potentially indicate “excessive” anesthetic dos-
age have led to a number of studies that have attempted to
reduce postoperative delirium incidence by titrating anes-
thetic administration in response to these EEG parameters.
These studies have generally assessed delirium rates (and
sometimes delirium severity) after randomizing patients to
either: (1) BIS-guided vs. non-BIS-guided anesthetic titra-
tion [102, 103]; (2) two different target BIS ranges (i.e.,
deep vs. light anesthesia or sedation groups [104, 105]); (3)
usual care versus an anesthetic regimen designed to reduce
the incidence of both burst suppression and low BIS values
[106]; or (4) general anesthesia without EEG guidance vs
BIS-guided sedation and spinal anesthesia [107]. Overall,
a recent meta-analysis found no effect of processed EEG-
guided anesthetic administration on postoperative delirium
rates across nine studies, although a positive effect was seen
in a pre-planned secondary analysis using a random effects

@ Springer

directed to use EEG parameters in different ways across
these various studies to alter anesthetic management
[102-107] (Table 4). Perhaps as a result, clinicians altered
anesthetic dosage to varying extents across these studies in
response to information from the EEG monitors [102—-107].
Thus, as with any investigation of the effect of a new or
additional intraoperative monitor on patient outcomes, the
divergent outcomes across these studies may be a reflection
of how different clinicians used the information from these
EEG monitors to alter care in different ways, rather than an
indication of the effect of EEG monitoring itself on patient
outcomes [112].

Various other explanations for these divergent outcomes
have also been discussed, including differences in a priori
study registration, differences in the ancestral origin of the
cohorts in different studies (with resultant differences in
drug metabolism [113]), differing effects of altering anes-
thetic dosage on patients with normal vs. impaired cogni-
tion or on patients with differing degrees of comorbidities,
and the fact that an intervention (such as EEG monitoring)
can only plausibly modulate an outcome (such as delirium)
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via numerous intermediate steps subject to confounding
[114, 115]. Another way to make sense of this literature is
to think of patients in three groups: (1) those who are highly
unlikely to become delirious after surgery regardless of what
intraoperative anesthetic regimen is used; (2) those who are
highly likely to become delirious after surgery regardless of
what intraoperative anesthetic regimen is used; and finally
(3) those whose postoperative delirium risk is modifiable
based on what intraoperative anesthetic regimen is used. In
statistical terms, this is analogous to the view that rather
than a fixed effect of EEG-guided anesthetic administration
on postoperative delirium incidence, there are likely differ-
ing (or random) effects of such interventions on different
patient groups.

At present, we do not know how to define which patients
belong to each of these three groups, since these hypotheti-
cal groups are presumably defined by structural and func-
tional characteristics of the CNS that we do not normally
measure prior to anesthesia and surgery. Since we do not
know how to define which patients belong to each of these
three groups, we do not know the relative distribution of
patients from each of these three cohorts within the studies
discussed above. Thus, studies that demonstrated differences
in delirium rates due to EEG guidance may simply have
enrolled a greater percentage of patients in group 3, and
vice versa, studies that found no benefit of EEG guidance on
delirium rates may have enrolled a relatively greater percent-
age of patients from groups 1 and 2. While this explanation
is theoretically possible, to test it we will need to develop
a better understanding of the brain characteristics that pre-
dispose patients to postoperative delirium, and the means
to measure these brain characteristics across future study
participants (or even as a means to select at-risk patients
for such studies). Ultimately, larger future studies will be
required to better understand whether there are specific sub-
populations of patients in whom EEG-guided anesthetic
titration will lead to lower delirium rates.

