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Social Interaction-Aware Dynamical Models and
Decision-Making for Autonomous Vehicles

Luca Crosato, Kai Tian, Hubert P. H. Shum, Edmond S. L. Ho, Yafei Wang,
and Chongfeng Wei*

1. Introduction

In the past few years, there has been an increasing interest in the
development of technology for autonomous vehicles (AVs), as the
recent advancements in robotics and machine learning have
enabled autonomous driving (AD) engineers to develop algorithms
that could tackle the complexity of the AD task. AVs have the poten-
tial to improve traffic quality, reduce traffic accidents, and improve
the quality of time spent while travelling.[1] Nowadays, more and
more AVs are being deployed into the real world, sharing the envi-
ronment with other human road users. This has raised concerns
that AVs could not be able to understand and interact smoothly with

other human road users, potentially leading
to traffic dilemmas and safety issues.[2] In
order to operate in an efficient and safe man-
ner, AVs need to behave in a human-like
fashion and generate optimal behaviours that
take the interactions with other human road
users into account.[3] This is critical for the
reduction of potential traffic conflicts. For
example, cautious but unnecessary stops at
intersectionsmight cause rear-end accidents.
In order to develop fully automated vehicles,
advances in many aspects of AV technology
are required, ranging from perception,
decision-making, planning, and control.[4,5]

When it comes to predicting the behaviour
of surrounding human road users and taking
decisions accordingly for AVs, the interac-
tions with surrounding human road users
become increasingly important, as the AV

actions affect their behaviour and vice versa.[6]

The purpose of this article is to provide an exhaustive survey of
state-of-the-art techniques in interaction-aware motion planning
and decision in the context of autonomous driving. In particular,
the text first covers human road user behavioural models to high-
light what factors influence the decisions that human road users
make on the road. Driver and pedestrian behavioural models are
relevant to AVs for multiple reasons. Firstly, they can be used to
assess and predict what road users that surround the AV will do.
Secondly, they can aid in the development of human-like AV
behaviour. Therefore, they hold both a predictive value as well
as add relevant insights for model/system design.
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Interaction-aware autonomous driving (IAAD) is a rapidly growing field of
research that focuses on the development of autonomous vehicles (AVs) that are
capable of interacting safely and efficiently with human road users. This is a
challenging task, as it requires the AV to be able to understand and predict the
behaviour of human road users. In this literature review, the current state of IAAD
research is surveyed. Commencing with an examination of terminology, attention
is drawn to challenges and existing models employed for modeling the behaviour
of drivers and pedestrians. Next, a comprehensive review is conducted on
various techniques proposed for interaction modeling, encompassing cognitive
methods, machine-learning approaches, and game-theoretic methods. The
conclusion is reached through a discussion of potential advantages and risks
associated with IAAD, along with the illumination of pivotal research inquiries
necessitating future exploration.
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This review consists of five main sections which cover differ-
ent areas in IAAD. The terminology used in IAAD is introduced
in Section 2. Please refer to Figure 1 for an overview of the article
structure.

Section 3 will cover human factors studies on what affects
human decision-making while driving, as well as pedestrian
behavioural studies. Section 4 gives a broad overview and classi-
fication of existing techniques that are used in interaction model-
ing. Finally, Section 5 and 6 cover state-of-the-art techniques
used for motion-planning and decision-making in interactive
scenarios.

While autonomous driving has been an active research area in
recent years, most of it focuses on scenarios involving only
vehicles. There is more limited work that addresses heteroge-
neous scenarios, which include both vehicles and pedestrians.
In this article, the focus is on heterogeneous scenarios, but
Section 5 and 6 will also cover related work that deals with sce-
narios without pedestrians. This is because the techniques used
in these papers can be easily adapted to mixed traffic scenarios, or
they can offer important insights into how to deal with the gen-
eral problem of mixed traffic scenarios.

2. Terminology in Interaction-Aware Autonomous
Driving

Before discussing the recent advances in interaction-aware
motion-planning and decision-making, the paper first defines
some of the terminology used in this field. In the field of auton-
omous driving, the term ego-vehicle refers to the specific vehicle
whose behaviour is to be controlled and studied. All other
vehicles, cyclists, pedestrians, etc., that occupy a region of space
around the ego-vehicle are treated as interactive obstacles and are

referred to as surrounding traffic participants, see Figure 2a.
Since road traffic is unlikely to become fully automated in the
near future, AVs will inevitably operate in environments mixed
with human road users (HRUs), such as human drivers and
pedestrians. Therefore, IAAD is a field of research that focuses
on developing AVs that can safely and efficiently interact with
surrounding HRUs. Traditional autonomous driving approaches
often treat surrounding HRUs as dynamic obstacles. However,
this is not a realistic approach, as they are constantly changing
their behaviour to adapt to the current situation.

Generally, multiple surrounding HRUs can give rise to space-
sharing conflicts amongst themselves or with the ego-vehicle: a
situation from which it can be reasonably inferred that two or
more road users intend to occupy the same region of space at
the same time in the near future, see Figure 2b. The agents
involved in the conflict are said to display an interactive behav-
iour, which implies that their behaviour would have been differ-
ent if the space-sharing conflict had not occurred.[7] Moreover,
interaction does not necessarily involve conflict. It can be explicit
or implicit communications that indicate a road user’s intentions
and affect HRUs. For instance, drivers could plan their driving
strategy based on the turning light signals of vehicles in front,
even though the ego-vehicle and vehicles in front are not in
the same lane, and there will be no conflict in the near future.
Hence, interactive behaviour refers to the different courses of
action of road users, adapting to the behaviour of others or mak-
ing requests for reactions and taking actions to achieve their
desired goals.[8] Since interactions happen all the time when driv-
ing, it is crucial that the algorithms developed for AVs be aware
of the dynamics of the interactions between agents. Such algo-
rithms are said to be interaction-aware and are often the focus of
recent autonomous driving research.[9]

Figure 1. Flow chart: from human behaviour to social interaction aware AVs.
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The safe and socially acceptable IAAD systems are currently
hampered by a number of challenges.[10] One challenge is a lack
of innovative theories about how HRUs interact.[11] This is a dif-
ficult task, as the theories to be developed are not limited to pre-
dicting and modeling HRUs’ behaviour but also exploring
behaviour patterns and their underlying mechanisms. Integrating
AVs into road traffic as seamlessly as humans would require
more advanced behaviour theories and models. Another chal-
lenge is the need to develop algorithms that can safely and effi-
ciently interact with other HRUs and produce an AV behaviour
that compels human-like standards. Figure 3 shows the main
parts that make up an AV system. Raw data from sensors is proc-
essed by a perception module, which detects the surrounding
environment and performs localisation, which allows the gener-
ating of a global route plan for the ego-vehicle to reach its target
destination. The scene can be further interpreted, and predic-
tions regarding surrounding traffic participants can be made.
Interaction-aware models play a major role in prediction tasks,
as agents affect each other’s trajectories and decisions.

Decision-making and path-planning are two of the most
important tasks in autonomous driving. They are responsible
for determining how the vehicle will move through its environ-
ment. Decision-making is the process of choosing an action from
a set of possible options. For example, the vehicle may need
to decide whether to change lanes, slow down, or stop. Path-
planning is the process of generating a safe and feasible

trajectory for the vehicle to follow. Decision-making and path-
planning are closely related. The decision-making process
typically outputs a high-level plan, such as “change lanes to
the left.” The path-planning process then takes this plan and
generates a detailed trajectory that the vehicle can follow. Both
tasks must take into account the vehicle’s current position,
the vehicle’s capabilities and the surrounding traffic, which is
why interaction-aware models are highly relevant to these two
tasks. From a control system perspective, the dynamics of the
vehicle are represented by its states, i.e., position and orientation,
and their time derivatives. The state of the environment is deter-
mined by the states of all dynamics and static entities. The strictly
physical state-space can also be augmented with additional latent-
space variables that capture, for example, the intentions[12] or the
behavioural preferences of surrounding users,[13] which are part
of the Scene Understanding system.

3. Human Behaviour Studies on Interactions

This section synthesizes empirical and modeling research find-
ings on HRU behaviour, including that of human drivers and
pedestrians interacting with AVs or conventional vehicles, espe-
cially from a communication perspective. The focus is on
research involving road interactions, with the aim of discovering
insights that may facilitate the development of interaction-aware

Figure 2. a) The ego-vehicle is controlled by the autonomous system, whereas surrounding traffic participants act on their own will, b) two agents
interacting with each other determine an area of conflict.

Figure 3. Architecture of AV systems. Solid line boxes identify modules that are closely related to interaction-aware models.
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AVs. Studies that look at macro-traffic conditions, such as the
influences of route choice, weather, or regulation, are beyond
this article’s scope.

3.1. Driver Behaviour Studies

Driver behaviour models are used to predict and understand how
drivers will behave in different driving scenarios. These models
can be used to improve the safety and efficiency of transportation
systems and aid in the process of designing AVs. Many different
factors can affect driving behaviour, including individual charac-
teristics (age, gender, personality, and experience), environmen-
tal factors, i.e., road and weather conditions, and social factors,
which include the driver’s interactions with HRUs.[14] A compre-
hensive overview of driver behavioural models (DBM) in vehicle-
vehicle interactions can be found in Ref. [15]. Here, the focus will
be on DBMs that are relevant to vehicle-pedestrian interactions.

