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Abstract—The integration of connected and autonomous tech-
nologies in safety-critical brought significant system design chal-
lenges. These systems are constantly evolving and becoming more
complex. With their connection to the cloud and the internet,
these safety-critical systems are now exposed to greater risks
of cyber-attacks, which poses new challenges to their safety,
reliability and resilience. To approach these complex system
design challenges, this paper proposes XANDAR’s Verification
& Validation strategy using Static Analysis, Timing Analysis,
Model-in-loop and Network simulation tool. To ensure functional
correctness, the proposed XANDAR Verification and Validation
approach utilizes early integration of simulation and static
analysis techniques during the development cycle. This proposed
approach differs from existing methods by emphasizing early
integration, rather than applying it to later stages of development
cycle to begin verification. In addition, the proposed approach
utilizes timing analysis to ensure non-functional timing aspects
meet the timing requirements. The approach applies tools such
as Polyspace Bug Finder and Code Prover for static analysis,
Timing Architect for timing analysis, NS3 simulator for network
architecture simulation. The proposed approach aims to ensure
system safety and security through a rigorous and comprehen-
sive verification process. These verification approaches will be
validated by applying it to automotive and avionics use cases.

Index Terms—Verification, Validation, Static Analysis, Model-
in-Loop Simulation, Timing Analysis and Network Simulation.

I. INTRODUCTION

With the emergence of modern technologies, safety-critical
systems like automotive and avionics systems are continuously
evolving and increasing in complexity. They are now con-
nected to cloud/internet which poses greater risks of cyber-
attacks and presents new challenges for their safety and
reliability [1]. To ensure the safety and reliability of these
systems, a rigorous approach to design, development, Verifi-
cation and Validation (V&V) is necessary [2], [3]. In the past,
insufficient V&V of embedded software systems, particularly
in industries such as automotive and aviation, have resulted
in numerous severe consequences. For example, the crashes
of two Boeing 737 MAX airplanes in 2018 and 2019 were

attributed to various issues such as flaws in the software and
sensors. This incident, along with others, has been extensively
covered in a range of new articles, technical reports, and
academic papers, which have delved into the root causes of the
problems [4], [5]. Similarly, the automotive industry has also
experienced numerous crashes and accidents resulting from
software defects that have made their way into production
systems due to insufficient V&V during the system develop-
ment process [6], [7]. These safety critical systems require
a rigorous V&V processes in the software development life
cycle to ensure safety and reliability. Thus, the outputs of these
processes provide evidence that safety requirements have been
satisfactorily met [8]. Yet, with the increasing complexity of
software designs because of new features addition and AI/ML
models which exhibits non-deterministic behavior [9] being
part of these systems, verification is becoming challenging.

To address these challenges, the XANDAR project is one
such effort that aims to deploy static analysis based verification
technique for the development of safety-critical systems in
the automotive and avionics industries to guarantee functional
correctness. The XANDAR project is focused on creating a
robust software tool chain that caters to the industry’s needs for
quick prototyping of autonomous and inter-operable embedded
systems. This tool chain includes all the stages, from require-
ments analysis to code integration on the target, and V&V.
The project uses a model-based system design approach and
leverage automatic model synthesis and software paralleliza-
tion techniques to meet specific non-functional requirements.
This lays the foundation for a new paradigm known as X-by-
Construction (XbC) [3], ensuring systems are constructed with
safety and security capabilities by-design [10], [11], [12].

In this regard, this paper proposes XANDAR’s V&V strat-
egy using Static Analysis, Timing Analysis, Model-in-loop
and Network simulation tools in section IV. Section II & III
presents the essential background of the tools used in V&V
strategy and related work on verification tools and approaches.
Section IV introduces the V&V approach for XANDAR.



II. BACKGROUND

Traditional V&V approach as illustrated in Fig. 1 includes
software and system testing methods (i.e. unit, integration
and systems testing). Current verification methodologies lack
formal foundations and proof of soundness, which hinders
their effectiveness in ensuring the safety and security of the
system. In an ideal scenario, an efficient V&V approach should
guarantee the safety and security of the system being tested.
Apart from testing, static analysis [13], model checking [14],
and proof of correctness are some other V&V approaches.

