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Abstract

Objectives: Determine the incremental diagnostic yield of prenatal exome

sequencing (pES) over chromosome microarray (CMA) or G‐banding karyotype in

fetuses with central nervous system (CNS) abnormalities.

Methods: Data were collected via electronic searches from January 2010 to April

2022 in MEDLINE, Cochrane, Web of Science and EMBASE. The NHS England

prenatal exome cohort was also included. Incremental yield was calculated as a

pooled value using a random‐effects model.

Results: Thirty studies were included (n = 1583 cases). The incremental yield with

pES for any CNS anomaly was 32% [95%CI 27%–36%; I2 = 72%]. Subgroup analysis

revealed apparent incremental yields in; (a) isolated CNS anomalies; 27% [95%CI

19%–34%; I2 = 74%]; (b) single CNS anomaly; 16% [95% CI 10%–23%; I2 = 41%]; (c)

more than one CNS anomaly; 31% [95% Cl 21%–40%; I2 = 56%]; and (d) the

anatomical subtype with the most optimal yield was Type 1 malformation of cortical

development, related to abnormal cell proliferation or apoptosis, incorporating mi-

crocephalies, megalencephalies and dysplasia; 40% (22%–57%; I2 = 68%). The

commonest syndromes in isolated cases were Lissencephaly 3 and X‐linked

hydrocephalus.

Conclusions: Prenatal exome sequencing provides a high incremental diagnostic

yield in fetuses with CNS abnormalities with optimal yields in cases with multiple

CNS anomalies, particularly those affecting the midline, posterior fossa and cortex.

key points

What is already known about this topic?

� Prenatal next‐generation sequencing increases the incremental diagnostic yield in fetuses

with sonographic structural abnormalities and a normal G‐banding karyotype and/or

chromosome microarray.

� Published diagnostic yields specific to central nervous system abnormalities are variable,

highlighting the need for a systematic review.

What does this study add?

� This is the first systematic review and meta‐analysis of the literature available to date in this

area with sub‐classification by a pediatric neuroradiologist

� A subgroup analysis provides the incremental diagnostic yield for specific anatomical CNS

anomalies

1 | INTRODUCTION

Congenital structural anomalies affect 2.2% of births, many of which

have an underlying genetic etiology.1 Anomalies affecting the fetal

central nervous system (CNS) contribute substantially to this figure,

occurring in 0.26%–0.31% of all births and 3%–6% of stillbirths.2,3

CNS anomalies pose a specific challenge related to the need for deep

phenotyping using additional imaging modalities such as fetal mag-

netic resonance imaging (MRI), assessment of the phenotypic evo-

lution as pregnancy progresses and ambiguity related to counseling

regarding long‐term outcomes.4 Obtaining a unifying genetic

diagnosis can prove invaluable to women and practitioners in guiding

pregnancy management, treatment, delivery plans and postnatal

management, enabling prognostication and providing information on

the index and subsequent pregnancies.5

Conventional genetic testing, namely G‐banding karyotype and

chromosome microarray analysis (CMA), are limited to identifying

aneuploidy, structural aberrations and copy number variation (CNV),

yielding a unifying diagnosis in one‐fifth of fetal CNS anomalies.6–8

Identification of pathogenic single gene variants using next‐
generation sequencing (NGS) technologies, namely prenatal exome

sequencing (pES) has been demonstrated to increase this yield.9,10
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The NHS England pES pathway recommends the provision of trio

pES in instances of major CNS anomaly, excluding neural tube de-

fects; however, what should be included within this major category

has not yet been specified.11 Hence, the objectives of this prospective

study, systematic review and meta‐analysis are to determine the

incremental yield of pES over and above karyotype and/or CMA for;

(i) isolated or multisystem, (ii) single and multiple CNS anomalies ,

and (iii) CNS anomalies based on anatomical subtype as classified by a

pediatric neuroradiologist.

