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Concrete Damage Plasticity Model for Modeling FRP-to-

Concrete Bond Behavior 

Y. Tao 1 and J.F. Chen 2 

 

ABSTRACT: The technique of externally bonding fiber reinforced polymer (FRP) 

composites has become very popular worldwide for retrofitting existing reinforced 

concrete (RC) structures. Debonding of FRP from the concrete substrate is a typical 

failure mode in such strengthened structures. The bond behavior between FRP and 

concrete thus plays a crucial role in these structures. The FRP-to-concrete bond 

behavior has been extensively investigated experimentally, commonly using the 

single or double shear test of FRP-to-concrete bonded joint. Comparatively, much less 

research has been concerned with the numerical simulation, chiefly due to difficulties 

in the accurate modeling of the complex behavior of concrete. This paper presents a 

simple but robust finite element (FE) model for simulating the bond behavior in the 

entire debonding process for the single shear test. A concrete damage plasticity model 

is proposed to capture the concrete-to-FRP bond behavior. Numerical results are in 

close agreement with test data, validating the model. In addition to accuracy, the 

model has two further advantages: it only requires the basic material parameters (i.e. 

no arbitrary user defined parameter such as the shear retention factor is required) and 

it can be directly implemented in the FE software ABAQUS. 

KEYWORDS:  Fiber reinforced polymer; Concrete; Bond; Finite element model; 

Damage.
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INTRODUCTION 

Externally bonding fiber reinforced polymer (FRP) has been widely used to strengthening and 

retrofit existing concrete structures (Teng et al., 2002). One of the main failure modes of 

flexurally and shear strengthened concrete structures is the debonding failure of the externally 

bonded FRP (Chen and Teng, 2001; Teng et al., 2002). This has led to extensive research on 

the bond behavior between FRP and concrete in the last two decades. This bond behavior is 

typically investigated experimentally using the ‘shear’ test of FRP-to-concrete bonded joints 

where a FRP plate is bonded to a concrete block and subjected to a tensile force (e.g. Ali-

Ahmad et al., 2006; Benzarti et al. 2011; Täljsten, 1996; Wu et al., 2001; Yao et al., 2005). 

Typical debonding failure in the shear test occurs in the concrete a small distance, usually 2-5 

mm, away from the adhesive-concrete interface. The bond behavior is thus usually controlled 

by the behavior of the concrete. In addition to experimental studies, the bond characteristics 

of the FRP-to-concrete interface have also been investigated in a number of analytical (e.g. 

Chen et al., 2007; Yuan et al., 2004); and numerical (e.g. Chen and Pan, 2006; Coronado and 

Lopez, 2007; Diab and Wu, 2007; Lu et al., 2005b; Lu et al., 2006; Pham and Al-Mahaidi, 

2007; Benvenuti et al. 2012; Marfia et al. 2012;) studies. A brief review of existing finite 

element (FE) modeling of the FRP-to-concrete bond behavior is presented as follows. 

Existing FE studies on the FRP-to-concrete bonded joint are summarized in Table 1. They 

may be classified into three approaches: a) direct modeling approach where the behavior of 

concrete is accurately modeled in meso-scale with an appropriate constitutive model (e.g. Lu 

et al., 2005b; 2006); b) interface modeling approach where the bond behavior is modeled 

using a layer of interface elements (e.g. Diab and Wu, 2007); and c) crack band modeling 

approach where the debonding failure is assumed to take place within a band in the concrete 



adjacent to the FRP-concrete interface with a modified constitutive law for this band (e.g. 

Coronado and Lopez, 2007; 2010). Note that this ‘crack band’ approach is fundamentally 

different from Bažant and Oh’s (1983) ‘crack band theory’ which is discussed in more detail 

in the next section.  

In the direct modeling approach, a meso-scale FE mesh, with the smallest element size 

commonly in the range of 0.5~2 mm, is adopted to model the detailed behavior of concrete 

near the FRP-to-concrete bondline so that the bond-slip behavior can be obtained. Lu et al. 