The most common driver behavioural models include:

3.1.1. Driver’s Risk Field Models

This model predicts how drivers will perceive risk in different
driving situations (Figure 4a). The DRF model is based on the
idea that drivers make decisions based on their perception of
risk. The results of Ref. [16] suggest that driving behaviour is
governed by a cost function that takes into account the effects
of noise on human perception and actions. This is similar to
howmotor-control tasks are governed by cost functions. Risk per-
ception onboard of AVs has also been analysed in Ref. [17] in
driving simulator scenarios.

3.1.2. Theory Based Perceptual and Cognitive Models

Models based on perceptual information describe driver’s behav-
iour based on perceptual cues, e.g., distance, vehicle speed, accel-
eration, expansion angle, reaction times, etc.[18,19] (Figure 4b).
Cognitive models outline the internal state flow and motive that
regulates the driver’s behaviour as a psychological human
being.[11,20]

3.1.3. Data-Driven Models

This set of methods relies on analysing naturalistic driving data
with machine learning to analyse driver behaviour (Figure 4c).
Data-driven models can learn generative or discriminative[21–23]

models of human behaviour to make predictions about the driv-
er’s future decisions or preferred driving style. Model validation
can be done by comparing predictions with real data and by
human-in-the-loop simulations.

Existing research highlights based on naturalistic driving data
analyses how drivers behave in the presence of pedestrians. In
Ref. [24], the authors found that drivers tend to maintain smaller
minimum lateral clearance and lower overtaking speed when over-
taking pedestrians who are walking in the opposite direction, on
the lane edge, or when oncoming traffic is present. Minimum lat-
eral clearance and time-to-collision were only weakly correlated
with overtaking speed. The results in Ref. [25] show that the vehicle
deceleration behaviour is relative to the initial Time To Collision
(TTC), subjective judgment of pedestrian crossing intention, vehi-
cle speed, pedestrian position and crossing direction.

There is less attention paid to multi-agent settings where mul-
tiple vehicles and pedestrians interact with each other. In
Ref. [26], the authors develop a multi-agent adversarial Inverse
reinforcement learning (IRL) framework based on data collected
at a road intersection to simulate driver and pedestrian behaviour
at intersections.

Overall, DBMs are a promising area of research with the
potential to significantly improve the safety and efficiency of
transportation systems. However, there is still much work to
be done in developing and validating these models. Future
research should focus on developing more comprehensive mod-
els that take into account a wider range of factors, such as the
driver’s internal state, the environment, and the interactions with
other HRUs.

3.2. Pedestrians Behaviour Studies

Since pedestrians are considered the most vulnerable road users,
lacking protective equipment andmovingmore slowly than other
road users,[27] investigating pedestrian behaviour is clearly rele-
vant to the safety and acceptance of AVs interacting with pedes-
trians. Pedestrian behaviour has been the subject of extensive
research for decades.[28] The emergence of AVs has recently
prompted many new research questions about pedestrian behav-
iour. Given the large body of work in this area and our aims, this
Section examines major studies rather than providing an exhaus-
tive survey. The review covers pedestrian behaviour studies
regarding interactions with vehicles from three perspectives:
communications, theories and models of crossing behaviour,
and AV-involved applications. The aim is to identify and summa-
rize their value for developing interaction-aware AVs.

Figure 4. Illustration of driver behaviour models. a) Driver risk field. Reproduced with permission.[16] Copyright 2020, Springer Nature. b) Joint theory-
based model (as in ref. [18]) c) Data-driven model. Reproduced with permission.[21] Copyright 2022, Springer Nature.
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3.2.1. Communications

In dynamic traffic environments, road users intentionally or
unintentionally convey signalling information to one another
through their movements and spatial cues, giving rise to both
explicit and implicit communication. Research findings concur
that AVs’ kinematics and signalling information significantly
impact pedestrian road behaviour due to the absence of a driver
role.[7,29,30] Therefore, the identification of critical motion cues
and signals affecting pedestrian road behaviour holds substantial
research significance (see Figure 5a).

Implicit communication signals, such as vehicle kinematic
cues, involve road user behaviour that affects its own movement
but can be interpreted as cues of intention or movement by
another road user.[7] Distance or TTC between approaching
vehicles and pedestrians is the most critical Implicit information
influencing pedestrian behaviour.[31,32] Evidence showed that
pedestrians tend to rely more on distance than TTC.[33] That
is, for the same TTC, more pedestrians crossed when vehicles
approached at higher speeds. A recent study showed pedestrians
used multiple sources of information from vehicle kinematics
instead of relying on one. The impacts of speed, distance, and
TTC on pedestrian behaviour were mutual coupling.[34]

Brakingmanoeuvre is another critical implicit information influ-
encing pedestrian behaviour in interactions. Vehicle movements
correlated with pedestrian trust toward vehicles, emotion, and
impact on pedestrian decisions.[35–37] Pedestrians felt comfortable
and started crossing quickly when approaching vehicles slowed
down early and braked lightly. Harsh braking led to pedestrian
avoidance behaviour.[35,38,39] In contrast, early braking manoeuvres

and strong pitching reduced the time required for pedestrians to
understand the vehicle’s intentions.[40,41] Vehicles that approached
pedestrians slowly while yielding could hinder understanding.[35,37]

Traffic characteristics, such as traffic volume and gap sizes,
provide implicit information to pedestrians. High traffic volume
forced pedestrians to accept small traffic gaps,[42] as the increased
time cost increased their propensity for risk-taking.[43] However,
substantial evidence indicated pedestrians who tended to wait
were more cautious and less likely to accept risky gaps.[44–46]

The relationship between traffic volume and pedestrian crossing
behaviour is context-dependent, potentially influenced by the
size and order of gaps in traffic.[47]

Furthermore, the pedestrian movement toward the road, pres-
ence at the curb, and pedestrian head orientation could convey
key implicit information to approaching vehicles.[48,49] Pedestrians
often assert their right of way by stepping onto the road or looking
at approaching vehicles.[30]

Explicit communication signals involve road user behaviour
that conveys signalling information to other road users without
affecting one’s own movement or perception.[7] A common case
is vehicles transmitting information to pedestrians through an
external human-machine interface (eHMI). In the context of
AVs, where there is no human driver, eHMIs have gained impor-
tance. Substantial evidence supported eHMI’s benefits in pedes-
trian interactions with AVs.[35,50,51] Various types of eHMI
prototypes have been proposed, such as headlight,[52] light
band,[36] and anthropomorphic symbols,[53] but consensus on
the best eHMI form and information to convey remains elusive.

Numerous studies demonstrated that eHMI performance
depended on various factors. Pedestrians’ familiarity, trust,

(a) (b)
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Implicit signals:

TTC, speed, distance

Braking behaviour

Pitching

Traffic characteristics

eHMI, headlight flashing

Embodiment

Eye contact

Expli

Smart device
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Implicit signals:

Walking pattern, position
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Gaze pattern
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Figure 5. a) Communication between pedestrians and automated vehicles. b) Theories and models for pedestrian crossing perception, decision, initia-
tion, and motion.
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and interpretation of eHMIs could significantly impact eHMIs’
effectiveness in communicating information to pedestrians.
For instance, pedestrians better understood conventional
eHMIs (flashing headlights) as signals for vehicles yielding than
novel eHMIs (light bands).[36] Pedestrians overtrusting eHMIs
might lead them to under-rely on vehicle motion cues, which
is dangerous if eHMIs fail.[54] Egocentric information transmit-
ted by the eHMI, like “OK TO CROSS”, compelled pedestrians
more than allocentric information like “STOPPING”.[55]

Moreover, the reliability of eHMIs was questioned as it might
be affected by weather,[56] light condition,[29] and vehicle behav-
iour.[35] For example, in poor weather, pedestrians could not
always read vehicle signs.[57] Pedestrian willingness to cross
was unaffected by eHMIs when vehicles did not yield or decel-
erated aggressively.[35,50] Other concepts, e.g., installing eHMIs
on road infrastructures instead of vehicles[58] and combining
eHMIs with vehicle motion cues,[59,60] could outperform pure
eHMIs.

Additionally, from the vehicles’ perspective, although less fre-
quent, pedestrians also use explicit signals to communicate with
AVs. These signals include eye contact and hand gestures, which
are used by pedestrians to ensure they are seen by AVs and to
request the right of way.[7,61,62] To address the absence of a
human driver, AVs could utilise a human-like visual embodi-
ment in the driver’s seat and wireless communication technology
to enhance vehicle-pedestrian communication.[63–65]

3.2.2. Theories and Models of Crossing Behaviour

Pedestrian crossing behaviour involves various cognitive pro-
cesses. Previous studies[47,57,66] suggested that there might be
three levels of processes involved in constructing pedestrian cross-
ing behaviour in interactions, i.e., perception, decision, initiation
and motion. In light of this hypothesis, the following sections syn-
thesise the theories and models of pedestrian crossing behaviour
regarding the three cognitive processes (Figure 5b) (Table 1).

Table 1. Pedestrian models and theories.