EEG Monitoring During Anesthetic Emergence

While this discussion above has focused on the relationship
between summary or mean EEG patterns during anesthe-
sia and postoperative delirium, there is also evidence that
specific EEG patterns seen during emergence from anes-
thesia may also be associated with the return of normal
cognitive function and even with the subsequent develop-
ment of postoperative delirium (Table 4). In one study of
52 patients undergoing sevoflurane anesthesia, 4 types
of EEG patterns were identified during emergence, with
differences in emergence time dependent on patient age
[116]. The ReCCognition study randomized healthy adults
to either 3 h of general anesthesia with isoflurane or resting

wakefulness, and found that the post-anesthesia return of
responsiveness was initially accompanied by a lower than
normal posterior EEG dominant frequency and power (i.e.,
posterior alpha peak frequency and power), both of which
gradually returned to baseline over the next three hours
[117, 118]. Interestingly, this gradual return to normal of
the posterior dominant alpha peak frequency correlated
with improving cognitive task performance over the three
hours following return of responsiveness, raising the pos-
sibility that the postoperative normalization of posterior
EEG alpha peak frequency could be used to track the return
of cognitive function in older surgical patients. Similarly,
another study evaluating 53 adult surgical patients in the
PACU found that a shift to parietal alpha power and fron-
tal-parietal alpha band connectivity were the predominant
EEG features that appeared during postoperative recovery
[119], although neither feature was associated with the
time-to-meet PACU discharge criteria or sedation scores
upon initial assessment.

EEG has also been used to identify motifs (or patterns)
of inter-connections between nodes or regions of networks
in the brain, which have shown changes in topological
organization associated with general anesthesia-induced
unconsciousness [120]. Peak perturbation of these func-
tional brain networks under anesthesia occurs at return of
consciousness with a return to baseline within the first hour,
although deficits in cognitive performance can lastup to 3 h
afterward [121]. EEG return to baseline of frontal-parietal
network dynamics as measured by permutation entropy (a
local measure of EEG signal fluctuations) and Lempel-Ziv
Complexity (a global measure of EEG signal fluctuations)
has also been seen at the point of return to consciousness
[122]. Taken together, these changes in EEG power, domi-
nant frequency, motifs, and complexity that accompany
emergence from anesthesia provide multiple different elec-
trophysiologic biomarkers that could be studied as potential
predictors of postoperative delirium or other types of perio-
perative neurocognitive disorders. One such study of EEG
emergence patterns and delirium found that patients who
emerged from anesthesia without significant frontal alpha
power had an increased risk of developing post-anesthesia
care unit (PACU) delirium [90]. Similarly, another report
found that as compared to patients without PACU delirium,
those with PACU delirium showed lower frontal EEG alpha
power and lower frontal-parietal theta and alpha coherence
during anesthetic emergence [123]. These EEG emergence
patterns were not highly sensitive and specific for the later
development of delirium, though they had better predictive
ability than age for the development of delirium. Thus, while
not diagnostic, these EEG patterns could potentially be used
as a rough screening test to gauge relative delirium risk and
to select patients for resource-intensive delirium prevention
interventions, which may not be available for all patients.
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Postoperative EEG Waveforms and Delirium

EEG recording during delirium has typically showed
generalized slowing, characterized by increased power
in delta and theta bands with a concomitant decrease in
alpha band power [124—130] (Table 5). One study that
examined the differences of EEG between patients with
and without delirium after undergoing cardiothoracic
surgery identified relative delta power across a frontal-
parietal electrode derivation as a potential measure to dis-
tinguish the two groups of patients, with the largest dif-
ference noted during eyes-closed periods [131]. Another
study in cardiac surgery patients in the intensive care unit
found that median BIS values on postoperative day 1 were
significantly lower in delirious patients, with the delirious
patients also displaying lower relative alpha and higher
theta power [128]. A post-cardiac surgery study compared
patients with hypoactive delirium (n = 18), patients recov-
ering from anesthesia (n =20), and non-delirious controls
(n=20), and found that delirious patients showed less
integrated networks in the alpha band than non-delirious
controls [127]. The same group examined 159 patients
60 years of age or older undergoing EEG on postopera-
tive days 1 to 3 and found that relative EEG delta power
could be used to help detect delirium in these patients
[132]. Reduced functional interdependence of EEG scalp
electrode pairs has been associated with delirium [126,
133, 134], which supports the hypothesis of delirium
as a disorder of disintegrated brain network connectiv-
ity [135-137], a finding that has also been supported by
resting-state functional MRI [125].