(2005b) adopted a fixed angle crack model and a shear retention model for the concrete. The 

bond-slip model (Lu et al., 2005a) developed based on Lu et al. (2005b) has been very widely 

accepted by the research community (e.g. Godat et al. 2007; Smith and Gravina 2007; 

Obaidat et al. 2010; Chen et al., 2012;). Lu et al. (2006) later adopted a rotation angle crack 

model in conjunction with a user-defined constitutive model for concrete. Both FE models 

were implemented through a user-subroutine in MSC.MARC (2003). The predictions are also 

sensitive to the choice of the shear retention model. Pham and Al-Mahaidi (2007) directly 

adopted the concrete model in DIANA (2003). Their concrete mesh consisted of a transition 

layer with element size varying from 2 to 10 mm and a coarse layer with 10 mm elements. It 

appears that the effect of the thickness of the fine layer was unclear but it could be significant 

as the predicted concrete cracks propagated into both layers. All these studies adopted the 

smeared crack model of concrete. A number of studies (e.g. Camata et al., 2004; Pham et al., 

2006) have attempted to combine both the smeared and discrete crack models. However, this 

approach usually requires to predefine the crack locations and an additional interface crack 

model to define the discrete crack behavior, making it difficult to be predictive. 

The interface model approach is most commonly adopted for modeling FRP strengthened 

structures (e.g. Chen et al., 2011; Chen et al., 2012) or for modeling three-dimensional 



behavior (Salomoni et al., 2011) because it is unrealistic to model the whole strengthened 

structure in 3D using meso-scale elements due to heavy computational demands. The FRP-to-

concrete interface is usually represented by zero thickness interface elements (e.g. Diab and 

Wu, 2007; Salomoni et al., 2011). A constitutive law for the interface elements is needed to 

obtain from either the direct model approach or shear tests. This is thus not really a predictive 

approach for the bond behavior (but for structural behavior). 

The crack band approach assumes that debonding occurs within a thin band in the concrete 

adjacent to the adhesive-to-concrete interface, and the properties of the concrete within this 

band are different from the nearby plain concrete because of the ingression of adhesive 

(Coronado and Lopez, 2007; 2008). Consequently, a modified concrete constitutive law is 

required for this band (Coronado and Lopez, 2007; 2010), but its properties include fracture 

energy, size effect fracture energy and tensile strength, need to be determined experimentally. 

It is thus debatable whether the approach is predictive. Furthermore, the properties can be 

significantly affected by the adopted adhesive, rendering the approach more complex for 

practical applications. Also, if the band represents the thin layer of concrete with adhesive 

ingression, it is debatable whether failure would still occur within this stronger layer because 

the adhesion leads to a higher tensile strength of concrete. 

Based on the above discussion, it may be concluded that the direct modeling approach is the 

most appropriate for modeling the FRP-to-concrete bond behavior as a truly predictive model. 

However, numerical studies on the bond behavior using this approach have been very limited 

mainly because of challenges in the accurate modeling of concrete.  

This paper presents a predictive FE model using the direct modeling approach. A new damage 

model based on the plastic degradation theory is first proposed. It is then incorporated in the 



concrete damage plasticity model in ABAQUS for FE simulation of the FRP-to-concrete 

bonded joint test. Predictions of the proposed FE model are compared with test results and 

predictions of existing concrete damage models. 

MODELING OF CONCRETE 

Modeling of concrete fracture 

Two methods are commonly used in FE modeling of concrete cracking: the discrete crack 

model and the smeared crack model (Rots, 1991). In the former, a crack is treated as a 

geometrical identity so it is either pre-embedded in the FE mesh (Yang et al. 2009) or through 

continuous re-meshing (Yang et al., 2003; Yang and Chen 2005). The latter keeps the 

geometry (and thus the mesh) unchanged and the cracking is modeled through the concrete 

constitutive law (Rots, 1991). The smeared crack approach is adopted in this study as it is 

impossible to track numerous micro-cracks in the single shear test where failure occurs within 

a few millimeters (usually 2~5 mm) in the concrete adjacent to the bondline. 

One of the drawbacks of the smeared concrete model is that it involves the strain localization 

phenomenon due to strain-softening, where the energy consumption approaches to zero 

during crack propagation when the element size approaches to zero (Bažant and Jaime, 1998), 

leading to results sensitive to the FE mesh.  Bažant and Oh’s (1983) crack band theory is 

adopted in this study to overcome the mesh sensitivity problem. The theory relates the crack 

opening width w, the width of the crack band h and the crack strain εct through: 

 cthw 
  (1)  



The crack band width h represents the effective width of the fracture process zone over which 

micro-cracks are assumed to be uniformly distributed. In the FE analysis, the cracking strain 

is assumed to be uniformly distributed over h in an element which is referred as the 

characteristic length of an element and is related to the element size, type and integration 

scheme (Rots 1991). 

Compressive and tensile behavior of concrete  

In this paper, the concrete is modeled using the concrete damage plasticity model available in 

ABAQUS (2007). The plasticity model adopts the yield function proposed by Lubliner et al. 