Research Scenarioa) Cognitive process Models Theories

[90] 1,3,4 Perception τ, τ
: Visual perception

[88] 1,3,4 Perception τ, τ
: Visual perception

[34,47] 1,3 Perception θ
: Visual perception

[18] 1,4 Perception τ, bearing angle Visual perception

[84] 1,3,4 Perception Generalized TTC Visual perception

[121] 1,4 Perception TTC, bearing angle Visual perception

[87] 1,3 Perception Perceived distance Visual perception

[78] 1,3 Decision Critical gap GA behaviour

[79,224] 1,3 Decision Critical gap GA behaviour

[43,47] 1,3,5 Decision LR GA behaviour

[82] 1,3 Decision ANN GA behaviour

Machine learning

[80] 1,2,3, 4,5 Decision Critical gap GA behaviour

[87] 1,3 Decision RL, Bayesian filter GA behaviour, learning-based

[85] 2,3,4 Decision Speed-distance BC behaviour

[86] 1,3,4 Decision Hybrid perception, LR Visual perception, BC behaviour

[84,88,90] 1,3,4 Decision EA Drift diffusion

[11] 1,3,4 Decision EA, Bayesian filter Drift diffusion, Game theory, Theory of Mind, Noisy visual perception

[93] 1,3,4 Decision DA game Game theory

[92] 1,4 Decision SC game Game theory

[121] 1,4 Decision Critical gap GA behaviour, visual perception

[11,84,88,90] 1,3,4 Initiation EA Drift diffusion

[47,86] 1,3,4 Initiation SW distribution Response time

[87] 1,3 Initiation RL Learning-based

[108,114,121] 1,3,4 Motion SF Walking behaviour

[115] 2 Motion ANN Learning-based

[111,112] 1,2,3,4 Motion CA Walking behaviour

[26] 2,3,4 Motion Adversarial IRL Learning-based

[117] 2,4 Motion LSTM Learning-based

a)1. Uncontrolled crossings. 2. Controlled crossings. 3. With non-yielding vehicles. 4. With yielding vehicles. 5. With traffic flow.
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Perception: The visual perception theory, as established by
Gibson,[67] explains that as an object approaches an observer,
its image on the retina expands, forming the basis for human
collision perception. In crossing scenarios, when the rate of
image expansion of a vehicle on the retina reaches a certain
threshold, pedestrians perceive that the vehicle is approaching,
known as the visual looming phenomenon.[68] A psychophysical
model simplifies this expansion rate as the change in the visual
angle subtended by the approaching vehicle at the pedestrian’s
pupil, denoted as θ̇ (Figure 6a).[34,69] Recent research suggested
that pedestrians use θ̇ as a crucial visual cue to observe approach-

ing vehicles.[11,34] However, while θ
:

provides spatial information,
it does not convey when the vehicle arrives at the pedestrian’s
position.[70] In crossing scenarios with yielding vehicles, pedes-
trians need temporal information to estimate whether the vehicle
can stop in time. Lee’s mathematical demonstration[69] showed
that the visual cue τ, representing the ratio of θ to θ̇, may specify
the TTC of the approaching vehicle. Moreover, the first temporal
derivative of τ, denoted as τ

:
, was relevant for detecting if the

current deceleration rate is sufficient to avoid a collision.[71]

Furthermore, it was found that pedestrians might visually per-
ceive oncoming collision events under a given angle, i.e., bearing
angle, which is the angle between the vehicle and the pedes-
trian’s line of regard[72] (Figure 6b).

In addition to visual cues, pedestrian perception may depend
on perceptual strategies. Research by Tian et al.[37] indicated that
pedestrian estimation of vehicle behaviour might be a separate
process or a sub-process of crossing decision-making. When
there is a large traffic gap, pedestrians tend not to rely on vehicle
driving behaviour but rather on gap size. Similarly, Delucia[70]

indicated that when collision events are distant, humans tend
to use ‘heuristic’ visual cues, such as θ and θ̇. However, as

collisions become imminent, optical invariants like τ dominate
perception, providing richer spatiotemporal information.

Besides perception mechanisms, various factors could influ-
ence pedestrians’ perceptions. Studies showed that elderly or
child pedestrians faced a higher collision risk due to age-related
perceptual limitations.[31,73] Elderly pedestrians tended to rely
more on distance than TTC to judge approaching vehicles, while
children struggled to detect vehicles approaching at high
speeds.[33,74] Distractions, particularly those involving visual
and manual components like smartphone usage, diverted signif-
icant attention resources and affected pedestrian observation of
traffic conditions.[75] In comparison, cognitive distractions, such
as listening to music, might not significantly impact pedestrian
perception.[44]

Decision: At uncontrolled crossings without signal lights,
pedestrians often interact with yielding or non-yielding
vehicles.[31,36,76] In non-yielding scenarios, pedestrians usually
make crossing decisions by evaluating gaps between approach-
ing vehicles, known as gap acceptance behaviour (GA).[77] This
concept led to the development of critical gap models, including
the models by Raff,[78] HCM2010,[79] and Rasouli.[80] Alternatively,
binary logit models treat crossing decisions as binary variables,
utilising machine-learning algorithms like artificial neural net-
works (ANN), support vector machines (SVM), and logistic regres-
sion (LR).[81] For example, Kadali et al.[82] used ANN to predict
crossing decisions based on various independent variables
(Figure 6c), while Sun et al.[83] employed LR with variables such
as pedestrian age, gender, group size, and vehicle type.

In scenarios involving yielding vehicles, crossing decisions
tend to follow a bimodal pattern referred to as bimodal crossing
behaviour (BC).[36,37,84] Pedestrians prefer to cross when traffic
gaps are sufficiently large or when vehicles are about to stop.[84]

However, making decisions in such scenarios can be challenging

(a)

(b)
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visualangle
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Speed

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
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Figure 6. Perception and decision models for pedestrians. a) Visual cues, including θ, θ
:

, τ, τ
:
;[34,86] b) bearing angle. Reproduced with permission.[121]

Copyright 2022, AAAI. c) Artificial neural networks;[82] d) speed–distance model;[85] e) large computational psychological model. Reproduced with per-
mission.[11] Copyright 2023, Oxford University Press.
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due to the contrasting relationships between decision cues and
collision risk, with collision risk negatively correlated to traffic
gap and positively correlated to vehicle speed.[37] Zhu et al.[85]

clustered crossing decisions into three groups: crossing, dilemma
condition, and waiting, based on vehicle speed and distance
(Figure 6 d). Moreover, Tian et al.[86] assumed pedestrians applied
different decision-making strategies according to BC behaviour and
modelled crossing decisions as responses to different visual cues.

While the mentioned approaches model crossing decisions
based on observed behaviour patterns, other models delve into
the psychological mechanisms that underlie these decisions.
Specifically, Tian et al. modelled pedestrian GA behaviour based
on pedestrian visual cues[34] and extended it to yielding scenarios
with a more complex visual perception mechanism.[86] Wang
et al. utilised a reinforcement learning (RL) model to capture
pedestrian crossing behaviour based on limited perception
mechanisms.[87] Furthermore, a class of models, namely evi-
dence accumulation (EA) models, such as the drift-diffusion
model, proposed that crossing decisions result from the accumu-
lation of visual evidence and noise, with the decision determined
once a certain threshold was reached.[84,88–90] Integrated large-
scale psychological theories to explain pedestrian crossing deci-
sions in detail (Figure 6e).[11] Additionally, game theory has also
been applied to model crossing decisions when pedestrians
negotiate the right of way with vehicles. Conventional game the-
ory,[91] Sequential Chicken (SC) game,[92] and Dual Accumulator
(DA) game[93] were utilised to characterise the dynamic crossing
decisions.

Environmental variability and pedestrian heterogeneity fur-
ther complicate crossing decision modeling. For example, cross-
ing multiple lanes often involves pedestrians waiting at lane lines
and accepting traffic gaps successively, known as rolling gap
behaviour.[94,95] Pedestrians waiting at lane lines might be more
likely to accept smaller traffic gaps than those waiting at
curbs.[43,94] Another complex scenario is crossing a two-way road,
which is physically and cognitively demanding. Pedestrians need
to consider vehicles on both sides.[96] Similarly, crossing at inter-
sections with dense continuous traffic is also challenging, as
pedestrians need to anticipate crossing gaps upstream of traffic
and make trade-offs between safety and time efficiency.[97]

Typically, it was assumed that as waiting time increases, pedes-
trians tend to accept riskier crossing opportunities.[43,80] However,
the latest evidence suggested that pedestrians who tended to wait
were more cautious and less likely to accept risky gaps.[44–46]

Regarding pedestrian heterogeneity, ANN and LR models were
applied to characterise age impact on crossing decisions by
Refs. [82,98]. Distractions, such as cellphone usage, could also
influence pedestrian crossing decisions.[82,99,100] applied ANNs
to model the impact of cellphone usage on crossing decisions.
Furthermore, pedestrians often cross the road in a group, exhibit-
ing herd behaviour. This behaviour was described by the tendency
of group members to maintain a certain distance from the group
centre.[101,102] used an EA model to characterize information cas-
cades in group decision-making, taking into account the influence
of previous agents’ decisions.

Initiation and Motion: Initiation and motion crossing initiation
time (CIT), represents the time it takes for pedestrians to begin
crossing the road, reflecting the dynamic nature of their deci-
sions.[103] Generally, CIT is the duration between the moment
when the crossing opportunity is available and when the pedes-
trian begins to move.[31,34] Drift-diffusion theory posited that CIT
is influenced by the accumulation of noisy evidence in the cog-
nitive system, reflecting the efficiency of pedestrian cognitive and
locomotor systems.[104] Various factors could affect CIT, includ-
ing vehicle kinematics, age, gender, and distractions. Pedestrians
tended to initiate crossing more slowly when faced with higher
vehicle speeds.[34] Furthermore, female pedestrians tended to ini-
tiate crossings more quickly than males,[105] and the elderly
tended to initiate sooner than young pedestrians.[45] The impact
of distractions on the CIT depends on their components.[44]

In scenarios where pedestrians face non-yielding vehicles,
the risk of collision increases as the distance between the vehicle
and the pedestrian decreases. Therefore, pedestrians typically
make rapid decisions by assessing “snapshots” of approaching
vehicles.[31,36] The distribution of CIT in these scenarios is often
concentrated, and right-skewed.[88] Response time models, such
as the Ex-Gaussian and Shifted Wald (SW) distributions, were
used to model CITs in these situations.[106] For instance,[107] mod-
elled CITs as variables following SW distribution (Figure 7a).