2 | METHODS

2.1 | Protocol and registration

We developed a review protocol aligned to the recommended

methods for systematic review and PRISMA guidance, which was

prospectively registered with the PROSPERO international system-

atic review database (PROSPERO No. CRD42022328851 registra-

tion 04.05.22).12–14

2.2 | Eligibility criteria

Inclusion criteria detailed any retrospective or prospective studies

which: (i) included 10 or more pregnancies with a prenatal diagnosis

of any CNS anomaly based upon ultrasound with or without fetal

MRI; (ii) which underwent NGS (whole, clinical, targeted ES or

whole genome sequencing (WGS)); (iii) in which CMA and/or kar-

yotype was non‐diagnostic; (iv) in which NGS was initiated based

upon prenatal phenotype only; and (v) results of genetic testing

were known. Where adequate information was not obtainable from

the manuscript the corresponding author was contacted and data

were requested. In addition to the search, prospectively collected

data from the NHS England pES pathway, commencing October

2021 to February 2023, where pES was performed in instances of a

‘major’ CNS phenotype (excluding neural tube defects) were

included. The methodology of this pathway has been described

previously and data used here was collected as part of a registered

audit.11

If NGS was initiated postnatally, studies were included only if

testing was based solely on prenatal phenotype. Conference ab-

stracts, case series and case reports were also subjected to eligibility

criteria assessment. In studies that were not specific to CNS anom-

alies but detailed such cases, the data was extracted either from the

paper or following author correspondence and data sharing. Where

available, extended datasets were included. Variants were deemed

diagnostic if they were causative of the phenotype and classified as

class IV (likely pathogenic) or V (pathogenic) according to the

American College of Medical Genetics and Genomics (AMCG) or the

Association for Clinical Genomic Science (ACGS).15 Class III variants

of uncertain significance (VUS) and incidental findings (IFs) were also

recorded.

2.3 | Information sources and search strategy

Databases including MEDLINE, Web of Science, Cochrane Library and

EMBASE were electronically searched for relevant citations from 1st

January 2010 (inception of pES) to first May 2022. The search strategy

consisted of relevant Medical Subject Headings (MeSH) terms, key-

words and word variants for ‘prenatal’, ‘exome sequencing’, and ‘ab-

normality’ were used with alternative terms encompassing ‘fetus’,

fetal’, ‘prenatal diagnosis’, ‘antenatal’, ‘whole exome sequencing’,

‘exome’, ‘whole genome sequencing’, ‘genome human’, ‘sequence

analysis, DNA’, ‘anomaly’ and ‘defect’. All study abstracts, were

reviewed and full manuscripts were subsequently retrieved for further

analysis if they met inclusion criteria. Manuscripts were excluded

if they were duplicates; did not meet the inclusion criteria; or if

there was inadequate phenotypic information of positive and/or

negative cases. In the latter scenario, the corresponding authors

were contacted and the study included if further information was

available.

2.4 | Data extraction and assessment of risk of bias

Data on study characteristics and outcomes were independently

extracted from each study by two reviewers (G.V.B, and P.A.J.) and any

conflicts were resolved by a senior reviewer (F.M.). Categories

included prenatal phenotype based on ultrasound and when available,

fetal MRI; gestation at testing; the source of DNA; sequencing

approach; variants reported including gene, clinical syndrome; inher-

itance pattern; turnaround time; pregnancy outcome; and type of

initial non‐diagnostic genetic testing (karyotype or CMA). The cate-

gorisation of neurological abnormalities and/or disruptions was

reviewed and verified by a pediatric neuroradiologist (E.L.). Study

characteristics and outcome data were logged under a generated case

number and categorized as isolated and non‐isolated and under cat-

egories including (1) developmental for example, neural tube defects,

(2) posterior fossa anomalies for example, Dandy‐Walker variants and

Chiari II malformations, (3) ventricular, (4) midline for example, hol-

oprosencephaly, agenesis of corpus callosum, (5) malformations of

cortical development; A. Abnormal cell proliferation or apoptosis

for example, microcephaly, megalencephaly, dysplasia; B. Abnormal

cell migration for example, heterotopia, lissencephaly (heterotopia/

cobblestone), schizencephaly, C. Abnormal post‐migrational devel-

opment for example, polymicrogyria or D. Miscellaneous—

porencephaly, tumors, intracranial haemorrhage.17,18

Quality assessment of the included studies was performed using

modified Standards for Reporting of Diagnostic Accuracy (STARD)

criteria.16
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2.5 | Data synthesis