(1989) and modified by Lee and Fenves (1998), and follows a non-associated flow rule. The 

concrete under uniaxial compression is described by the following stress strain relationship 

proposed by Saenz (1964): 
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where σc and εc are respectively the compressive stress and strain, σp and εp are the 

experimentally determined maximum stress and its corresponding strain which are taken to be 

the cylinder strength fc’ (MPa) and 0.002 respectively in this study. The elastic modulus of the 

concrete E0 is estimated from '47300 cfE   (MPa) following ACI 318 (2002). 

Under uniaxial tension, the problem involves tensile cracking. The fracture energy GF, that is 

the energy required to create a unit area of stress free crack surface which is size independent, 

instead of the descending branch of the stress-strain curve which is size dependent, is treated 

as a material property of the concrete. In this paper, the stress-crack opening displacement 

relationship proposed by Hordijk (1991) is adopted: 
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where wt is the crack opening displacement, wcr is the crack opening displacement at the 

complete loss of tensile stress, σt is the tensile stress normal to the crack direction, ft is the 

concrete uniaxial tensile strength, and c1=3.0 and c2 =6.93 are constants determined from 

tensile tests of concrete. The CEB-FIB (1991) model is used in this paper to estimate ft and 

GF: 
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where da is the maximum aggregate size of the concrete. In the present study, da is assumed to 

be 20 mm if no test data is available. Once the stress-crack opening displacement relationship 

is known, the stress-strain relationship can be determined for each element based on its size 

through Eq. 1. The Poisson’s ratio ν=0.2 is assumed in this study. 

CONCRETE DAMAGE MODELS 

General  

The nonlinear behavior of concrete is attributed to the process of damage and plasticity. The 

process of damage can be attributed to micro-cracking, coalescence and decohesion etc. The 



plasticity behavior can be characterized by several phenomena such as strain softening, 

progressive deterioration and volumetric expansion etc. These lead to the reduction of the 

strength and stiffness of concrete (Cicekli et al., 2007; Grassl and Jirásek, 2006; Lubliner et 

al., 1989). Damage is usually characterized by the degradation of stiffness. An isotropic 

scaled damage model from the continuum damage mechanics is introduced in ABAQUS 

(2007) to describe the stiffness degradation, which can be represented by Eq. 7 under uniaxial 

loading: 

   plEd   01   (7) 

where σ, , and pl represent respectively the stress, total strain and plastic strain; E0 is the 

initial (undamaged) elastic stiffness and d the damage factor, which characterizes the 

degradation of the elastic stiffness and has values in the range between 0 (undamaged) to 1 

(fully damaged). The current degraded stiffness E is defined as: 

  01 EdE    (8) 

If no damage is considered in the concrete (d=0), Eq. 7 is reduced to: 

 plE   0   (9) 

in which the plastic stain (pl) is the same as that without stiffness degradation (p) (Fig. 1b). 

Stiffness degradation models can be classified into two types according to the presence of 

irreversible deformation/plastic strain: elastic degradation models and plastic degradation 

models (Lubliner et al. 1989). The elastic degradation models are associated with the total 

strain, implying that no plastic strain exists ( 0 pp  , where p  is the plastic strain with 



stiffness degradation), so the unloading branch passes through the origin (Fig. 1). Eq. 7 in this 

case can be rewritten as: 

   01 Ed   (10) 

where ε is the total strain. Lubiner et al. (1989) stressed that the concept of elastic degradation 

is associated with the total deformation but without the necessity of a damage criterion. A 

plastic degradation, in which the stiffness degradation is associated with the plastic 

deformation instead of the total deformation, was introduced to overcome the weaknesses of 

the elastic degradation model (Lubiner et al. 1989). It means that irreversible 

deformation/plastic strain exists after damage has occurred (so the plastic strain with stiffness 

degradation 0p ) (Fig. 1b). Eq. 7 in this case can be rewritten as: 

   pEd   01   (11) 

Lubliner et al.’s (1989) damage model  

Lubliner et al. (1989) proposed a simple damage model that plastic degradation occurs only in 

the softening range and the stiffness is proportional to the cohesion of the material: 
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where c is the cohesion in the yield criteria which is proportional to stress and cmax is 

proportional to the strength of the concrete (Lubliner et al. 1989). Under uniaxial tension or 

compression, Eq. 13 reduces to: 
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in which f is either the tensile or compressive strength of concrete as appropriate. Based on 

the geometry in Fig. 1b, p can be related to the damage factor d as: 
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Substituting Eq. 14 into Eq. 15 yields 
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in which 0Ef is the elastic strain at the peak stress. Therefore, it is observed in this study 

that in Lubliner et al.’s (1989) damage model the elastic strain remains constant (f/E0) after 

the peak stress. 