In addition to these correlations with delirium incidence,
postoperative awake resting-state EEG features such as
generalized slowing in frequency have also been found to
correlate with delirium severity and poor clinical outcomes
[138]. Similarly, increased postoperative resting-state
EEG delta power has been associated with both increased
delirium severity and (paradoxically) with increased pre-
operative cortical thickness [139]. Another study of 12
patients undergoing orthopedic surgery found that greater
resting-state delta power while awake on postoperative day
1, and lower EEG delta power in non-REM sleep on night
2, predicted the severity of delirium on postoperative day 2
[140]. Reduced complexity of the resting-state EEG signal,
which may reflect fewer and/or simpler patterns of neural
activity within the brain and lower cortical information
content (as mentioned earlier in this review), has also been
correlated with delirium severity [98]. A major question
for the field is whether EEG correlates of delirium reflect
underlying vulnerabilities that indicate delirium risk ver-
sus whether they measure the brain activity patterns of
delirium itself.

@ Springer

EEG When Delirium Is Superimposed
on Dementia

A challenging clinical picture emerges when delirium is super-
imposed on dementia, since some signs and symptoms overlap
between these disorders. Thus, further refinement of electro-
physiological activity during an episode of delirium, as distinct
from pathological EEG findings associated with dementia, may
aid the diagnosis of delirium when superimposed on demen-
tia [141-143]. To date, EEG has not been able to differentiate
between these two states [144]. The fluctuating arousal and inat-
tentive nature of delirium overlap with features of LBD both
phenotypically and electrophysiologically [124]. In a recent
study, patients with delirium exhibited higher dominant fre-
quency (DF) variability in the pre-alpha/theta range (6-7.5 Hz),
in addition to an overall lower dominant frequency, a pattern
resembling that observed in LBD [60]. These similarities poten-
tially reflect vulnerability in brainstem networks which govern
the transition between, and maintenance of, different cortical
states. The identification of the aforementioned EEG activity
patterns before or after surgery, which resemble those seen in
LBD, provides an opportunity to select patients for alpha-synu-
clein CSF level measurements (a LBD biomarker) and further
workup for LBD [145, 146]. Similarly, since patients with post-
operative delirium are more likely to have preclinical amyloid or
tau pathology (as indicated by low CSF amyloid and high CSF
tau levels [147, 148]), the development of postoperative delirium
(or EEG patterns associated with it) could be used to identify
patients at risk for developing AD for clinical trials and other
interventions (such as intensive blood pressure management)
that have been shown to reduce MCI and dementia risk [149].

The aberrant EEG activity discussed above that is seen dur-
ing delirium (Table 6) is thought to reflect thalamocortical
dysrhythmia, and normalizes following delirium resolution in
most patients [60]. This not only sheds light on potential sys-
tems neuroscience-level mechanisms of delirium, but also may
be useful when assessing delirium in people who are hypoac-
tive or even catatonic and thus may not be able to complete
delirium screening assessments. Furthermore, if the transient
neurophysiological disruption seen during delirium could be
further differentiated from aberrant EEG activity patterns seen
in people with dementia, then these delirium-specific EEG pat-
terns (in addition to other measures) could be a useful tool for
the assessment of delirium superimposed on dementia.

EEG Recorded Following Delirium Resolution

There is a dearth of studies that have recorded resting-
state EEG longitudinally in people whose delirium has
resolved [60, 150]. Persistent resting-state EEG slowing
in frequency was seen at four months [151] and one year
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Table 4 (continued)

&

Data quality

No. of EEG  Main result(s)

electrodes

EEG system

Refno Study type Sample size Patient state

Section

Springer

Alpha parietal power and frontal-parietal I

53 Postoperative  Cognionics, Inc. (San 16

PC

[119]

connectivity were the predominant features
seen on postoperative EEG in PACU

Diego, CA)

EEG networks returned to baseline in 30—60 min III

128

Perianesthesia Electrical Geodesics, Inc.

