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Abstract—This work introduces the concept of the loaded
dipole antenna array configuration in the design of low-
complexity, easily implemented, and highly radiation-efficient
superdirective antennas. Based on this concept, the design focuses
on optimizing the loads rather than the input voltages, signifi-
cantly simplifying the design process without the need for power
amplifiers, attenuators, and phase shifters. A comprehensive
theoretical analysis is presented and validated through numeri-
cal simulations, demonstrating excellent agreement between the
analytical and numerical results.

Index Terms—Antennas, Antenna arrays, Directive antennas,
Superdirective antenna arrays

I. INTRODUCTION

A superdirective antenna is characterized by an intensely
focused radiation pattern, featuring a narrow main lobe in
a particular direction. This type of antenna achieves higher
directivity compared to a conventional antenna of similar size.
Achieving superdirectivity involves closely spacing antenna
elements, resulting in strong electromagnetic coupling. Note-
worthy research by Uskov and others has explored superdi-
rective antenna capabilities [1]–[9]. Studies show that a linear
array with N isotropic elements can attain N2+2N directivity
as inter-element distance decreases. This level of superdirec-
tivity surpasses uniform arrays with the same elements [10],
[11]. Superdirective arrays radiate mainly perpendicular to
the elements, forming end-fire antennas. However, practical
superdirective antenna implementation faces challenges. High
ohmic losses lead to lower efficiency and gain, affecting signal
transmission. Achieving superdirectivity often demands intri-
cate adjustments to element voltages using power amplifiers,
attenuators, and phase shifters, adding complexity.

This work prioritizes antenna array gain maximization over
directivity to address ohmic losses. In high contrast to the
state-of-the-art, we employ a loaded dipole configuration,
driving one dipole while loading others. This simplifies the
design by focusing solely on optimizing loads, rather than
input voltages. We extensively analyze a two-dipole array
(extending to linear arrays) theoretically and through simula-
tions, demonstrating strong agreement between analytical and
numerical outcomes, reinforcing our approach’s validity.

II. ANTENNA DESIGN

Fig. 1 shows two antenna dipoles placed side-by-side at dis-
tance d, each being a half-wavelength wire (L1 = L2 = λ/2)
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Fig. 1. A configuration of wire dipole antennas is formed, with elements of
lengths L1 and L2, radii a1 and a2, and an inter-element distance of d.

with radii a1 and a2. Operating at 3.5 GHz (sub-6 GHz 5G),
the dipoles’ proximity results in mutual coupling, allowing
modelling as a two-port network. Port 1 and port 2 feature
input voltages and currents v1, v2, and i1, i2, respectively.
The system behaviour employs Z-parameters for mathematical
characterization, which are defined as follows:

[
v1
v2

]
=

[
z11 z12
z21 z22

] [
i1
i2

]
(1)

In this context, z11 and z22 denote self-impedances of
dipoles, while z12 and z21 represent mutual impedances that
describe inter-dipole coupling. z11 and z22 are termed open-
circuit input/output impedances, while z21 and z12 are for-
ward/reverse transfer impedances, respectively. These names
arise from these impedances being defined based on open-
circuit voltage at ports 1 or 2. To estimate them, open-circuit
voltage at ports must be determined, calculated by integrating
electric field over dipoles. Assuming the first dipole is driven
and second is open-circuited (i1 ̸= 0, i2 = 0), open-circuit
voltage at the second dipole is evaluated by integrating the
field from the first dipole. This is mathematically expressed



as [12]:

V oc
2 = − 1

i2

∫ L2
2

−L2
2

E (z) I2 (z) dz, (2)

where E (z) represents the electric field component parallel
to dipole 2, generated by the first driven dipole, and I2 (z)
represents the resulting current distribution along the second
dipole. Please note that E (z) and I2 (z) are functions that
need to be estimated.

As for the current distribution, we make the assumption that
it follows a sinusoidal pattern, which can be expressed as:

I2 (z) = i2
sin

(
k
(
L2

2 − |z|
))

sin
(
k L2

2

) , (3)

where, k = 2π/λ is the wavenumber, and λ is the wavelength.
This assumption holds true when the radius of the dipoles is
relatively small. In this case, we consider a1 = a2 = λ/1001
for the dipoles’ radius.

The electric field generated by the driven dipole 1, acting
on dipole 2, can be represented as:
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where η0 is the characteristic impedance of free space and
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2
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Based on the definition of z21:
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and thus,
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It is important to note that the integral in (7) does not have
an analytical solution. Therefore, we employed numerical
integration techniques, specifically global adaptive quadrature,
to precisely evaluate the integral [13]. Also, according to
reciprocity, z21 = z12.

To estimate the self-impedance z11, we can employ a similar
analysis by evaluating the integral over the surface of the first
dipole. Again, we assume a sinusoidal current distribution,
resulting in the following expression:
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and now
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√
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Similar analysis can be applied to estimate z22.
Assuming that the dipoles are driven by the input voltages

v1 and v2, we can estimate the Z-parameters through (7)
and (8), enabling us to solve (1) for the corresponding input
currents, i1 and i2. Subsequently, classical antenna theory can
be applied to estimate the directivity of the antenna array.
Specifically, the radiation intensity of the antenna array can
be expressed as follows:
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is the radiation pattern of each dipole, and k⃗ = kr̂ is the
wavevector, where

r̂ = sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ, (12)

is the unit vector in spherical coordinates, and d⃗i = xi, x̂ +
yi, ŷ + zi, ẑ is the vector that indicates the position of the
dipoles.