In vehicle-yielding scenarios, as discussed in Section 3.2.2,
CITs exhibit a bimodal distribution.[84] For the early group of
CITs, the distribution is similar to that in non-yielding scenarios,
as pedestrians employ similar decision-making strategies.[37]

However, for the late group, the distribution is complex and can-
not be described by standard response time distributions.[84] EA
models with time-varying evidence have been proposed to
address this complexity, allowing for the generation of CIT dis-
tributions with intricate shapes[84,88] (Figure 7b). Moreover,[86]

(a) (b) (c) (d)

Figure 7. Initiation and motion models for pedestrians. a) Response time model.[47] b) Evidence accumulation model.[90] c) Social force model.[98]

d) LSTM-ANN.[117]
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modelled CITs in vehicle-yielding scenarios using the joint dis-
tribution of response time models. Additionally,[87] applied an RL
model to learn the crossing initiation patterns of pedestrians.

After pedestrians initiate their crossings, they need to traverse
the road. Walking is a key part of crossing behaviour and is influ-
enced by many factors, such as the presence of approaching
vehicles, infrastructures, pedestrian age, and distractions.
Pedestrians adjusted their walking trajectories to avoid vehicles.[108]

In multi-lane crossings, they tended to move to and wait at lane
lines, accepting traffic gaps in each lane sequentially.[94] Pedestrian
walking speeds at crossings were typically faster than normal walk-
ing speeds in other scenarios.[109] While gender has no significant
effect on walking speeds, teenagers and the elderly walk slower than
young and middle-aged adults.[109,110] Distractions, such as cell-
phone use, can reduce pedestrian walking speeds.[44]

Walking behaviour can be simulated using microscopic pedes-
trian motion models, including cellular automata (CA) models,
social force (SF) models, and learning-based approaches. CA
models are discrete in space, time, and state, making them ideal
for simulating complex dynamic systems such as pedestrian-
vehicle interactions.[111,112] The SF models, based on Newton’s
second law, were utilised to simulate pedestrian-vehicle interac-
tions and large-scale pedestrian flows[101,108,113] (Figure 7c).
Ref. [114] used an SF model to simulate the crossing behaviour
of pedestrian crowds in complex interaction scenarios involving
low-speed vehicles.

In contrast to the above white-box models, there are black-box
models based on learning-based approaches, which learn pedes-
trian walking behaviour from naturalistic datasets or in pre-
defined environments. For example, ref. [115] employed ANNs
to learn pedestrian walking behaviour by incorporating the rela-
tive spatial and motion relationships between pedestrians and
other objects extracted from videos. Ref. [116] used the outputs
of an SF model as inputs to ANNs to simulate multiple pedes-
trian walking behaviours. Ref. [117] proposed a Long short-term
memory network (LSTM) pedestrian trajectory prediction model
(Figure 7d). Additionally, RL and IRL models were also applied to
model pedestrian walking behaviour. Ref. [118] applied an RL
model to learn multiple pedestrians’ walking behaviour in an
SF environment. Ref. [26] developed an IRL model to learn
pedestrian walking behaviour from video datasets.

3.2.3. AV-Involved Applications

In recent years, there has been a growing interest in studying
the interactions between autonomous vehicles (AVs) and pedes-
trians. This interest has led to a multitude of studies that apply
pedestrian crossing behaviour theories and models to enhance
or assess the performance of AVs in these interactions
(Table 2).

One prevalent approach is the use of learning-based methods,
which learn pedestrian intention and trajectory from real-world
datasets to aid AVs’ decision-making. For instance, Ref. [119]
proposed a graph convolutional neural network-based pedestrian
trajectory prediction model, which considered past pedestrian
trajectories to predict both deterministic and probabilistic future
trajectories for a range of AV use cases. Other similar models
aimed to improve prediction accuracy by considering the social
context of interactions. For example, Ref. [117] proposed an
LSTM pedestrian trajectory prediction model, which considered
past trajectories, pedestrian head orientations, and distance to
the approaching vehicle as inputs.[29] In addition, there are stud-
ies aiming to anticipate pedestrian crossing intentions. Ref. [120]
applied SVM, LSTM, and ANN to predict pedestrian crossing
intentions separately.

Learning-based approaches have proven effective in predicting
pedestrian trajectories and intentions. However, these models
demand substantial data for robust performance, limiting their
scalability when dealing with interaction cases lacking sufficient
data. Moreover, the black box nature of these models can make it
challenging to interpret the generated trajectories and intents,
which poses a challenge for AV decision-making modeling.[121]

To address these issues, expert models have been developed. For
example, the SF model has been modified to predict pedestrian
trajectories for AVs by incorporating more interaction details,
such as TTC and the interaction angle between vehicles and
pedestrians.[98,121] Moreover, SF and CA models have also been
embedded in AV decision modules to represent pedestrian cross-
ing behaviour and guide AV decisions in interactions with
pedestrians.[122–124]

Furthermore, crossing decision models have also been applied
in AV research. For example, ref. [123] employed crossing critical
gap models to characterise pedestrian crossing decisions in their

Table 2. Applications of pedestrian theories and models in AV contexts.

Research Purpose Applied theory Applied model

[119] Pedestrian trajectory prediction Learning-based GCN

[120] Pedestrian trajectory prediction Learning-based SVM, LSTM, Dense NN

[117] Pedestrian trajectory prediction Learning-based LSTM

[98] Pedestrian trajectory prediction GA behaviour, walking behaviour LR,SF

[121] Pedestrian behaviour modeling Visual perception, GA behaviour, walking behaviour Critical gap SF bearing angle

[122] Pedestrian behaviour modeling Crossing motivation, walking behaviour LR,SF

[123] Pedestrian behaviour modeling GA behaviour, walking behaviour Critical gap, CA

[85] Pedestrian behaviour modeling BC behaviour Speed-distance

[92] Pedestrian behaviour modeling Game theory SC game

[18] Pedestrian behaviour modeling Visual perception, GA behaviour Critical gap τ bearing angle

[124] Pedestrian behaviour modelling GA behaviour, Game theory, walking behaviour LR, critical gap, Stackelberg game, SF
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AV decision module.[85] applied their speed-distance model to
design defensive and competitive interaction behaviour for
AVs. Refs. [98,122] used LR models as pedestrian crossing deci-
sion models in their proposed AVs decision-making modules. To
enhance the dynamic and interactive nature of crossing deci-
sions, game theoretical models were used to model crossing deci-
sions when negotiating the right of way with AVs.[92,124]

Researchers also attempted to use pedestrian perception the-
ories or models to design AV decision-making strategies. For
instance, ref. [18] simulated AV-pedestrian coupling behaviour
using visual cues, τ and bearing angle, based on control theory.
Ref. [121] modelled the right of way of AVs and pedestrians using
a bearing angle.

4. Interaction Modeling

Interaction modeling techniques are relevant to a huge variety of
autonomous driving tasks, ranging from traffic forecasting to AV
planning and decision-making. Understanding and modeling
social interactions in autonomous driving is essential for predict-
ing scene dynamics and ensuring safe AV behaviour. Accurate
predictions enhance safety, while misunderstood AV behaviour
can lead to accidents. Additionally, comprehending the social
impact of AV actions can influence surrounding traffic, like
encouraging pedestrian crossings through early stopping. As
interaction modeling techniques can be utilised across different
task domains, the focus will be on dividing existing interaction
modeling techniques regardless of the specific driving task they
have been designed for.

An introduction to the classification of interaction modeling
techniques is now presented for discussion. The first distinction
can be made between learning-based methods and model-based
methods. There has been extensive research in autonomous driv-
ing that makes use of machine-learning and deep-learning-based
techniques.[125] In a learning-based approach, a model is learned
from an extensive dataset. This set of methods does not require
any prior knowledge of the system. Data-driven methods are
trained on a dataset of examples, and then they are used to make
predictions or decisions. On the opposite side of the spectrum,
model-based methods start with a theoretical understanding of
the system. This a priori knowledge is used to create a mathe-
matical model of the system. Empirical data is then used to vali-
date the model or adjust its parameters to minimize the
discrepancy between the model predictions and the data.

A further distinction can be made between methods that
explicitly utilise cognitive features of the human mind, which
try to explain the rationale that explains human actions, and
methods that only implicitly try to model interactions, trying
to map environmental inputs to decisions/actions. Human
behaviour studies introduced in Section 3 can serve as a guide-
line for the development of explicit methods. For instance, game
theoretic methods (see Section 6.2) take a more explicit approach
by considering traffic participants as rational agents who actively
consider each other’s actions. In contrast, as an example of non-
cognitive approaches, social force methods offer a more empiri-
cal perspective, capturing the impact of one participant on
another without explicitly detailing the reasoning that explains
the agent’s behaviour during the interaction. We propose to

distinguish existing modeling approaches based on whether they
explicitly or implicitly model the interactions.