The primary outcome of interest was the incremental yield of pES

over CMA/karyotype expressed as a risk difference. This was esti-

mated by pooling risk differences from each included study using

a random effects model, using a previously published method

with adjustment for ‘zero’ values from negative karyotype/CMA

testing.19–21 Results were displayed as forest plots with corre-

sponding 95% confidence intervals (CIs) and pooled for all studies in

a meta‐analysis using a random effects model. Both the overall yield

and yield for isolated CNS anomalies were calculated. A subgroup

analysis for the key neurological categories with greater than or

equal to n = 5 cases previously listed were used to investigate the

effect on incremental yield of pre‐test case selection for higher

likelihood of monogenic disease. Between‐study heterogeneity was

assessed graphically within the forest plot and statistically using

‘Higgins’ I2. Publication bias was assessed graphically using funnel

plots. Statistical analysis was performed using RevMan version 5.3.4

(Review Manager®, The Cochrane Collaboration, Copenhagen,

Denmark) statistical software.

3 | RESULTS

3.1 | Study selection and characteristics

The study selection process is demonstrated in the PRISMA flow di-

agram (Figure 1). Thirty studies fulfilled the eligibility criteria and were

suitable for meta‐analysis (1583 cases).4,7,9,10,22–47 This included data

from the NHS England prenatal exome sequencing pathway.39 For

studies that met the inclusion criteria but provided inadequate

phenotypic information, corresponding authors were contacted to

request further data (n = 57) of which 15 (26.3%) responded. Eleven

studies provided extended data sets.4,9,10,27,29,37,40,43,46–48 Supple-

mentary Table 1 highlights the characteristics of the included studies

and Figure 2 shows the overall quality assessment.

3.2 | Synthesis of results

Twenty‐three studies were included in the sub‐analysis (1264 cases).

All cases underwent G‐banding karyotype or CMA prior to pES with

F I GUR E 1 PRISMA flow diagram (*Authors contacted for further information **Includes unpublished audit of NHS England cases).

4 - BLAYNEY ET AL.
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52% having both. The median maternal age at testing was 31 years

(range 19–49). Ethnicity was known in 21% (n = 265) of cases, of

which 64% (n = 170) were Caucasian. The source of fetal DNA was

specified in 41% (n = 516) of cases, of which the majority, 53%

(n = 274), was from amniocentesis. In the cases that documented

turnaround time for prenatal sequencing (n = 755) the median time

was 34 days (range 6–1001 days). Pregnancy outcome was known in

63% (n = 792) of cases, of which 65% (n = 513) ended in the

termination of pregnancy. Multi‐system abnormalities (CNS plus at

least one other system) occurred in 50% (n = 627/1264) of cases.

Most frequent extra‐CNS anomalies included those affecting the

extremities (30%), heart (29%) or face (28%). A single CNS abnor-

mality occurred in 57% (n = 717) of cases, with the remainder

(n = 547) classified as multiple/complex CNS abnormalities. Only four

(27.5%) studies and the NHS England pES series clearly documented

whether fetal MRI was used as an additional imaging modality, hence

sub‐analysis of this group was not possible.

3.3 | Systematic review of pathogenic variants

In total 454 cases were identified as having a causative pathogenic or

likely pathogenic (P/LP) variant with pES with an incremental yield of

32% (95% Cl 27–36; I2 = 72%) for any CNS anomaly; 35% (95% Cl 27–

44; I2 = 77%) for cases of CNS anomaly as part of a multisystem

anomaly; 27% (95% Cl 19–34; I2 = 74%) for isolated CNS anomaly

(Table 1 and Supplementary Figures 1‐5). Incremental yields for a

single isolated CNS anomaly of 16% (95% Cl 10–23; I2 = 41%) and a

multiple isolated CNS anomaly of 31% (95% Cl 21–40; I2 = 56%) are

also recorded. Incremental yields from the sub‐analysis for specific

phenotypes are demonstrated in Table 2 with most optimal yields for

anomalies of the posterior fossa; 36% [95% Cl 28–43, I2 = 50%], the

midline; 35% [95% Cl 27–44, I2 = 77%] and the cortex; 35% [95% Cl

26–44, I2 = 32%], with the greatest yield in those with Type 1 mal-

formations of cortical development, related to abnormal cell prolif-

eration or apoptosis incorporating microcephaly, megalencephaly and

dysplasia; 40% (22%–57%; I2 = 68%) (Supplementary Figures 6‐10).