20

PC

[121]

after recovery of consciousness

(Eugene, OR)

1

32,64, or 128 Cognitive performance of patients undergoing

Perianesthesia Electrical Geodesics, Inc.

60

PC

[122]

anesthesia was similar overall within 3 h after
return of consciousness to patients that did not

undergo anesthesia

(Eugene, OR)

Patients with PACU delirium had | relative

Perianesthesia NIM-Eclipse 10

116

PC

[123]

alpha power and | fronto-parietal alpha

coherence

neuromonitoring

system (Medtronic,
Dublin, Ireland)

PACU post-anesthesia care unit, PC prospective cohort study, POD postoperative delirium, POCD postoperative cognitive dysfunction, RC retrospective cohort study, RCT randomized con-

trolled trial

[152] following hospital discharge among older adults in
two studies, while one study found an overall normaliza-
tion of quantitative resting-state EEG patterns at one month
after discharge in a majority of people who had delirium
[60] (Table 6). Further longitudinal studies are required to
determine if delirium is associated with long-term EEG
changes, and additional studies of this type are currently
underway [153].

Use of EEG in Intensive Care Units

The use of EEG in other areas such as intensive care units
(ICUs) may also provide useful insights for identify-
ing delirium risk, and into the underlying structural and
functional brain pathology that may predispose patients to
longer-term dementia risk. The existing literature has pri-
marily investigated this in medical ICUs, but these studies
still provide relevant insight into how EEG may be used in
surgical ICUs.

In one group of sedated, critically ill patients, 39%
showed EEG burst suppression, defined as a non-zero
burst suppression ratio as calculated by the standard BIS
A1050 algorithm. When mortality was assessed 6 months
later, burst suppression was an independent predictor of
increased mortality risk [154]. In a cohort of 124 mechan-
ically ventilated ICU patients, 69 emerged from coma,
of which 42 (61%) met criteria for post-coma delirium.
In evaluating EEG patterns associated with coma, most
patients were found to exhibit burst suppression, even if
short in duration [94]. In a group of 10 ICU survivors, 9
of 10 patients had inpatient EEGs that showed generalized
background slowing and 10 of 10 patients demonstrated
cognitive impairment in one or more domains at 12-month
follow-up. The relative alpha power of the inpatient EEGs
was correlated with score on visuospatial/constructional
domain tasks, and peak interhemispheric coherence cor-
related negatively with delayed memory [155]. A system-
atic review of 14 studies that investigated ongoing EEG
characteristics defining delirium in the ICU also found
that a reduction in relative alpha power and an increase
in relative delta and theta power often distinguished delir-
ium patients from non-delirium patients [156]. Other EEG
features such as network topology of the interdependence
of EEG activity at electrode pairs and phase lag index,
a commonly used, de-biased measure of functional con-
nectivity strength, provide additional insight into neuro-
biological underpinnings of delirium [134]. In summary,
ongoing EEG features such as burst suppression, relative
delta through alpha power, and network topology have
associations with delirium in patients admitted to medical
ICUs (Table 6), suggesting that it is worth investigating the
relationship between these EEG patterns and delirium in
surgical ICU patients as well.
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Table 6 (continued)

Data quality

Main result(s)

No. of EEG
electrodes

EEG system

Patient state

Sample size

Refno Study type

Section

1I

After controlling for

ICU (ventilated) BIS (Covidien)