Based on these two criteria, four major categories of interac-
tion modeling are identified, and they are reported in Figure 8:

4.1. Learning-Based Implicit Methods

These types of methods rely on machine-learning or deep-
learning techniques. The interactions are implicitly modelled,
which means that the agent’s behaviour cannot be explained
by the model. The model only learns an input-output mapping
from the data. Model learning can be facilitated by exploiting
interactive model architectures.[126–129] In general, deep learning
methods that use interaction-specific neural network architec-
tures fall into this category.

In this type of method, the aim is to learn a probabilistic gen-
erative model that predicts the agent’s future actions a. The
model is a probability distribution conditioned on the environ-
ment state x, which includes the state of surrounding agents,
and a set of learnable parameters θ.

a � pθðajxÞ (1)

4.2. Learning-Based Methods with Cognitive Features

This set of methods relies on explicitly handcrafted interactive
features that are used as inputs for a learning-based system.
This type of interactive feature can include TTC, relative dis-
tance,[130] looming and reflecting some cognitive process behind
human reasoning. For example, in ref. [131], an LSTM which
utilises the inter-vehicle interactions has been developed to clas-
sify surrounding vehicles’ lane change intentions. The interac-
tion features are composed of risk matrices which account for
worst-case TTC with vehicles in surrounding lanes and relative
distance. Graph convolutional networks also fall into this cate-
gory, as interaction features can be explicitly modelled in the
adjacency matrix of the graph.[132,133]

In this type of method, the aim is to learn a probabilistic
generative model that predicts the agent’s future actions a, simi-
larly to 1. In this case, the probability distribution can be condi-
tioned on the environment state x and on explicitly handcrafted
interactive features IðxÞ, which have the purpose of facilitating
learning.

a � pθðajx, IðxÞÞ (2)

4.3. Model-Based Non-Cognitive Methods

The modeling is non-cognitive in the sense that the interactions
do not actively reason on the cognitive process that is behind the
agent’s actions. Methods of this group include SF[114] and poten-
tial fields. The interactions are described by potential functions
(or SF), which contain a set of learnable parameters which can be
fit from empirical data. Another set of methods includes driver
risk fields, which are based on the hypothesis that the driver
behaviour emerges from a risk-based field.[16,134] The advantage
of model-based implicit methods is that they can be easily inter-
preted and they can embed domain knowledge, such as traffic
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regulations and scene context. Some models define a potential
field and define the agent’s action as proportional to the gradient
of such field

a ∝ ∂FðxÞ (3)

Otherwise, the forces can be modelled directly so that the gra-
dient operation is not required a ∝ FðxÞ.

4.4. Model-Based Cognitive Methods

Model-based cognitive methods describe the reasoning behind
human decision-making. Two main sets of methods can be dis-
tinguished: utility maximisation models and cognitive models.

In utility maximisation methods, humans are modelled as
optimizers that select their actions so as to maximise their future
utility.

a ¼ arg max
a

Uða, xÞ (4)

These methods include game theory and Markov Decision
Processes (MDPs). In Game theoretic approaches, agents are
modelled as players competing or cooperating with each other,
thereby taking into account how they react to each other.[135,136]

The framework of game theory offers a transparent and clear-cut
solution for modeling the dynamic interactions among human

drivers, allowing for an understandable explanation of the
decision process. However, it still remains hard to satisfy compu-
tational tractability as this approach does not scale well with an
increasing number of agents. Another possible solution is to
model human behaviour as an agent of an MDP, which provides
an excellent framework to model decision-making in scenarios
where results are influenced by both chance and the decisions
made by a decision-maker. Solutions to MDPs can be found with
learning-based methods, e.g., DRL algorithms or Monte Carlo
Tree Search,[137] or with dynamic programming techniques.[138]

The second set of methods aims to capture behavioural moti-
vations behind agents’ actions with psychological cognitive pro-
cesses. This set of methods can include: 1) Stimulus–response
models,[34] where driver or pedestrian actions are determined,
for example, on visual stimuli in the retina; 2) Evidence accumu-
lation,[84] where decisions are described as a result of accumu-
lated evidence; 3) Theory of mind, which suggests that humans
use their understanding of others’ thoughts and behaviours to
make decisions. By predicting others’ actions and inferring their
knowledge, humans can drive effectively and safely.[139,140]

a ¼ f cognitiveðxÞ (5)

In the next sections, each of these classes of interaction model-
ing will be analyzed in great detail. In particular, Cognitive and
Non-Cognitive learning-based methods will be discussed in

Figure 8. A map of state-of-the-art techniques in IAAD. (Two images reproduced with permission: bottom-left[16] Copyright 2020, Springer Nature, and
top-left[221] Copyright 2018, IEEE).
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Section 5. Model-based cognitive methods have already been
thoroughly discussed in Section 3, where Social Force and
Potential Fields, Driver Risk Field models, Theory of Mind,
Stimulus-Response, and Evidence Accumulation models were
included. Section 6 will include Utility-Based methods, which
comprise MDPs (Section 6.1) and Game Theory (Section 6.2).

5. Learning Based Methods

Machine-learning (ML) methods are widely used in autonomous
driving for a variety of tasks, including object detection,[141] scene
understanding,[142] path planning and control.[143] By learning
from large amounts of data, ML methods can learn to make deci-
sions that are more accurate and efficient than those made by
humans.[144] This Section will comprise both implicit and explicit
learning-based methods identified in the previous Section and
give a more detailed view of relevant papers. An overview of some
learning-based methods is shown in Figure 9.

Thanks to recent improvements in neural networks learning
representations, it is now possible to use end-to-end driving
approaches that take as input the raw sensor readings to output
control commands, such as steering and throttle, to solve path-
planning and control problems.[145] However, it is challenging to
learn the entirety of the driving task from high-dimensional raw
sensory data (e.g., LiDAR point clouds, camera images) as this
involves learning perception and decision-making at the same
time. In most of the works, the how-to-act learning process
assumes that a scene representation is available to the motion-
planning and decision-making module. This actually requires

splitting the end-to-end driving into two main blocks, one in
which the AV learns how-to-see and one in which it learns
how-to-act.

There are two main approaches to end-to-end self-driving for
planning and control tasks (how-to-act): 1) Imitation Learning:
in which an agent learns to mimic the behaviour of an
expert.[146–148] 2) Deep Reinforcement Learning (DRL): in which
an agent tries to learn how to act in a trial-and-error process that
typically takes place in a simulated environment. DRL methods
will be analysed in greater detail in Section 6.

Imitation learning is a machine-learning paradigm in which
an agent learns to perform tasks by imitating the behaviour of
expert demonstrators, making it a valuable approach for training
autonomous systems and robots. In ref. [147], interactive features
are learned by means of a graph attention network (GAT). The
input to this network consists of surrounding agents’ kinematic
information as well as a feature vector that encodes scene repre-
sentation coming from a Bird’s Eye View. The model is trained
on synthetic data generated by an expert driver in the CARLA
simulator. Imitation learning methods tend to work really well
in scenarios that are similar to the training scenarios but typically
fail when the scenarios diverge from the training distribution.
Algorithms like dataset aggregation (DAgger)[149] can improve
the performances of imitation learning policies by augmenting
the initial training dataset with human-labelled data for unseen
situations. However, asking an expert to label new training sam-
ples can be expensive or unfeasible.

In the context of scene understanding and motion prediction,
deep neural networks have been extensively used.[126] et al.
proposed a social-pooling operation in their neural network

Figure 9. Overview figure of deep learning methods in interaction-aware tasks. a) GCNs can be used for both node-level predictions of surrounding
agents behaviour as well as ego-vehicle motion generation (graph-level output). b) Social-pooling operation. Reproduced with permission.[221] Copyright
2018, IEEE. c) Probabilistic graphical model (as in ref. [222]). d) End-to-end imitation learning network. Reproduced with permission.[223] Copyright 2022,
Springer Nature.
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architecture to account for surrounding neighbours in crowd
motion prediction. Similarly, ref. [150] made use of a star-topol-
ogy network with max-pooling operation to account for interac-
tion features in multi-agent forecasting. CIDNN[127] uses LSTM
to track the movement of each pedestrian in a crowd and assigns a
weight to each pedestrian’s motion feature based on their proximity
to the target pedestrian for location prediction. The study in
ref. [128] created a dataset and proposed a framework called VP-
LSTM to predict the trajectories of vehicles and pedestrians together
in crowded mixed scenes by exploiting different LSTM architec-
tures for heterogeneous agents. A generative adversarial network
(GAN) is applied in ref. [129] to sample plausible predictions for
any agent in the scene. The shared feature of these methods is
the usage of Recurrent Neural Networks that capture spatiotempo-
ral interaction features in conjunction with pooling operations. The
pooling operation allows one to account for surrounding agents by
mixing up the hidden states extracted by the LSTMs. During the
social-pooling operation, the hidden states of surrounding agents
become features that are used to predict the current agent motion.
Diffusion models are another set of deep-learning techniques with
increasing popularity in modeling spatial-temporal trajectories,
which can be used for predicting both pedestrian and car
trajectories.[151]

Graph convolutional networks (GCNs) have been widely used
in trajectory prediction tasks with interacting agents. In these
methods, the road structure is represented as a graph, with each
node representing a traffic participant. Each node can carry infor-
mation such as the traffic participant’s class (car, truck, pedestrian,
etc.), its location, or speed. Explicit interaction can be modelled in
the Adjacency Matrix of the graph, whereas the implicit part con-
sists of the graph convolutional layers. GCNs are widely used in
traffic forecasting,[152–155] and have also been recently used in
motion planning,[156–159] especially in combination with DRL.