Damage models used for simulating FRP strengthened concrete structures 

Several concrete damage models have been used to simulate FRP strengthened concrete 

structures. Chen et al. (2011) adopted the classical elastic damage model to describe the 

tensile behavior of concrete in the modeling of FRP strengthened reinforced concrete (RC) 

beams, assuming that there is no plastic strain ( 0p ) throughout the post-cracking range so 

the unloading paths of the stress-strain curve always pass through the origin of the coordinate 

system in Figs 1 and 2. Yu et al. (2010) assumed that the elastic strain is constant after the 

peak stress in compression in the modeling of FRP confined concrete columns, which is 

proved above the same as the damage model proposed by Lubliner et al. (1989). Chen et al. 



(2012) used Rots’ (1988) shear retention model for the modeling of FRP shear-strengthened 

RC beams: 
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where εcr is the concrete crack strain corresponding to wt in Eq. 3, εcr,u is the concrete cracking 

strain at the complete loss of stress corresponding to wcr in Eq. 3, and the power n controls the 

rate of shear degradation. 

A new damage model 

Lubliner et al.’s (1989) and the other damage models summarized above were implemented to 

simulate the bond behavior in the single shear test but they did not lead to reasonable 

predictions in comparison with test data. A new model was thus proposed in this study. 

Once the concrete enters into the softening range, the stiffness is degraded resulting in a 

plastic strain degradation (so pp   , see Fig. 1a). Instead of assuming that the stiffness is 

proportional to the cohesion of the material as in Lubliner et al. (1989), it is assumed here that 

the ratio of the plastic strain with stiffness degradation ( p ) to that without stiffness 

degradation (p), k, is proportional to the ratio of cohesion to the maximum cohesion of the 

material. The rational of this assumption is that the plastic strain with stiffness degradation 

must be smaller than that without degradation, and the effect increases as degradation 

increases. However, the total plastic strain shall not reduce as deformation increases. 

In the case of uniaxial loading, this ratio can be expressed as:  
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Note that Eq. 18 is subject to the condition that the plastic strain rate is not negative ( 0P ) 

because within the entire cracking process, the plastic strain cannot decrease as crack widens. 

Although this condition would theoretically break down at a certain point because Eq. 18 

implies that 0P  when = 0, it is actually satisfied in the entire range for all cases covered 

in this study in tension. This is because ABAQUS does not allow the stress  to reduce below 

1% of the strength f in both tension and compression for numerical stability. In compression, 

this condition is more likely violated at large strains, especially for high strength concrete. 

Assuming that the condition is not satisfied (i.e. when the adoption of k leads to an decrease 

of the plastic strain so )()1( i
P

i
P   ) after deformation has developed to certain value, and 

the elastic strain at the moment when the condition starts to be violated (at 0P ) is e
cr , 

the damage factor is calculated thereafter by assuming that the elastic strain remains constant 

at e
cr . This is somewhat similar to Lubliner et al.’s (1989) model but note that the constant 

elastic strain is different here. From Fig. 1b: 
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Implementation of the proposed damage model in ABAQUS  

In ABAQUS, the relationship between the plastic strain without stiffness degradation, p , 

and the damage factor d needs to be defined by the user as a constitutive law of concrete. 

Therefore, the relationship between k in Eq. 18 and the damage factor d needs to be 

established in order to implement the new damage model in ABAQUS. The plastic strain with 

stiffness degradation p can be related to the damage factor d using Eq. 15. Substituting Eq. 

18 into Eq. 15 and combining Eq. 20 gives 
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Figure 2 shows a typical stress-strain curve for concrete under uniaxial tension, where the 

subscript t represents tension. The stress-crack strain curve for a given element can be 

obtained from the stress-crack opening displacement curve (Eq. 3) depending on the element 

type and size through Eq. 1. The relationship between the crack strain p
t  = wt/h and tension 

damage factor dt can then be calculated from Eq. 21. 

The compression damage is assumed to follow the same rule as in tension in this study. The 

compression damage factor dc versus compressive plastic strain p
c  can be calculated from 

Eq. 21. Note that the compressive plastic strain is calculated from 0Ecc
p

c   . Damage is 

assumed to occur only after the concrete enters softening in both tension and compression. 