124

PC

[84]

arousal levels, BIS

algorithms (XP, 3.4) did
not distinguish between
presence vs. absence of

delirium

I

Duration of burst

4

ICU (ventilated) BIS (Aspect Medical

69

PC

[94]

suppression during coma
was associated with

Systems)

prevalence and duration of

delirium

ICU intensive care unit, LBD Lewy body dementia, PC prospective cohort study

Acquiring Further Clinical Workup

An atypical preoperative, intraoperative, or postopera-
tive EEG profile suggestive of either (1) delirium risk, (2)
brain abnormalities, and/or (3) unusual response patterns
to anesthesia provides an opportunity to modify care plan-
ning and decision making. In addition to altering anesthesia
management, perioperative EEG profiles could help target
at-risk patients for optimization and intervention programs.
Atypical EEG profiles could result in referral to geriatri-
cians, behavioral neurologists, and/or neuropsychologists
for differential diagnosis and long-term care management.
These data would additionally provide objective informa-
tion to assist in differentiating dementia from postoperative
delirium [157]; distinguishing delirium from dementia has
been particularly challenging in a postoperative setting par-
ticularly if the patient has no caregiver, no medical history,
no dementia diagnosis, or cognitive screening recorded [62].
With additional research justifying inclusion into the care
pathway, perioperative EEG methods could become a logi-
cal expansion for programs such as the American College
of Surgeons Geriatric Surgery Verification (ACS GSV) Pro-
gram, which is designed to improve perioperative care for
older adults undergoing surgery [158].

Practical Barriers to Implementation
of Perioperative EEG

Although we lack exact nationwide or worldwide statistics on
how often intraoperative EEG monitoring is used, intraopera-
tive EEG is used in up to 1/3 of cases at one of our centers
(i.e., Duke Medical Center) [159]. The use of intraoperative
EEG requires an understanding of how to (1) correctly and
efficiently apply electrodes, (2) establish a high-quality sig-
nal, (3) monitor the data for quality and limit artifact in real
time, (4) disinfect the equipment after recording (if it is to
be reused), and (5) pre-process and analyze the data if that is
the goal; this last step is not required if using the EEG solely
during surgery (such as for anesthetic titration). We provide
a general overview of training requirements below.

1. Ttis critical that researchers and staff are trained on cor-
rectly placing electrodes on the scalp as intended by the
manufacturer (i.e., at the X, y, z coordinates specified by
the EEG montage, or electrode layout, of the EEG sys-
tem). These manufacturer-provided electrode locations
are used during data processing and analysis; thus, devi-
ations from these coordinates can limit the quality of the
data and conclusions. For instance, a multi-channel EEG
cap should not be askew to the left or right; electrodes
should be within 1 cm of their correct locations (e.g., Cz
should be within 1 cm of the center of the scalp).

@ Springer
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Table 7 Advantages, disadvantages, and potential research insights from various EEG systems

EEG system Advantages Disadvantages

Potential research insights

BIS, Sedline,
Narcotrend

e Short set-up time

e Readily available in most
clinical settings

o Clinically useful processed
EEG metrics

o User-friendly

frontal)

32-Channel
Montage

o Ability to collect data from
electrode sites across the scalp

e Cost

o Long set-up time for gel-
based systems
e Bulky equipment

o Limited number and location e Identifying clinically relevant biomarkers using
of electrodes (i.e., only

the raw EEG signal, which can be measured with
limited additional time and cost over standard of care
procedures

o Ability to perform analyses by regions of interest and
across the whole head

e Time to train individuals
to use the equipment
and analyze the output
appropriately (including data

pre-processing)

64 to 256-Channel e Improved spatial accuracy
Montage over <32 channels
e Ability to perform source
localization

requirements

e Same disadvantages as
32-channel systems

o Diminishing returns in terms e Detecting lateralized brain abnormalities or
of spatial accuracy gained
vs. cost and computational

e More spatially precise regions of interest and measures
of functional interdependence between electrodes

impairments in postoperative delirium and/or
neurocognitive disorder postoperative

e Tracking topographical changes in activity or states
across time

2. Once electrodes are placed, the gap between the elec-
trodes and the scalp is bridged with a conductive solu-
tion (e.g., saline or gel, if the EEG system uses wet
electrodes). This conductive solution should be care-
fully but thoroughly applied to reduce high impedances
(i.e., impediments to the flow of the electrical current)
while avoiding bridged signals between electrodes that
would reduce spatial accuracy [160]. During intraopera-
tive recordings in which the patient may be repositioned
for surgery, it is important that both the electrode loca-
tions and signal quality remain consistent if using the
full intraoperative recording as a single dataset.