Fig. 1. Traditional V&V process.

Static analysis is one of the techniques used to analyze the
source code of a program without actually executing it. This
technique is especially useful in the development of safety-
critical systems, where it is crucial to identify and eliminate
potential defects early in the development process. Static code
analysis is a highly recommended software unit verification
method for Automotive Safety Integrity Level (ASIL) for
ensuring software safety in the automotive industry, as defined
by ISO 26262 [15]. This standard, along with DO-178C in the
avionics industry, guides system development processes and
activities to achieve optimal safety levels.

To automate the source code anaylsis and to reduce the
manual efforts required, static analysis tools are used. These
tools can analyze millions of lines of code and provide a
report of potential issues. One of the popular tools used for
static code analysis in safety-critical domains is Polyspace
from MathWorks [16], which provides a precise and efficient
solution for identifying and addressing software bugs and
vulnerabilities. The generated report includes details such as
the location of the issue, severity level, and recommended
actions. The developers can use this report to fix the issues
and improve the software quality.

Timing requirements are among the most critical non func-
tional requirements of real-time embedded software systems.
One of the widely used V&V approaches for timing require-
ments is simulation, which is also referred to as simulation
testing. In XANDAR’s V&V approach, simulation testing
plays a crucial role in verifying and validating timing require-
ments, given their significance in real-time embedded software
systems. Funcsim tool is an implementation of simulation
based concept using the Ptolemy II framework. In this testing
approach a behavior specification and simulation methodology

based on the Logical Execution Time (LET) paradigm allows
for the explicit specification of non-negligible execution times
and efficient compilation to complex target platforms [17]. The
methodology combines a metamodel capturing the software
architecture of a system with a code-based programming
model to describe the functional behavior of individual soft-
ware entities. The simulation strategy translates the specified
behavior into deterministic discrete-event (DE) simulations
that can be executed in custom environments [18]. NS-3 is
a discrete event network simulator, which is widely used
by the industry and the research community as a tool of
choice for network performance and evaluation simulations.
The simulator has a multi-layered framework, while each layer
depends on its lower layers. Section III discuss methods of
verifying and validating safety-critical systems.

III. RELATED WORK

There are a plethora of commercial and open-source tools
that can be used for static analysis. However, many open-
source tools lack support for coding standards, which can
pose a limitation when performing static analysis on source
code for safety-critical systems. Coding standards consist of
guidelines and rules that outline how software should be
written and structured. They are particularly crucial in safety-
critical systems, where software must be consistent, readable,
and maintainable. Adhering to coding standards can also help
prevent common programming errors and defects, and promote
the development of high-quality software.

Astrée, is a popular static code analyzer that is capable of
proving the absence of runtime errors and invalid concurrent
behavior in safety-critical software written or generated in
C or C++ [19]. Another tool, Coverity, is a static analysis
tool that supports multiple languages and can be integrated
with multiple integrated development environments (IDE)
[20].Another enterprise-grade tool is Helix QAC, which is
designed specifically for embedded software and supports the
MISRA, CERT, and AUTOSAR coding standards [21]. LDRA
is another tool suite that includes static analysis (TBVISION)
for various standards, including MISRA C & C++, JSF++ AV,
CWE, CERT C, CERT C++, and Custom Rules [22]. PC-lint
Plus is a static analysis tool that finds defects by employing
data flow analysis, abstract interpretation, value tracking, and
other various mechanisms. These tools can generate reports
consisting of defects/bugs found, code-rule violations, and
code quality metrics including cyclomatic complexity [23].

MathWorks verification tool, Polyspace Bug Finder [24],
is a powerful tool for identifying a wide range of defects
in C and C++ embedded software. The tool uses static
analysis, including semantic analysis, to analyze software
control flow, data flow, and inter-procedural behavior, enabling
it to identify runtime errors, concurrency issues, security
vulnerabilities, and other defects. By detecting defects early
in the development process, Polyspace Bug Finder allows
developers to address them before they become more costly
and difficult to fix. Polyspace Code Prover, a verification tool
from MathWorks, utilizes formal methods to prove the absence



Fig. 2. V&V strategy mapped to the XANDAR development process.

of certain runtime errors in C and C++ source code. It does
not require program execution, code instrumentation, or test
cases to produce results. Instead, it applies static analysis
and abstract interpretation to analyze the code. The tool can
analyse both handwritten and generated code.