FE MODELING OF SINGLE SHEAR TEST OF FRP-TO-CONCRETE 

BONDED JOINTS 

Geometry 

A 45 mm thick concrete prism as shown in Fig. 3 has been modeled as a plane stress problem 

in the FE analysis. This thickness is smaller than most specimens in experiments but the rest 

of the concrete should have little effect on the FE results as the test commonly fails by 

debonding in concrete a few millimeters away from the FRP-to-concrete interface and only 

this failure mode is concerned in this study. The geometry of the FE model is the same as that 

adopted by Lu et al. (2005b; 2006). In the FE model, the specimen was restrained vertically 

along the base and horizontally along part of the right edge hs (Fig. 3). For specimens with a 

free height hc smaller than 30 mm, the actual hc value was used. For specimens with hc greater 

than 30 mm, hc was set to 30 mm. The thickness of the FRP plate tp was set equal to 1 mm but 

the modulus of elasticity of the plate Ep was modified so that the FRP plate had the actual 

axial stiffness Eptp. 

Constitutive models and FE mesh 

As aforementioned, the concrete damage plasticity model was used to describe the concrete 

behavior in this study. The plastic behavior of concrete was modeled following the 

compressive and tensile behavior described earlier. The damage was modeled using the 

damage model proposed in this study. The FRP was modeled as a linear elastic material.  

The concrete was modeled using square elements with four integration points (CPS4) in this 

study. All concrete elements had the same size. Rots’ (1988) recommendation was adopted 



that the characteristic length for a square element with 4 integration points is e2  where e is 

the element side length. The FRP was modeled using the same element with matching mesh. 

Interpretation of numerical results 

Because the test was modeled as a plane stress problem while the actual behavior is three 

dimensional (Chen and Pan 2005), the predicted load, displacement, stress and strain in the 

FRP plate were all adjusted following the width ratio factor βw proposed by Chen and Teng 

(2001): 
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where bf  and bc are the widths of the FRP plate and the concrete prism respectively.  

Mesh convergence analysis 

Specimen II-5 reported in Yao et al. (2005) was used as a reference case for conducting the 

mesh convergence study. Four meshes with concrete element size equal to 5, 2, 1 and 0.5mm 

were considered. Figures 4a and b show respectively the predicted load-slip curves and the 

loading capacity from these meshes. The predicted ultimate load increases slightly as the 

mesh size reduces. This is different from the normal smeared crack model where the loading 

capacity is expected to reduce as mesh size reduces because the energy consumed by the 

cracking elements reduces with element size, leading to mesh dependent results. The 

difference in the loading capacity between the 0.5 mm mesh and the 1 mm mesh is 2.8% (Fig. 

4b), showing that the mesh sensitivity problem is effectively eliminated by adopting the crack 

band theory and mesh convergence is achieved. These four meshes and the predicted damage 

contours at debonding are shown in Fig. 5. The 5 mm mesh is too coarse: it predicts a uniform 



5 mm (one element) concrete damage (debonding) underneath the FRP along the length of the 

FRP and a wedge failure of the concrete at the right. The other three meshes predicted the 

same failure mode and almost the same concrete damage area, with small inclined concrete 

cantilevers as in Lu et al. (2005b). On balance of accuracy and computational economy, the 1 

mm mesh was adopted for all cases reported in the rest of the paper.  

INFLUENCE OF CONCRETE DAMAGE MODEL 

The proposed together with the other concrete damage models described early were used to 

investigate their effects on the FE predictions. A model without considering any damage, i.e. 

both dt = dc = 0, was also considered as a reference. Figures 6 and 7 show how the damage 

factor varies respectively with the crack strain (in tension) or inelastic strain (in compression) 

for these models, where a 1 mm square element and concrete properties for specimen II-5 in 

Yao et al. (2005) were used. 

Figures 8a and b show respectively the predicted load-slip curves for specimen II-5 in Yao et 

al. (2005) and No. 1 in Ali-Ahmad et al. (2006) using the different damage models. It is seen 

that different concrete damage models produce significantly different results. The predictions 

from the present model are clearly in closer agreement with the test results than other models. 

It may be noted that the damage model has almost no effect in the early stage (<2 kN in Fig. 

8a and <4 kN in Fig. 8b). This is because at this stage the concrete is almost all elastic so little 

damage has occurred anyway. The simulation using Chen et al.’s (2011) model was 

terminated earlier for both specimens due to convergence difficulties. The results appear to 

show that Lubliner et al.’s (1989) damage model as adopted by Yu et al. (2010) over-

estimates the bond strength if only tensile damage is considered, but under-estimates if the 

damage model is applied in both tension and compression. The model without considering 



any damage in both tension and compression under-estimates the loading capacity. These 

results show that the inclusion of compression damage has a significant effect on the 

prediction, which may be explained by Lu et al.’s (2005b) findings. The shear forces on the 

inclined meso-cantilevers, which are caused by the formation of interfacial shallow cracks 

near the bond interface, resulting in a combined compression and bending at the root of the 

cantilevers leading to either crushing failure, or flexural failure at the root.  