3. Data quality should be monitored, with attention to proper
electrode locations and signal quality requirements, includ-
ing the appearance of artifact in the signal (e.g., blinks and
eye movement, muscle activity, line noise, environmental
noise) and methods should be used to minimize the impact
of these issues on the data, such as by isolating the equip-
ment to avoid external electrical interference.

4. After recording is complete, it is important to use proper
disinfecting procedures if the recording apparatus is to be
reused. Most, if not all, EEG system manufacturers have
recommended guidelines for disinfecting the equipment
without damaging them; researchers and staff should also
be trained on how to disinfect surrounding equipment
(e.g., conductive solution applicators, tables, laptops, etc.).

5. After all recording procedures are complete, EEG data
are pre-processed to remove noise and retain signals
from brain activity. This requires training on signal pro-
cessing techniques such as filtering, down-sampling,

@ Springer

re-referencing, electrode interpolation, and removal of
remaining artifacts [161, 162].

6. Subsequent analysis of the pre-processed EEG data gener-
ally requires a theoretical understanding of (i) regions of
interest; (ii) EEG features (e.g., alpha power, functional
connectivity metrics, etc.); and (iii) associated quanti-
tative techniques (e.g., event-related potential analysis,
power analysis, etc.) to optimize the EEG analysis for the
research question and study design. The potential research
insights as well as advantages and disadvantages of dif-
ferent EEG systems are provided in Table 7.

Conclusions

In addition to the traditional uses of perioperative EEG
monitoring (i.e., to prevent intraoperative awareness, moni-
tor anesthetic “depth” and hasten emergence from anesthesia
by decreasing anesthetic agent exposure), an increasing body
of work suggests that perioperative EEG data may contain
important information on the following: (1) baseline/preoper-
ative brain structure, function, and pathology; (2) postopera-
tive delirium risk; and (3) longer term risk for specific types
of ADRD. To harness this information to improve periopera-
tive outcomes, and to identify at-risk patients for delirium
prevention interventions and longer term neurologic workup
and follow-up, will require close collaboration between neu-
rologists, neuroscientists, neuropsychologists, psychiatrists,
geriatricians, surgeons, and anesthesiologists. Research will
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be necessary to develop new perioperative care models that
involve this type of close collaboration, to optimize EEG
monitoring devices that can provide necessary data to busy
clinicians without slowing down operating room efficiency,
and to determine the sensitivity and specificity of intraopera-
tive EEG patterns for various types of ADRD and delirium.
Additionally, clinical use of perioperative EEG monitoring
to identify patients at risk of delirium and/or ADRD (in the
longer term) will necessitate standardization of EEG record-
ing, equipment, and display parameters.

Further, adding EEG monitoring for biomarker detec-
tion before, during and after surgery to trials testing

Table 8 Questions for future perioperative EEG research

interventions to prevent delirium and/or neurocognitive
disorder postoperative (whether these interventions are
pharmacologic [163, 164] or behavioral [165-167]) pro-
vides an opportunity to understand the effects of these
interventions on brain network activity and connectivity.
Further, EEG monitoring can help clarify whether ame-
lioration of specific delirium-associated EEG patterns is
sufficient to prevent delirium itself and associated long-
term cognitive impairments or aging-related neurodegen-
erative disease [168—170]. In this way, perioperative EEG
monitoring can help us not only predict or mitigate risk
of delirium and neurocognitive disorder postoperative or

Question

Potential study designs to address this question

1. What neurologic/neurobiologic mechanisms account for different
anesthetic dose adjusted EEG patterns across older adults?

2. Are there intraoperative anesthetic dose adjusted EEG patterns that
indicate specific types of neurodegenerative disease pathology (i.e.,
amyloid plaques, tau tangles, Lewy bodies, etc.)?