It is important to note that the choice of a static analysis tool
depends on the specific needs of the project and the software
development process. It is recommended to evaluate multiple
tools and select the one that best fits the project requirements.
Additionally, open-source static analysis tools are available but
may not provide support for coding standards, which can be a
limitation when using these tools for static analysis of source
code in safety-critical systems.

The TA Tool Suite is a comprehensive collection of software
products designed for designing, simulating, and verifying
embedded real-time systems. It provides a unified solution
that covers the non-functional aspect of timing throughout
the entire development cycle. The suite of tools facilitates in-
depth analysis of timing behavior, making it easier to integrate
software into an ECU. This streamlined process improves the
efficiency and responsiveness of embedded real-time systems.
Section IV introduces the XANDAR V&V approach and how
it will be mapped to the XANDAR process.

IV. XANDAR VERIFICATION & VALIDATION
APPROACH

To ensure the functional correctness and safety of embedded
software for automotive and avionics use cases, we propose a
verification approach that uses a combination of static analysis,
model-in-loop simulation, and time analysis technique. Fig. 2
illustrates the XANDAR V&V Strategy by mapping it to
XANDAR development process [10], [17].

A. Static Analysis using Polyspace Tools

Currently, for XANDAR project, we have exclusively con-
sidered the use of MathWorks’ Polyspace tools for static
analysis. It is important to note that these tools can be
substituted with other available static analysis tools if deemed
appropriate. As a part of the XANDAR project, a static
analysis toolset automation script (”Xsat”) was developed
to invoke the Polyspace Bug Finder and Code Prover tools
from MathWorks. These tools are commercial static analysis
products designed to reveal runtime bugs and ensure functional
correctness of software code. By automating the process of
invoking these tools, Xsat makes it easier for developers to
perform static analysis on their code and identify potential
defects early in the development process.

Polyspace Bug Finder also checks compliance with coding
rule standards such as MISRA C, MISRA C++, AUTOSAR
C++14, CERT C, CERT C++, and custom naming conventions.
By ensuring compliance with coding standards, it helps to
maintain code quality and avoid potential issues that could
arise from non-compliant code. The tool generates detailed
reports that include information about the defects and bugs
it has found, code-rule violations, and code quality metrics
such as cyclomatic complexity. These reports provide valuable
insights into the quality of the code and allow developers to
prioritize and focus their efforts on the most critical issues.

Polyspace Code Prover uses a color-coding system to indi-
cate the status of each operation in the code. The colors signify
whether an operation is free of runtime errors, proven to
fail, unreachable, or unproven. Additionally, the tool displays
range information for variables and function return values and
can prove whether certain variables exceed specified range
limits. With the ability to verify the absence of runtime errors,



Fig. 3. High Level Architecture of NS3 Network Simulator

Polyspace Code Prover allows developers to identify and fix
potential issues in their code early in the development process.
This helps reduce the likelihood of costly bugs and defects in
the final product, improving overall software quality. More-
over, the results of the tool can be published on a dashboard,
which enables tracking quality metrics and compliance with
software quality objectives.

The ”Xsat” script is particularly useful when we need
to integrate the Polyspace toolset in continuous integra-
tion/deployment environment for automated static analysis ver-
ification process.The script can be integrated into the software
build process and used to perform continuous static analysis
on the code as it is being developed.

B. Model-in-Loop Simulation using Fucsim Tool

The funcsim tool, an integral component of the XANDAR
V&V tool set, focuses primarily on verifying the functional
and timing behavior of systems [18]. Ptolemy II [25] serves as
the simulation backend for this tool. By combining logical ex-
ecution time (LET) abstraction and a code-based approach, it
performs discrete event simulation to assess system responses
to specific input stimuli.