The directivity of the antenna array is defined as

D ≜ 4π
U (θ, ϕ)

Pr
, (13)

where

Pr ≜
∫ 2π

ϕ=0

∫ π

θ=0

U (θ, ϕ) sin θ dθdϕ, (14)

is the total radiated power.
The gain of the antenna array is defined as:

G ≜ 4π
U (θ, ϕ)

Pin
. (15)

where, Pin is the input power to the antenna system and it is
given by:

Pin ≜ Pr + Pl, (16)

where Pl represents the ohmic losses on the dipoles. The
presence of Ohmic losses is attributed to the skin effect [14].
By considering this effect, we can determine the loss resistance
per unit length on the i-th conductive wire dipole as follows:

r
(n)
l =

1

2ai

√
fµ0

πσ
, (17)

here f , µ0 = 4π × 10−7 H/m, and σ represent the operating
frequency, magnetic permeability of free space, and wire con-
ductivity, respectively. Therefore, for the current distribution
given by (3)
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(18)
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Fig. 2. The maximum end-fire gain of the antenna array (in dBi) is plotted
against the inter-element distance. Initially, the antenna array was optimized
using the input voltages v1 and v2 as design parameters, resulting in four
parameters considering the complex nature of the voltages. In the subsequent
case (loaded-case), only the first dipole was driven by a voltage of v1 = 1
V (rms value), while the second dipole was loaded with an impedance of Zl,
making the load Zl the sole design parameter. The analytical results were
validated through numerical simulations using 4nec2. A very good agreement
is observed. Also, the results reveal that for d = 0.1λ, there is no need to use
any power amplifier, attenuator, or phase shifter to achieve superdirectivity,
but only a load of Zl = −j54.11 Ω connected to the second dipole.

Hence, (1) is now expressed as[
v1
v2

]
=

[
z11 +R

(1)
l z12

z21 z22 +R
(2)
l

] [
i1
i2

]
. (19)

and to calculate the gain, it is necessary to solve this system
for the currents.

Our goal is to create an antenna array achieving superdi-
rectivity. Particle Swarm Optimization (PSO) was used for
optimization to find the maximum gain G as a function
of the interelement distance. Firstly, the design parameters
considered were the input voltages v1 and v2. Superdirective
antenna arrays have a well-known end-fire pattern directed
perpendicular to the elements. The gain was evaluated at
(θ, ϕ) = (π/2, 0) and (θ, ϕ) = (π/2, π), representing the
±x-axis, as illustrated in Fig. 2. The maximum gain of 7.1
dBi occurs at d = 0.1λ. Reducing d lowers the gain due to
increased mutual coupling (z21, z12), which leads to intensified
input currents and distribution. Consequently, this results in
higher ohmic losses.

Next, in order to simplify the design complexity, we make
the assumption that the first dipole is driven by a voltage
v1 = 1 V (rms value), while the second dipole is loaded with
an impedance Zl. Consequently, the equivalent circuit of this
antenna array is illustrated in Fig. 3. With this configuration,
the system representing the two-port network in Fig. 3 is
expressed as follows:[

v1
0

]
=

[
z11 +R

(1)
l z12

z21 z22 +R
(2)
l + Zl

] [
i1
i2

]
(20)

and in order to calculate the gain, this system must be solved
for the currents.

Once again, PSO was employed to determine the maximum
gain (G) versus inter-element distance. This time, the design

[Z]

i1 i2

v1 = 1V Zl

Fig. 3. The first dipole is driven by the voltage v1, while the second
dipole is loaded with the impedance Zl. This particular configuration greatly
simplifies the design complexity of the antenna array, allowing us to achieve
superdirectivity without the need for power amplifiers, attenuators, or phase
shifters.

parameter used was solely the load Zl, significantly reducing
the design complexity as there is no need for power amplifiers,
attenuators, or phase shifters. The optimization results are
presented in Fig. 2. It is evident that for an inter-element
distance of 0.1λ, the maximum end-fire gain is 6.9 dBi, which
is very close to the corresponding gain achieved when optimiz-
ing v1 and v2, i.e., four design parameters (complex voltages
v1 and v2). Additionally, the optimal load is Zl = −j54.11
Ω, indicating a purely capacitive load. This finding is highly
promising as it demonstrates that the design of a superdirective
antenna array is achievable by driving a single element and
loading the other element with a capacitive load.

In order to validate our theoretical results, we utilized 4nec2
[15], a widely-used software tool for modelling and simulating
antenna systems. 4nec2 employs the method of moments
(MoM) as a numerical electromagnetic field solver to analyze
and predict antenna behavior. The results obtained from 4nec2
are depicted in Fig. 2, which includes the cases where both
voltages v1 and v2 were optimized to achieve maximum end-
fire gain (initial), as well as the case where only the load Zl

was optimized (loaded). A very good agreement is observed.

III. CONCLUSIONS

This study demonstrates that creating a high-efficiency
superdirective antenna is less challenging than previously be-
lieved. By employing a loaded dipole configuration, focusing
on optimal load values instead of input voltages, the design
process is streamlined. This approach simplifies the complex-
ity of designing superdirective antenna arrays, eliminating the
need for power amplifiers, attenuators, and phase shifters.
Through a thorough analysis of a two-dipole antenna array,
our approach’s effectiveness is showcased, extensible to linear
arrays. Numerical simulations confirm analytical accuracy,
endorsing our method. This research aids the development
of practical, efficient superdirective antenna arrays with sim-
plified designs. With its superdirective characteristics and
high gain, this antenna design offers substantial potential for
sensing applications. The focused, directional radiation pattern
allows precise targeting and sensing of specific regions or
objects of interest. Its simplified design process renders it
compatible for integration into diverse sensing devices and
platforms, such as wireless sensor networks, radar systems,
and remote sensing applications. Additionally, the heightened
radiation efficiency positions this antenna as an ideal contender
for wireless power transfer applications.
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