3. How can systems of care be designed to refer patients for additional
neurologic workup and delirium prevention effort based on
perioperative (and anesthetic dose adjusted) EEG patterns?

4. What preoperative EEG patterns (and anesthetic dose-adjusted EEG
patterns) are most predictive of postoperative delirium risk?

5. Are there subgroups of patients in whom EEG-guided anesthetic
titration will lower postoperative delirium and neurocognitive
disorder? If so, what characteristics can be used to identify these
subgroups?

6. What intraoperative EEG features (raw or processed measures)
are best for using to titrate anesthetic dosage for preventing
postoperative delirium and/or neurocognitive disorder?

7. What should patients (and potentially their family members) be
told if they display abnormal intraoperative anesthetic-dose adjusted
EEG patterns, or other abnormal perioperative EEG patterns more
generally?

8. Are there major factors (e.g., anesthetic type and dosage, EEG
pre-processing methods, surgery type, hypoactive vs hyperactive
delirium type) that influence which preoperative or intraoperative
EEG features are best for anesthetic titration or for preventing
postoperative delirium and/or neurocognitive disorder?

9. Can we track the fluctuating course of postoperative delirium with
EEG to identify brain patterns associated with changes in attentional
state among these patients?

10. Can we more precisely characterize the types of cognitive
impairment (e.g., in different aspects of attention and memory) in
postoperative delirium and/or neurocognitive disorder perioperative
by utilizing perioperative task-based (event-related) EEG?

Cohort studies that collect intraoperative EEG, anesthetic dosage
data, and measures of brain structure, function, and pathology—i.e.,
neuroimaging, blood and CSF biomarkers, etc., including multimodal
data analysis (e.g., pairing perioperative EEG data with structural or
functional brain imaging data) to better localize sources of impairment
in postoperative delirium and/or neurocognitive disorder

Large cohort studies (potentially multi-center) with intraoperative
EEG recording, anesthetic dosage data extraction from electronic
medical records, and CSF/blood biomarker and neuroimaging studies
for multiple different types of preclinical neurodegenerative disease
pathology

Feasibility studies of these new care models, followed by
implementation science studies to facilitate and operationalize these
new care models

Large multi-center cohort studies with intraoperative EEG monitoring,
anesthetic dosage data extraction from electronic medical records, and
postoperative delirium screening to identify the EEG patterns with the
highest sensitivity and specificity for delirium prediction

Large multi-center randomized controlled trials of EEG-guided
anesthetic titration, with deep phenotyping of pre-clinical
neurodegenerative disease pathology and neurologic function, and
subgroup analyses

Large multi-center randomized controlled studies with intraoperative
anesthetic titration based on EEG monitoring, in response to EEG
patterns identified in #4 and in patients identified in #5 above

Surveys to gauge the feelings and thoughts of patients and family
members on this topic, and follow-up studies to examine the effects on
families of receiving this information

Large multi-center randomized controlled trials with EEG-guided
anesthetic titration, deep phenotyping of pre-clinical and postoperative
neurodegenerative disease pathology and neurologic function, and
careful analysis of the influence of EEG pre-processing methods (e.g.,
referencing methods) on conclusions

Large cohort studies with EEG data collected before, during, and after
episodes of postoperative delirium. Studies with 128 4 channels could
use source localization to identify brain structures that may give rise
to these brain activity pattern changes

Large cohort studies with perioperative EEG collected during

neurocognitive attention and/or memory tasks and during stimulus-
based EEG event-related potential measurements
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Fig.3 Similarities between the
use of ECG in cardiac exercise
stress tests, and the potential use
of EEG as a real-time readout
of patient responses to the stress
test of anesthesia/surgery