Other machine-learning techniques that can be used to model
interactions include Gaussian Processes[160] and probabilistic
graphical models, including Hidden Markov Models.[161,162]

6. Utility-Based Methods

Utility-based agents[163] employ utility functions to guide
decision-making, assigning values to possible world states and
selecting actions leading to the highest utility. In contrast to
goal-based agents, which evaluate states based on goal satisfac-
tion, utility-based agents can handle multiple goals and factor
in probability and action cost. Utility-based methods encompass
Markov decision processes (MDPs) and game theoretic models
which will be analysed in Section 6.1 and 6.2.

6.1. Markov Decision Processes

MDPs are a mathematical framework used to model decision-
making problems where the outcomes are partly random and
partly under the control of a decision-maker. The modeling
framework for MDPs is illustrated in Figure 10. Two main
methods exist to solve MDPs: dynamic programming and
reinforcement-learning.[138] Typically the latter set of methods
are more used in autonomous driving, as they are more suitable
for high-dimensional state spaces (Table 3).

6.1.1. Reinforcement Learning

Reinforcement learning (RL) leverages Markov decision pro-
cesses (MDPs) to model complex environments and comprises
a set of algorithms to learn policies that maximise the expected
reward.[138]

Traditionally, dynamic programming is a reliable approach for
this purpose, iteratively calculating the value of each state, com-
mencing from terminal states and working backwards to the ini-
tial state. This method excels in scenarios with modest state
spaces. However, it can be computationally burdensome when
confronting RL challenges characterized by vast state spaces,
such as the domain of autonomous driving. More commonly, RL
augmented with deep neural networks (DRL) is used. DRL algo-
rithms can be more sample-efficient and scalable than dynamic
programming algorithms, but they can also be more complex
and difficult to train. For a more detailed survey on DRL appli-
cations for autonomous driving, please refer to ref. [143].

DRL solutions in autonomous driving will be classified based
on the scenario used, the state space representation, the action
space, and the algorithm used.

Typical state representations used in DRL include see
Figure 11:

Vector-Based Representation: In this type of representation,
information regarding surrounding vehicles, such as position
and velocity, is included in a vector of fixed length.[164]

Bird’s Eye View (BEV) Image: A 2D image representation of the
environment surrounding the ego-vehicle from a top-down
perspective.[165]

Occupancy Grid Representation: Similar to a BEV image, it is a
2D discrete representation of the environment that surrounds
the ego-vehicle. It is a 2D or 3D grid of cells, each of which is
assigned a probability of being occupied by an obstacle, as well
as segmentation information regarding what type of entity is
occupying the cell.[166,167]

Graph Representation: It is a way of representing the state of the
environment around an AV as a graph. The nodes in the graph
represent objects in the environment, such as vehicles, pedes-
trians, and traffic lights. The edges in the graph represent the
relationships between objects, such as proximity or potential
for collision. Graph representations are compact and efficient

Figure 10. MDP framework. An agent takes an action that affects the envi-
ronment state. The updated environment state is used to take the next
action, and the cycle repeats. The reward function is used to define the
objective of the MDP, which is to maximise the expected cumulative
reward over time.
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and are a promising approach to representing the state of the
environment.[158,159]

Vector-based representation offers a compact and efficient
representation of objects at the expense of limiting traffic infor-
mation to a subset of fixed dimensions of surrounding vehicles.
BEV images and occupancy grids offer a simple way to represent
the environment with fixed and can be easily updated. However,
they can be inaccurate in environments with high clutter or
uncertainty. Graph representation can easily represent the rela-
tionships between agents in a compact way. In contrast, it can be
complex and computationally expensive to update the graph as
the number of surrounding agents increases.

The action space can be continuous or discrete. Continuous
actions usually include the ego vehicle’s longitudinal acceleration
and steering angle.[168] Discrete actions usually depend on the

specific task being solved. For example, in a lane change sce-
nario, discrete actions include left-lane change, keeping the cur-
rent lane, or right-lane change. The lower-level controller
regulates the steering and acceleration of the vehicle to execute
the manoeuvre.[167,169]

Whilst most DRL papers focus on vehicle-only traffic scenes,
the number of papers that deal with mixed traffic scenarios or
with vehicle-pedestrian interaction is more limited. Some works
exist in the mobile robots’ crowd navigation. In ref. [170], DRL is
used to navigate a robot in a crowd in a multi-agent setting. In
ref. [171], the model in ref. [170] is improved by using attention-
based neural networks and social pooling. An autonomous brak-
ing system was developed in ref. [172] with a DQN agent. The
authors implement a trauma memory, which is used to sample
from collision scenarios in a way similar to prioritized experience

Table 3. DRL overview table.

Research Scenario Observation Action Reward DRL Alg Network Simulator

[174] Pedestrian collision
avoidance

Continuous (xp, yp, v) Discrete (break, keep,
change lane)

coll, smooth, succ DQN MLP PreScan

[176] Pedestrian collision
avoidance

Continuous (xp, yp, vp, v) Continuous (a) coll, speed, succ, SVO SAC MLP Custom

[164] Highway navigation Continuous (x, y, v)þ 8
surr. veh.

Discrete (LLC, RLC,
KEEP) or (LLC, RLC,

4 * ACC)

coll, near coll, lc, speed DQN CNN Custom

[172] Pedestrian collision
avoidance

Continuous (xp, yp, v) Discrete (ACC * 4) coll, early break penalty DQN MLP PreScan

[175] Pedestrian collision
avoidance

Grid based
representation

Discrete (ACC * 4) speed, coll, near coll DQN CNNþ LSTM Custom

[169] Intersection Continuous (v, path) þ
4*surr. veh.

Discrete (5 * ACC) coll, near coll, acc, succ D3QN PER MLP SUMO

[168] Dense traffic lane
change

Grid Continuous (jerk, ω) coll, speed, jerk, time PPO CNN Custom

[159] Lane change Graph (prel , vrel , lane
index)

Discrete (LLC, RLC,
KEEP)

speed, lc, coll DQN GCN SUMO

[158] Highway lane
change

Graph (prel , vrel) Continuous (ω, a) coll, goal, vel, acc PPO GCN BARK

[225] Intersection,
Roundabout

k-nearest, (prel , vrel , θ) Discrete distance, coll H-CtRL DDQN MLP Custom

[181] Town navigation Lidar, Camera Continuous (a, δ) coll, speed acc, time,
speed limit, out lane

Proposed CNN CARLA

[171] Crowd-navigation k-nearest (preal , vrel)) Discrete 80 (5 * ACC,
16*angles)

coll, goal, proximity Deep V- learning Social- Attentive Custom

[170] Crowd-navigation k-nearest (prel , vrel , d, r Discrete 11 (angle-speed
comb.)

coll, goal, proximity GA3C- CADRL LSTM Custom

[185] MARL intersection,
Roundabout

All within range – time, speed, coll, front-
car distance

Double DQN Attention Custom

[156] MARL highway
navigation

(prel , vrel , lane, intention) Discrete 3 (LLC, RLC,
keep)

goal, speed, coll., lc Graph Q (Proposed) GCN SUMO

[166] MARL merge Cell grid Discrete (ACC * 5) goal, coll, flow Curriculum MLP Custom

[165] MARL connected AD RGB BEV Image Discrete nine
combinations of (brake,

steer, throttle)

goal, speed, coll, lc IMPALA CNN CARLA

[182] MARL connected AD Graph (s, v, d) Continous (a) speed, action, idle,
proximity, coll

TD3 GCN Highway-env
Open Source
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replay (PER).[173] In ref. [174], a DQN agent is trained to avoid
collisions with a crossing pedestrian and is further used to
develop an ADAS system to aid drivers in pedestrian collision
avoidance scenarios. Deshpande et al.[167,175] used a grid-state
representation with four layers. In a similar scenario, the authors
in ref. [176] developed a SAC agent with continuous actions to be
used. By integrating SVO component in the reward function, the
vehicle can be trained to have different social-compliant behav-
iours, from pro-social behaviours to more aggressive ones.

Deploying deep reinforcement learning (DRL) in real-world
scenarios poses a significant challenge and is an open research
field. Some studies, like ref. [177], implement DRL policies
directly in real-world applications without additional fine-tuning,
showcasing their effectiveness in scenarios like unsignalised
intersections. Transfer learning, a sub-field of deep learning,
is currently being explored to transfer knowledge from the sim-
ulation to the real world. Two main techniques include domain
adaptation and domain randomisation.[178] With domain ran-
domisation, the approach aims to have a sufficiently large train-
ing dataset that encompasses the real world as a specific case.[179]

With domain adaptation,[180] the aim is to learn from a source
distribution a model that performs well on a target distribution.