The damage model based on Rots (1988) shear retention model with n=5 also over-estimates 

the loading capacity (Fig. 8). The effect of the value of n on the prediction is shown 

respectively in Figs 9a and b for the two specimens: a smaller n value leads to smaller 

predictions in both load and slip and the effect is very significant.  It is seen that the 

prediction with n=0.5 is close to the test results for specimen II-5 in Yao et al. (2005) but that 

with n=1 is closer for specimen No. 1 in Ali-Ahmad et al. (2006). It is thus not possible to 

choose a specific value for prediction purpose. 

COMPARISON OF FE PREDICTIONS WITH TEST RESUTLTS 

The proposed FE model has been used to simulate all the 56 single shear tests reported in Yao 

et al. (2005) in which all the geometrical and material properties necessary for FE modeling 

are available. It may be noted that Yao et al. (2005) reported a total of 72 tests but 16 of them 

failed in other modes rather than debonding in concrete so they were excluded in this study. 

The concrete cylinder strength for the specimens in Yao et al. (2005) varied from 19 to 27 

MPa. To increase the range of concrete strength, specimen No. 1 from Ali-Ahmad et al. 

(2006) and three specimens (S-CFS-400-25) from Wu et al. (2001) were further simulated. 

The concrete cylinder strength was respectively 38 MPa for the former and 57.6 MPa for the 



latter. Figure 10 shows that the FE predictions are overall in very close agreement with the 60 

test data. 

Three typical specimens with different concrete strength are chosen from the above database 

for further comparison between the FE prediction, test data and analytical solution if 

available. These are specimen II-5 in Yao et al. (2005), specimen No. 1 in Ali-Ahmad et al. 

(2006) and specimen S-CFS-400-25 in Wu et al. (2001), which had concrete strength of 23, 

38 and 57.6 MPa respectively. Figures 11 and 12 show that the predicted and measured load-

slip curves are in close agreement for the first two specimens (that for the third one is not 

available). Yuan et al. (2004) analyzed the load-slip curve for specimen II-5 in Yao et al. 

(2005) using their analytical solution. Their results are also shown in Fig. 11 for comparison. 

Figure 13 shows the close agreement between the predicted and measured FRP strain 

distribution for the third specimen. Table 2 compares the loading capacities from FE 

prediction, test and Chen and Teng’s (2001) bond strength model. It shows that the loading 

capacities from the present FE prediction are in close agreement with test and those predicted 

from Chen and Teng’s (2001) model. 

Figure 14 shows a comparison between the FE prediction, test and Yuan et al.’s (2004) 

analytical solution of FRP axial stress at Point B, E and G as marked in Fig. 11. The axial 

stress is used here because it was used in Yuan et al. (2004). The test axial stress was obtained 

by multiplying the measured strain on the top surface by the Young’s modulus of the FRP. 

There is a very close agreement between the three when the bonded joint is almost entirely 

elastic at Point B with load P = 2.26 kN.  At the initiation of debonding (at Point E with P = 

5.53 kN), the FE prediction is in good agreement with the analytical solution. The test results 

are in agreement with the other two in overall trend, but shows large fluctuations. This is 

probably caused by local bending of the FRP (see Chen et al. 2001), in addition to probable 



measurement errors.  Point G (P = 5.74 kN) corresponds to a state when debonding has 

propagated by 55 mm from the loaded end. The analytical strain is constant within this 55 

mm. The strain from FE prediction is the largest at the loaded end and reduces gradually 

within the debonded zone, although it is overall in agreement with the analytical solution. The 

cause for this phenomenon will be discussed below. Again, the test strain shows large 

fluctuations but is in agreement with the other two in trend.  

Figure 15 shows the predicted load-slip curves for group VII specimens in Yao et al. (2005) 

whose bond length varied but all other parameters remained the same. The effective bond 

length, which is defined as the bond length beyond which the ultimate load does not increase 

with an increase of the bond length, calculated by Chen and Teng’s (2001) model is 92 mm 

for this group, implying that the ultimate load of this group should be constant because the 

bond lengths were greater than the effective bond length for all specimens in the group. 

Although the FE predicted ultimate load capacities are more or less the same (Fig. 15), they 

do show a trend that the loading capacity increases slowly with the bond length. This 

phenomenon is evident from test results as shown in the inert table in Fig. 15. 