Stress Test

Exercise as a
Cardiac Stress Test

Physical
exercise

Anesthesial Surgery as
a Brain Stress Test

Abnormal brain +
anesthesia drugs + //
surgical stress

Burst suppression

i
Low amplitude

alpha power

Postoperative Delirium and
Long Term Risk of Dementia

Neurologic workup + Treatment

- Rule out reversible causes of dementia
such as B12, folate deficiency

- Screen + treat for depression if present
(since depression can cause cognitive

Echo wall motion
Electronic abnormalities
Readout T (hypocontractility)
ST depressions
Risks Myocardial Infarction
Cardiac Workup + Treatment
- Cardiac catheterization
- Medical management with nitrates
- ACE inhibitors, 3 Blocker, etc
Workup - Cardiac catheterization + stents
and - CABG
Treatment

even overt clinical manifestations of aging-related neu-
rodegenerative diseases, but it can also help us to better
understand brain network alterations that may underlie
these disorders (and their preclinical manifestations), and
to test which of these brain network level processes (i.e.,
neurophysiologic endophenotypes) may be altered by
delirium prevention interventions. Further, EEG could be
used to select patients with high delirium risk for inclu-
sion into randomized controlled studies of interventions
to prevent delirium.

Much work remains to be done on all of these fronts (see
Table 8 for recommended study designs to address these
questions). While we do not yet understand how to use EEG
monitoring to understand brain structure and function to the
same degree as electrocardiograms can be used to provide
insight into cardiac structure, function and rhythmes, it is
important to recognize how much we have learned about
the human brain and mechanisms of anesthesia in the last
near century since EEG alpha waves were first discovered
[171]. This history provides reason to believe that the com-
ing century will witness significant advances in the use of
translational perioperative EEG to gather information from
the perioperative “stress test” of anesthesia and surgery and
to modify care for the benefit of older patients [172], rather
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symptoms of dementia)

- Workup for ADRD, treat with Aricept +
Namenda if present

- Possible treatment with anti-amyloid if
indicated, clinical trials, etc

- Modify anesthesia/lCU management

- Interventions to delay/prevent cognitive
decline, MCI and dementia such as the
MIND-DASH Diet, intensive/tight blood
pressure control for patients with
hypertension, etc.

than simply waiting for the development of delirium or
aging-related neurodegenerative disease in the longer term
(Fig. 3).

Abbreviations and Definitions aaMAC: Age-adjusted end-tidal mini-
mum alveolar concentration; AD: Alzheimer’s disease; ADRD: Alz-
heimer’s disease and/or related dementias; Anteriorization: A spatial
shift in EEG power from posterior to frontal; ASA: American Society
for Anesthesiology; BIS: Bispectral Index; Coherence: A correla-
tion coefficient for the temporal synchronicity of two brain regions;
CNS: Central nervous system; CSF: Cerebrospinal fluid; DARS: Duke
Anesthesiology brain Resistance Scale; EEG: Electroencephalography/
electroencephalogram; EFNS: European Federation of the Neurologi-
cal Societies; ETAC: End-tidal anesthetic concentration; ICU: Intensive
care unit; Interrelatedness: A general term used to describe the vari-
ous methods of defining functional coupling or connectivity between
two electrodes (or electrode regions); ISTAART, EPIA: Alzheimer’s
Association International Society to Advance Alzheimer’s Research
and Treatment, Electrophysiology Professional Interest Area; Lagged
linear connectivity: A computed estimate of functional cortical con-
nectivity; LBD: Lewy body dementia; MAC: Minimum alveolar con-
centration; MCI: Mild cognitive impairment; MRI: Magnetic resonance
imaging; NMDA: N-methyl-D-aspartate; PACU: Post-anesthesia care
unit; PD: Parkinson’s disease; Phase lag index: A measure of func-
tional connectivity strength that accounts for and removes the effect
of volume conduction (distant measurement of an electrical signal
from its source, as in EEG scalp electrodes); PSI: Patient State Index;
ROI: Region of interest, as in an area of the scalp measured for its
brain region (e.g., frontal, parietal, etc.); SMC: Subjective memory/
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cognitive complaints; SR: Suppression ratio; Synchronization likeli-
hood: A method of measuring both linear and non-linear coupling of
cortical regions; TIVA: Total intravenous anesthesia
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