Another issue related to DRL is that the learning-based strat-
egy has high training costs and makes it difficult to achieve
semantic interpretation. Recently, some researchers have
focused on interpretable learning algorithms and lifelong learn-
ing algorithms to solve the above shortcomings.[181]

6.1.2. Multi-Agent Reinforcement Learning

When multiple RL agents are being deployed into the real world
and interact with each other, the problem becomes Multi-agent
reinforcement learning (MARL). In order to deal with multi-
agent systems, multiple approaches are possible. The first

approach is to have a centralised controller that manages the
entire fleet. By increasing the state dimension to include all
vehicles and having a joint action vector, the problem can again
become a single-agent problem.[182] The drawback is the increased
dimensionality of the state and action spaces, which can make
learning more complex. Recently, graph-based representation
has been employed to overcome the curse of dimensionality of
the problem.[182]

Another approach, which takes inspiration from level-k game
theory, is to have a single DRL learner but replace some of the
surrounding agents with previous copies of itself.[169] This tech-
nique is similar to self-play, which is used in competitive DRL
scenarios.[89] Finally, the last approach is to formulate the
problem with a MARL approach, where multiple learners are
in parallel. A multi-agent deep deterministic policy gradient
(MADDPG) method is proposed in ref. [183], which learns a sep-
arate centralized critic for each agent, allowing each agent to have
different reward functions. See ref. [184] for an extensive review
of MARL. Other applications of MARL in autonomous driving
can be found in refs. [156,165,166,185].

6.1.3. Partially Observable Markov Decision Processes

Partially observable Markov decision processes (POMDPs) are a
generalisation of MDPs. If the process state s cannot be directly
observed by the decision-maker, the MDP is said to be partially
observable. POMDPs are computationally expensive but provide
a general framework that can model a variety of real-world
decision-making processes. POMDP applications for autonomous
driving are becoming increasingly popular thanks to hardware
improvements. In ref. [186], POMDP has been used to navigate
a mobile robot in a crowd. The robot keeps a belief over possible
future goals for pedestrians. POMDPs have also been utilised for
car decision-making in the presence of pedestrians.[187] In a

Figure 11. Illustration of state representations typically used in AD. a) Vector representation, b) grid-based, c) bird’s eye view, d) graph.
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POMDP, the agents surrounding the ego-vehicle are modelled as
part of the environment, and a belief vector is used to model their
intentions. In ref. [185], the authors develop a multi-agent inter-
action-aware decision-making policy with DRL. The problem is
modelled as a POMDP, and the interaction is modelled with
an attention-based neural network mechanism. POMDPs have
also been used to solve decision-making problems under environ-
mental occlusions at intersections.[188] Other applications of
POMDP to interactive decision-making can be found in
refs. [189,190]. Traditional control methods usually deal with sen-
sor uncertainty and planning in a sequential manner, where the
sensor noises and uncertainties are dealt with by a state-estimator,
and then a deterministic policy is used to determine the action
based on the estimated state. POMDPs, in contrast, do not make
such separation, and the policy is determined based on a belief
state. Surrounding agents can be either explicitly modelled as deci-
sion-makers (MARL) or can be treated as part of the environment
in which a single agent operates (RL or DRL).[168,191]

6.2. Game Theoretic Models

Game theory is the study of mathematical models of strategical
interactions between rational agents.[192] Game theory primarily
applies to economics but has also emerged in autonomous driv-
ing. In particular, dynamic non-cooperative game theory is of

particular importance for autonomous driving.[193] Game theory
is dynamic if it involves multiple decisions and the order of such
decisions is important, and it is non-cooperative if each person
involved pursues their own interest, which is partly conflicting
with other people’s interest. The dynamic non-cooperative game
theory comprises both discrete and continuous time games, and
it provides a natural extension of optimal control to multi-agent
settings (Table 4).[192]

Game theory examines equilibrium solutions under optimal
player assumptions, with multiple concepts applicable to trajec-
tory games. Dynamic games classify into open-loop and feedback
games based on available information; open-loop assumes that
the only information available to each player is the initial state
of the game. For feedback games, the information available to
each agent is the current state of the game. Although the second
type of game describes more accurately the AD setting, open-loop
solutions are often preferred for their simplicity. Common equi-
libria in autonomous driving include open-loop Nash, open-loop
Stackelberg, closed-loop Nash, and closed-loop Stackelberg equi-
libria. For more details on the topic see ref. [192].

When the agents’ dynamics have to comply with a set of con-
straints, such as collision-avoidance constraints, the equilibria
are called generalized. Generalized equilibria are studied in
ref. [194]. Numerical solutions to the problems of open-loop
Nash equilibria can be found in refs. [195–197]. The drawback
of the open-loop Nash equilibrium formulation is that the players

Table 4. Game theory models for decision making in various scenarios.

Research Scenario Game Theory Model Agents Action

[226] Lane change Nash equilibrium Up to 4 Both discrete (lane change) and continuous a

[214] Autonomous racing Nash equilibrium 2 Continuous

[204,205] Intersection Nash equilibrium 3 Continuous (ω and a)

[198] Drone racing Nash equilibrium 2 Continuous (ω and v)

[213] Autonomous racing Nash equilibrium 2 Continuous (a and δ)

[206] Autonomous racing Nash equilibrium 2 Continuous (a and δ)

[13] Merging Nash equilibrium, SVO 2 Continuous (a and δ)

[208] Highway, lane change Nash equilibrium, DRL 2 Discrete (a and lane change)

[199] Autonomous racing Nash Eq. and Stackelberg Eq. 2 Discrete trajectories

[193] Highway navigation, intersection Stackelberg Eq. 2 Continuous (a and δ)

[200] Lane change Stackelberg Eq. 3 Both discrete and continuous

[201] Lane change Stackelberg Eq. 2 Discrete (lane change)

[135] Roundabout Stackelberg Eq. 2 Continuous

[210] Truck platooning Hierarchical Stackelberg Eq. 2 Continuous (a and δ)

[227] Lane change Stackelberg Equilibrium 2 Discrete (lane change)

[212] Highway navigation Hierarchical Feedback Stackelberg Eq. 2þ Continuous

[228] Highway navigation, merge Game Tree 2 Discrete

[211] Merge Game Tree 2 Discrete

[215] Highway navigation Generalised Feedback Nash Eq. 2þ Continuous

[136] Left turn Generalized Nash Eq., SVO 2 Continuous (a and δ)

[202] Drone racing Generalized Nash Eq. 6 Continuous (v)

[195] Merge, intersection Generalized Nash Eq. 4 Continuous (a and ω)

[209] Intersection Level-k 2 Continuous (a and ω)

[207] Roundabout Level-k 2 Continuous (a and ω)
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cannot reason directly on how their actions influence the behav-
iour of surrounding agents. A first simplification of this is the
open-loop Stackelberg equilibrium, which has been applied,
for instance, in ref. [198] in the context of drone-autonomous rac-
ing. In a Stackelberg competition, the leader makes the first
move, and subsequent players follow sequentially, allowing those
with higher precedence to consider how those with lower prece-
dence will plan their actions. In ref. [199], the authors propose a
sequential bimatrix game approach to autonomous racing based
on an open-loop Stackelberg game formulation. Other applica-
tions of Stackelberg formulation can be found in refs. [200–202].
A formulation for solving generalized feedback Nash equilibria
can be found in ref. [203]. Other methods can be found in
refs. [204–206]. Sadigh et al.[193] model AV-human interaction
as a partially observable stochastic game in a Stackelberg compe-
tition. The human estimates the AV’s plan and acts accordingly,
while the AV optimizes its own actions, assuming indirect con-
trol over the human’s actions.

Typically, game-theoretic approaches suffer from the follow-
ing problems: 1) the computational complexity grows exponen-
tially in the number of agents and with the increasing temporal
horizon, 2) they assume that the utility function that justifies
other agents’ actions is known to the ego-vehicle and that the
agents act rationally with respect to those reward functions—
however it is a known fact in game-theoretic finances problems
that humans often do not act rationally;[19] 3) the behaviour of the
agents might be stochastic and solving for mixed or behavioural
strategies makes the computations even more intractable.
Naturally, game theory also has the great advantage of capturing
the interdependence of actions and some exact solutions exist for
a restricted number of problems. Many papers in the field of
game-theoretic autonomous driving try to alleviate those issues
by further simplifying the problem or by finding approximate
solutions. Now, a look will be taken at some papers in the field
to analyze their simplifying hypotheses.

Level-k theories break down the Nash-equilibrium rational
expectations logic by assuming people see others as being less
sophisticated than themselves. This is level-k reasoning, in which
the iteration process is stopped after k steps. Other agents are
modelled as level k-1 actors. A level-k agent assumes that all
the other agents are level-(k-1), makes predictions based on
this assumption, and responds accordingly. In ref. [207],
level-k reasoning is applied to a roundabout scenario. This
approach has also been incorporated in an RL framework in
ref. [208]: the authors restrict the problem to two interacting
agents and solve the Markov game with two vehicles with a
DQN RL-based approach. In ref. [209], level-k reasoning is
adopted to resolve conflicts at intersections. The authors
showed that conflicts can be resolved easily in the case when
the ego-vehicle is a level-k agent and all surrounding vehicles
are level-k-1 or inferior. However, the number of collisions
increases when both agents are of the same level, which indi-
cates that further improvements need to be added to tackle sce-
narios with agents of the same kind, which would be crucial in
the case of multiple AVs.

In order to keep computational complexity tractable, the num-
ber of agents can be reduced by identifying a subset of all agents
that interact with the ego-vehicle.[210,211] The time horizon can
also be limited by considering a receding horizon controller

or by implying hierarchical game-theoretic planning. The latter
consists of having a short-horizon tactical planner in combina-
tion with a long-horizon strategic planner. The first one is
responsible for accurate dynamics modeling of the problem,
and the second one is responsible for deciding the strategy with
approximate dynamics. Examples of this approach can be found
in refs. [210,212].