C. Timing Analysis using TA tool suite and PREEvision

Considering timing properties and requirements at an early
stage of the design may prove beneficial since some timing
design errors can be avoided from the start. This can be
achieved through a two step process. In the first step during
architecture modelling the system should be considered from
the outside and identify how often data should be sent (sensor
input) and produced (input for actuators). Also, from the
outside we take a “gray-box” look into the system architecture
and identify critical data flows that we would like to observe
(this can later be used to derive trace points). Based on these
dataflows we formulate timing requirements and optionally
distribute them to parts of these dataflows. In the second

step of the timing design, we look at the atomic functions
themselves, and define time budgets for each of them. If
multiple data flows and varying data input frequencies pass
through an atomic function, this must be considered when
defining the time budgets. The main difference is that the first
step is concerned with the outside view of the functions and
the data flow between them. In the second step we take a closer
look at the atomic functions individually. Once either of these
two steps is completed, we can validate the consistency of the
data flows and their requirements, and ensure that the function
time budgets are in line with these requirements. Both these
early timing validations are prototypically implemented in the
PREEvision [26] modelling tool. In a later step (in the XbC
Backend), there is more information about the hardware of the
system, and how the provided hardware resources are shared
among different application parts. The above mentioned top-
level timing requirements still have to be fulfilled, but now they
may have been refined. Given enough information about the
execution times of the application parts (as a model), we can
now simulate the timing behaviour of the embedded system
including the resource sharing overheads caused by, e.g., the
operating system, driver parts, communication controllers, etc.
This timing simulation can be done in the TA Tool Suite [27]
which provides an evaluation report as a result. If this report
indicates no timing errors, the XbC workflow can continue,
otherwise the design has to be corrected.

D. Network Simulation using NS3 network simulator

A high-level architecture of the NS3 simulator is depicted
in Fig. 3. Starting from the northbound of the architecture,
a traffic generator is used to represent different application
specific scenarios, feeding in different traffic type patterns to
the simulations. The main component in the NS3 network
simulator is the network device, where different models (aux-
iliary and communication models) are defined. Each network
device consists of a Communication model, Mobility model,



Energy model, Propagation models, Communication channel
models and Channel condition models. At the southbound of
the architecture operate the traffic sinks, where the generated
traffic is received. The final objective of each simulation is
to export and collect the simulation results (westbound of
the architecture) for further analysis and semantic enrichment.
NS3 simulator provides a horizontal tracing system, allowing
the collection of traces at different levels.

1) Traffic generators/sink models plays critical role to
model and simulate real-world scenarios to analyse how
much data is generated and circulated in the network.
Two parameters needed to dynamically configure the
available traffic models are the traffic size and frequency.
These traffic can be categorized into the following
categories: Constant traffic, Uniform traffic and finally
Poisson traffic. Poisson distribution traffic generation is
close to traffic generated in real world environments.

2) Mobility models are used to simulate and evaluate the
performance on mobile wireless systems. The definition
of realistic mobility models is one of the most critical
and, at the same time, difficult aspects of the simulation
of applications and systems designed for mobile environ-
ments. NS3 supports mobility models that can be applied
to different use-case scenarios. Concerning XANDAR
project avionics use-case scenario, we mainly focus on
UAVs mobility models. These models are identified by
five categories: Pure Randomized, Time - Dependent,
Path-Planned, Group and Hybrid.

3) Energy Models are critical for analysing energy con-
sumption in wireless devices with constrained resources.
NS3 provides two abstraction models for simulating
energy consumption at node-level, the Device Energy
Model, and the Energy Source. The Device Energy
Model is the actual energy consumption model of the
network device attached to the network interface. It is
designed to be a state-based model, where each state
is associated with a specific power consumption value.
Whenever the state of the network interface changes,
the Device Energy Model notifies the Energy Source,
which in turn, drains the corresponding current. Finally,
the Energy Source represents the power supply that
is attached on each node. A node can have one or
more energy sources, and each energy source can be
connected to multiple device energy models. Connecting
an energy source to a device energy model implies that
the corresponding device draws power from the source.
Every time the Energy Source receives a notification
from the Device Energy Model, it calculates the new
total current draw and updates the remaining energy.