The above phenomenon is consistent with the phenomenon in Fig. 11 that the load continues 

to increase slowly after the initiation of debonding (Point E), instead of a horizontal plateau as 

predicted by Yuan et al.’s (2004) analytical solution. This is also consistent with the 

phenomenon in Fig. 14 that the FE predicted FRP stress is not constant within the debonded 

zone: it is the highest at the loaded end and reduces slowly within the zone towards the 

debonding front. This phenomenon may be explained by the different material constitutive 

models employed in the different analyses. Typically a bi-linear bond-slip model is assumed 

in analytical analyses such as Yuan et al. (2004). The bi-linear bond-slip model assumes that 

the interface does not resist any stress once the slip exceeds the critical value, leading to a 



horizontal plateau when the bond length is sufficiently large. In the present FE analysis, 

although the tensile and compressive stresses are also supposed to reduce to zero when the 

strain reaches a critical value (Figs 1 and 2), ABAQUS (and many other FE packages) does 

not allow the tensile stress to fall below 1% of ft to ensure numerical stability (similar in 

compression). This means that concrete always has a small residual strength in both tension 

and compression in the FE mode. Therefore, the difference between the analytical solution 

and the FE prediction is most likely due to the differences in the assumptions adopted. 

Although it may be argued that the slow increase of the FE predicted loading capacity with an 

increase of the bond length is also due to the arbitrary numerical treatment, it is evident in the 

test data as in Figs 11, 14 and 15 that the load increases slowly with deformation even at large 

slips. 

For specimen II-5 in Yao et al. (2005), a number of points on the FE load-slip curve (marked 

Point A-I in Fig. 11) were chosen to investigate the debonding process. Figure 16 shows the 

tensile damage contours in the concrete. It may be noted that the tensile damage is directly 

related to the cracking strain so these contours represent closely the crack pattern in the 

concrete, so the progressive development of damage in Fig. 16 also represents closely the 

propagation of concrete crack/FRP debonding. 

The concrete near the loaded end exhibits softening in a small zone directly under the FRP 

when the load is about 30% of the ultimate load (Fig. 16b). The length of this small softening 

zone has been about doubled and its depth significantly increased when the load increases to 

about 60% (Fig. 16d). Micro-cracks start to form with an angel of about 45° to the horizontal. 

A macro crack only appears when the load is about 90% of the ultimate load (Fig. 16f) and 

debonding starts to propagate rapidly thereafter towards the free end of the FRP (Fig. 16g –

16i) leading to the total separation of the FRP plate from the concrete (Fig. 16j).  



This debonding failure process is very similar for specimen No. 1 in Ali-Ahmad et al. (2006) 

(Fig. 17).  

CONCLUSIONS 

A concrete damage model based on the plastic degradation theory has been proposed and 

implemented into the concrete damage plasticity model in ABAQUS to simulate the FRP-to-

concrete bond behavior in this paper. The plastic degradation is used to describe the damage 

of the concrete after it enters softening in both tension and compression. The damage effects 

are modeled in terms of plastic strain rather than the stiffness degradation. The proposed 

model has been implemented in ABAQUS to model the FRP-to-concrete bond behavior in the 

single shear test. A number of other damage models have also been investigated and their 

predictions as well as results from the proposed damage model have been compared with test 

data. The results have shown that the proposed model can accurately predict the bond 

behavior in the entire loading process and the numerical predictions are in closer agreement 

with test data from the literature than other models. The FE model also predicts that an 

increase of the bond length can lead to a small increase of the loading capacity even when the 

FRP bond length is larger than the effective bond length, as observed in some experiments. 
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Table 1. Summary of FE studies on FRP-to-concrete bond behaviour 

Reference 
Concrete in 
compression 

Concrete in 
tension 

Concrete 
cracking 

Remarks (Software) 

Direct approach 

Lu et al. (2005b) 
Hognestad’s 
(1951) model  

Linear 
softening 

Smeared, 
fixed angle 

crack 
model  

User defined shear 
retention model 

(MARC) 

Lu et al. (2006) 

User defined constitutive 
model Smeared, 

rotating 
angle 
crack 
model  

User defined 
constitutive model, 2-D 

plane stress 
assumption, (MARC) 

Saenz’s (1964) 
model, 

Isotropic 

exponential 
strain-

softening, 
orthotropic 

Pham and Al-
Mahaidi (2007) 

Total strain crack model Smeared, 
rotating 
angle 
crack 
model  

(DIANA) Thorenfeldt et 
al.’s (1987) 

model 

Hordijk’s 
(1991) 
model  

Camata et al. 
(2004), Pham et 

al. (2006) 