Iterative linear-quadratic (LQ) methods are increasingly
common in robotics and control communities. The authors
of ref. [204] formulate the problem as a general-sum differential
game characterized by nonlinear system dynamics. In ref. [205]
extend their methods to systems with feedback-linearizable
dynamics.

Another method to solve game theoretic problems is to use itera-
tive best response to calculate pure Nash equilibria, i.e., Nash equi-
libria in pure strategies. The authors of ref. [202] propose a
“sensitivity enhanced” iterative best response solver. In ref. [213]
an online game-theoretic trajectory planner based on the IBR is pre-
sented. The planner is suitable for online planning and exhibits com-
plex behaviours in competitive racing scenarios. Williams et al.[214]

propose an IBR algorithm together with an information-theoretic
planner for controlling two ground vehicles in close proximity.

In ref. [13], Schwarting et al. propose an alternative method to
the iterative best response to solve the Nash equilibrium problem
based on a reformulation of the optimisation problem as a local
single-level optimisation using the Karush–Kuhn–Tucker condi-
tions. In ref. [136], game theory is used to model other vehicles’
decision-making. They propose a parallel-game interaction
model (PGIM) to serve active and socially compliant driving
interactions. To address uncertainty in the environment,[206]

extend the game theoretic Nash equilibrium concept to
POMDPs. In ref. [215] the authors take uncertainty about the
intention of other agents by constructing multiple hypotheses
about the objectives and constraints of other agents in the scene.

7. Discussion and Future Challenges

In this comprehensive review, two critical sections central to the
advancement of autonomous driving were introduced: Human
Behaviour Studies and Interaction Modeling. These sections
form the base for understanding and optimizing the intricate
dynamics of interactions within autonomous driving scenarios.
In this Section, challenges and research directions are highlighted
for future AV research in interaction scenarios.

7.1. Human Behaviour Studies

Driven by society’s strong desire for autonomous driving, human
behaviour research has once again become a hot topic in recent
years, especially research in AV contexts. In order to better
understand pedestrian behaviour during AV interactions, many
challenges still need to be overcome.

In general, the exploration of driver behavioural models holds
promise as a research area with the potential to bring about sub-
stantial enhancements in the safety and efficiency of transporta-
tion systems. Nevertheless, there is a substantial amount of work
yet to be undertaken in the development and validation of these
models. Future research should prioritise the creation of more
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holistic models that encompass a broader spectrum of factors,
including the driver’s psychological state, the surrounding envi-
ronment, and interactions with other human participants on the
road.

For pedestrian behaviour studies, one critical challenge is
communication. Firstly, although most researchers agree on
the effectiveness of eHMIs, a consensus is still lacking regarding
their contents, forms, and perspectives.[216] An open question
persists regarding whether eHMIs should be anthropomorphic
or non-anthropomorphic. A similar question arises for textual
and non-textual eHMIs. Furthermore, given the presence of mul-
tiple pedestrians on the road, the current eHMIs are primarily
designed for one-to-one encounters, which may mislead other
pedestrians.[217] Numerous comparable problems persist, which
impede the standardisation of the eHMI. In contrast, since
implicit signals, such as vehicle kinematics, are widely accepted,
pervasive, common, and reliable communication methods, their
critical roles cannot be ignored.[218] Although researchers have
made initial attempts to influence pedestrians by manipulating
implicit signals, such as vehicle deceleration rate, lateral distance,
and pitch, these efforts are insufficient to ensure safe and effi-
cient communication.[35,219,220] These communication methods
lack relevant theoretical support to demonstrate the accurate and
effective delivery of communication information. Additionally,
there is a dearth of reliable research paradigms to guide the
research methodology, including vehicle driving behaviour
design, subjective and objective experimental design, and more.
Additionally, how to combine eHMI and implicit signals efficiently
and smoothly to take advantage of both parties is also an interesting
research direction.

Another challenge is pedestrian behaviour studies. Pedestrian
decision-making and behavioural patterns are influenced by the
diversity of interaction situations, traffic environments, and par-
ticipants. However, these aspects currently lack sufficient
research attention. Existing studies often focus on specific and
simple interaction scenarios to control variables or simplify
research complexity. However, real-life situations involve a pleth-
ora of complex scenarios, including crossings at multi-lane, two-
way, or unstructured roads, crossings facing dense continuous
traffic flow, multi-pedestrian crossing scenarios, and more.
Moreover, pedestrian heterogeneity, such as gender, age, distrac-
tion, and group effects, also plays a significant role in interac-
tions. It is noteworthy that many influential factors, such as
waiting time and distraction, still lack a consensus. Accordingly,
due to the dearth of sufficient and reliable results, research conclu-
sions mostly rely on assumptions, highlighting the inadequacy of
understanding the underlying mechanisms of pedestrian road
behaviour.

Regarding pedestrian behaviour modeling, learning-based
methods have been appealing in recent years. The end-to-end
deep neural networks can effectively capture complex behaviou-
ral mechanisms and have made considerable progress in the
field of pedestrian intention prediction and trajectory prediction.
However, its black-box nature cannot be ignored. These
approaches require a significant amount of data to achieve robust
performance, which limits their scalability to sporadic cases with
insufficient data. Additionally, the black-box models have diffi-
culties in explaining their decision-making and behaviour logic,
which brings new problems to modelling. In contrast, expert

models, such as the Social Force models, evidence accumulation
models, or game theoretical models, have solid psychological and
behavioural foundations, and their behavioural decision-making
logic is clear and interpretable. However, most of these models
have only been validated on limited datasets or are still in the
stage of laboratory validation, lacking extensive engineering prac-
tice. Hence, the theories of expert models need to be further
refined and extensively verified on a large number of real datasets
in the future. In addition, expert models and data-driven models
have advantages in different aspects. A possible future trend is to
find a balance point where the two models are used together.

Finally, considering that only a small fraction of the overall
literature on autonomous driving explicitly considers the behav-
iour of pedestrians, there is a need to increase the application of
pedestrian behaviour models, potentially including but not lim-
ited to pedestrian behaviour prediction, AV behaviour design,
and virtual AV validation.

7.2. Interaction Modeling

As autonomous driving technology continues to evolve, research in
interaction modeling will play a critical role in addressing chal-
lenges and driving the development of safer andmore reliable AVs.

One prominent approach that has garnered attention in auton-
omous driving research is the use of learning-based methods.
These methods offer the appeal of end-to-end solutions,[5]

directly mapping sensory inputs and destination knowledge into
the ego vehicle’s actions. However, such systems can behave like
a black-box, leading to issues with interpretability in case of faults
and the validation of their models. Furthermore, the enormity of
the task, i.e., learning the entire driving process, poses a signifi-
cant challenge. Hence, current research endeavours are breaking
this down into sub-tasks, including route planning, perception,
motion planning, and control and utilising learning-based meth-
ods to address these partial challenges.

The advantage of learning interactive behaviours through imi-
tation learning or simulation in Deep reinforcement learning
(DRL) approaches is also gaining momentum. Nevertheless,
challenges persist. Most decision-making with Deep learning
assumes ideal road scenarios and a perfect perception of the sur-
rounding environment. Yet, real-world conditions often involve
occlusions, sensor noise, and environmental anomalies.
Maintaining system performance in these sporadic events and
handling partial or noisy information is an ongoing research
challenge. Uncertainty seeps in from unpredictable behaviours
in surrounding traffic participants, as well as sensor noise and
vehicle models. Furthermore, models trained in simulated envi-
ronments (like DRL models) raise the question of how to bridge
the gap between simulation and reality. Several strategies have
been proposed, including making simulations more realistic,
domain randomisation, and domain adaptation.[179] These
approaches aim to prepare models for the unpredictability and
complexity of the real world, ensuring that what they’ve learned
in simulation can be applied effectively on the road.

An alternative approach to learning-based methods is model-
based methods. This set of methods includes game theoretic
models, behavioural models (which have been discussed in
the previous Section), social forces and potential fields.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300575 2300575 (18 of 23) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Game theory offers versatility and adaptability and can effec-
tively handle various scenarios without relying on specific data
distributions. One of its key advantages is the ability to address
planning and prediction for agents in a given situation. However,
there’s a trade-off in terms of computation. As the number of
agents and the time horizon grow, the computational burden
increases. Researchers have put forth several strategies to
enhance game-theoretic solutions, including hierarchical game-
theoretic formulations,[212] limiting the optimisation problem
for surrounding agents to approximate solutions,[193] level-k
game theory,[207] or improving nonlinear optimisation solvers’
performances.[195,204,205]

In contrast, Social Force or Potential Field methods offer a
fast-computing solution. They can be used to predict surround-
ing agents’ behaviour but also for ego-vehicle control. SFMs rely
on simplified assumptions about human behaviour. They often
treat pedestrians as particles or agents with fixed characteristics,
neglecting the cognitive aspects of human decision-making,
which can lead to unrealistic representations of complex and
dynamic human behaviours. Future research directions for these
methods include incorporating cognitive elements or contextual
information, such as road rules and traffic signals. Exploring the
integration of machine-learning techniques to improve the adapt-
ability and predictive power of SFMs can also be a possible future
research direction.

The research predominantly concentrates on vehicle–vehicle
interactions, which undoubtedly play a crucial role in autono-
mous driving. However, there is a pressing need to develop
methods that address interactions with human road users, par-
ticularly pedestrians. As the realm of autonomous driving con-
tinues to evolve, the elucidation of theories and models that
govern communication and interaction with diverse road users
takes on an increasingly technical relevance, promising to propel
safety and efficiency within autonomous driving scenarios.
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