4) Communication channel models are used to simulate
the wireless signal attenuation, allowing network engi-
neers to apply propagation models which simulate dif-
ferent environments (e.g., open/urban areas. A commu-
nication channel model is compromised by Propagation
Delay Models & Propagation Loss Models. Propagation

delay models are simple and a Constant Speed Propa-
gation Delay Model is used, which calculates the delay
based-on the distance between transmitter and receiver.

An important part of any wireless network is the appropriate
choice of the Propagation Loss Model, which is required to
compute the signal strength of a wireless transmission at the
receiving stations. Propagation loss depends on the condition
of environment (urban, rural, dense urban, suburban, open,
forest, sea etc.), operating frequency, atmospheric conditions,
indoor/outdoor & the distance between the transmitter and
receiver. Propagation Loss Models can be categorized into
three main groups (all supported from NS3), Abstract, De-
terministic and Stochastics. The main differentiation is on
the results that each model produces. Abstract models do
not provide realistic results while deterministic models are
affected mainly by the distance between the sender and the
receiver. Finally, the stochastic models are used in combination
with deterministic models to provide non-deterministic results.
Finally, an important information required by the propagation
loss models is the knowledge of the obstacles between nodes
and the presence of Line-Of-Sight (LOS) or not (No-Line-
of-Sight (NLOS)). This information is provided by channel
condition models that are included in propagation loss models.

E. Framework integration of NS3 building blocks

In this section, the NS3-based simulation framework and
integration APIs that allows the network simulation framework
to integrate with the rest of the XANDAR toolchain and/or
external systems are presented. There are relevant works that
integrate the NS3 simulator with other simulators aiming to
apply network simulation to their scenarios. Liu et al. [28]
integrate the NS3 simulator with Gazebo Robot Simulator,
for simulating UAV systems. In the same paper a second
integration of NS3 with the SUMO (Simulation of Urban Mo-
bility) framework is presented to illustrate different automotive
scenarios. The definition of network simulation analysis stored
in a git repository, which in turn is synchronized with the
Simulation Orchestrator, structure listed in Table I.

The “src” folder contains the actual network simulation
scenario source code. A scenario source is implemented using
C++ or Python programming languages. At the next level of
the process, network engineers need to define the network
configuration parameters (parameters.yaml) that they want to
evaluate. NS3 provides APIs for running simulations with
dynamic input, and the parameter definitions must be aligned
with this API, and the source code. Using the defined parame-
ters, the simulation framework is generating the corresponding

TABLE I
NS3 SCENARIO FILE STRUCTURE

Folder/File Description
src/ NS3 executables

parameters.yaml Parameters Pool
requirements.yaml Application Requirements

contrib/ NS3 Custom Libraries/Modules



Fig. 4. Simulation generation part

batch of simulations. The necessary files for generating the
corresponding simulations are shown in Fig 4. During the
execution process the system evaluates the simulation results
over the application requirements, while trying to find the
optimal network deployment configuration. These application
requirements are defined in the requirements.yaml.

The simulation running process is handled by the simulation
executor’s deployment, where the actual NS3 binaries are run-
ning in a containerized environment. Moreover, an application
is implemented and executed on top of the NS3 simulator that
handles the simulation processes, such as simulation execution
and trace processing. Finally, trace processors are deployed to
process different trace outputs provided by the NS3 simulator
and persist any aggregated results on a database.

V. CONCLUSION & FUTURE WORK

As highlighted, it is fundamental that the verification ap-
proach for a given safety-critical system must be deployed
in early development cycle to reduce the bug density and
to prove the functional correctness of the system. This paper
proposes XANDAR’s Verification & Validation strategy using
Static Analysis, Timing Analysis, Model-in-loop and Network
simulation tool that can be deployed for verification of safety
critical systems using XANDAR toolchain. The proposed
approach guarantees the safety and reliability of the system
software by proving the absence of runtime errors. This
approach is an additional effort in the V&V life cycle of the
system and must be used in conjunction with the traditional
V&V methodologies. In future, to assess its effectiveness of
the presented V&V approach, it will be integrated into the
XANDAR toolchain for the automotive and avionics use cases.
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