Nonlinear fracture mechanics-
based model Smeared & 

discrete 
crack 
model  

Pre-defined cracking in 
concrete, 

Re-meshing technique 
(MERLIN) 

Menétrey and 
Willam’s (1995) 
three-invariant 

plasticity model

Rankine’s 
(1857) 
model 

Interface approach 
Diab and Wu 

(2007) 
CEB-FIP (1991) model 

Smeared 
crack model

Interface modeled 
(DIANA) 

Salomoni et al. 
(2011) 

Drucker-Prager constitutive 
law 

Smeared 
crack model

Interface modeled 
based on Mazars’ 

(1989) model 
(ABAQUS) 

Crack band approach 

Coronado and 
Lopez (2007, 

2010) 

Todeschini et 
al.’s (1964) 
model  for 
both plain 

concrete and 
crack band 

Parameters of 
tension 

softening 
obtained from 
test for both 

plain concrete 
and crack band,

bi-linear 
softening 

Smeared 
crack model

Energy based damage 
model for tensile 

behavior in the crack 
band zone. No 

damage considered in 
other zones 
(ABAQUS) 

 



Table 2. Loading capacity of typical specimens 

Specimen 

Source 

Concrete 
strength, 
MPa 

Test, kN 
FE prediction, 
kN 

Chen and Teng’s 
(2001) model, kN 

II-5 

Yao et al. (2005) 
23 7.07 6.50 6.02 

No. 1  

Ali-Ahmad et al. (2006) 
38 11.5 12.1 10.44 

S-CFS-400-25 

Wu et al. (2001) 
57.6 

14.1 (average 
of 3 

specimens) 
14.1 11.44 

 

 

 
Figure 1. Damage plasticity model of concrete: (a) plastic strain degradation (b) damage definition 

 

 

 
Figure 2. Stress-strain relationship of concrete under uniaxial tension 

 



 
Figure 3. FE model of single shear test 
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(a) Load-slip behavior 
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(b) Predicted loading capacity 

Figure 4. Mesh convergence analysis for specimen II-5 in Yao et al. (2005) 

 



 

 

 
Figure 5. Effect of element size on predicted concrete damage contour: specimen II-5 in Yao et al. (2005) 
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Figure 6. Tension damage models: for 1 mm element size and concrete strength as of specimen II-5 in Yao et 

al. (2005) 
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Figure 7. Compression damage models for 1 mm element size and concrete strength as of specimen II-5 in 

Yao et al. (2005) 
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(a) Specimen II-5 in Yao et al. (2005) 
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(b) Specimen No. 1 in Ali-Ahmad et al. (2006) 

Figure 8. Effect of damage model on FE predicted load-slip curve 

 

 



0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Slip at the loaded end (mm)

L
o

ad
 (

kN
)

Test (II-5 in Yao et al. (2005))

Present model

Shear retention model (n=5) from Rots (1988)

Shear retention model (n=2) from Rots (1988)

Shear retention model (n=0.5) from Rots (1988)

 
(a) Specimen II-5 in Yao et al. (2005) 
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(b) Specimen No. 1 in Ali-Ahmad et al. (2006) 

Figure 9. Effect of coefficient n in Rots’ (1988) shear retention model on predicted load-slip curve 
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Figure 10. Comparison of FE prediction with test results 
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Figure 11. Comparison of FE prediction with test and analytical solution from Yuan et al. (2004): specimen 

II-5 in Yao et al. (2005) 

 

 

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Slip at the loaded end (mm)

L
o

a
d

 (
k

N
)

Test
FE

Point A-1

Point B-1

Point C-1

Point D-1

Point E-1 Point F-1 Point G-1 Point H-1 Point I-1

 
Figure 12. Comparison of FE prediction with test: specimen No. 1 in Ali-Ahmad et al. (2006) 
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Figure 13. FE prediction and test FRP stain for specimen S-CFS-400-25 in Wu et al. (2001) 
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Figure 14. FE prediction, test and analytical solution of FRP axial stresses for specimen II-5 in Yao et al. (2005) 

corresponding to Points B, E and G on the load-slip curve in Fig. 11 
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Figure 15. FE prediction on load-slip curves for specimens group VII in Yao et al. (2005) 



 
Figure 16. Propagation of debonding process: specimen II-5 in Yao et al. (2005) (Points A-J correspond to 

those in Fig. 11, scale the same as in Fig. 5) 

(j) Point J 



 
Figure 17. Propagation of debonding process: specimen No. 1 in Ali-Ahmad et al. (2006) (Points A-1 to I-1 

correspond to those in Fig. 12, scale the same as in Fig. 5) 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 