A list of clinical syndromes caused by Class IV or V causative

variants included within the final meta‐analysis is outlined in Tables 1

and 2. Where documented, the most common genetic syndromes in

isolated CNS anomalies were Lissencephaly 3 (TUBA1A), Coffin‐Siris

syndrome (ARID1A/B) and congenital X‐linked hydrocephalus

(L1CAM). In cases in which the inheritance pattern was clearly

documented (n = 159); (i) 102 (64.2%) were autosomal dominant, (ii)

34 (21.4%) were autosomal recessive, and (iii) 23 (14.4%) were X‐
linked. Women with causative class IV and V variants identified on

pES were more likely to terminate their pregnancy (70%; n = 181/

259 of known outcomes) than those in which a causative variant was

not identified (61.6%; n = 332/539 of known outcomes) p = 0.02. The

pooled incremental yield for VUS was 4% (95% CI, 2–6; I2 = 57%)

with the number of incidental findings reported too small to derive a

pooled value.

F I GUR E 2 Quality assessment of 29 studies included in systematic review, using modified Standards for Reporting of Diagnostic Accuracy
criteria (ACMG, American College of Medical Genetics and Genomics; ES, exome sequencing).
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TAB L E 1 The incremental yield of prenatal exome sequencing over chromosome microarray and/or G‐banding karyotype in prenatally
identified CNS anomalies.

CNS anomaly
Incremental yield
(%) [95% CI] Most common affected genes Corresponding syndromes

VUS (%)
[95% CI]

All CNS anomalies 32% [27%–36%]

I2 = 72%

TUBA1A 4% (n = 15/375)a Lissencephaly 3 4% [2%–6%]

I2 = 57%
ARID1A/B 3.2% (n = 12/375) Coffin‐Siris

TUBB 2.7% (n = 10/375) Cortical dysplasia, complex, with other

brain malformations

CEP290 2.7% (n = 10/375) Joubert or Meckel

Cases of CNS anomaly with

multisystem anomaly

35% [27%–44%]

I2 = 77%

CC2D2A or CEP290 or TCTN2 or

TMEM 10% (n = 22/222)
Joubert or Meckel 5% [2%–8%]

I2 = 43%

BRAF or PTPN11 5% (n = 11/222) Noonan

ARID1A/B 3.2% (n = 7/222) Coffin‐Siris

Cases of isolated CNS anomaly 27% [19%–34%]

I2 = 74%

TUBA1A 10.1% (N = 14/139) Lissencephaly 3 3% [1%–4%]

I2 = 0%
ARID1A/B 3.6% (N = 5/139) Coffin Siris

L1CAM 4.3% (N = 6/139) Hydrocephalus, congenital, X‐linked

Abbreviations: CNS, central nervous system; VUS, variant of uncertain significance.
aDenominator is where a pathogenic variant genotype was recorded.

TAB L E 2 The incremental yield of prenatal exome sequencing over chromosome microarray and/or G‐banding karyotype in prenatally
identified CNS anomalies according to sub‐analysis for specific phenotypes.

CNS anomaly

Incremental yield (%)

[95% Cl] Most common affected genes Corresponding syndromes

Developmental 19% [7%–31%]

I2 = 38%

CC2D2A 21.1% (n = 4/19)a CEP290
21.1% (n = 4/19)

Joubert or Meckel

Ventricular 32% [25%–40%]

I2 = 68%

TUBA1A 4.4% (n = 7/158) Lissencephaly 3

ARID1A/B 3.8% (n = 6/158) Coffin‐Siris

POMT1/2 3.8% (n = 6/158) Muscular dystrophy‐dystroglycanopathy

(congenital with brain and eye anomalies)

Mild VM 20% [4%–36%]

I2 = 60%

N/S

Moderate VM 22% [5%–39%]

I2 = 49%

N/S

Severe VM 20% [13%–27%]

I2 = 0%

L1CAM 20% (n = 2/10) Hydrocephalus, congenital, X‐linked

Posterior fossa 36% [28%–43%]

I2 = 50%

CEP290 or TMEM67/138 11.9%

(n = 16/135)

Joubert or Meckel

TUBA1A 8.1% (n = 11/135) Lissencephaly 3

CHD7 4.4% (n = 6/135) CHARGE

Midline 35% [27%–44%]

I2 = 77%

TUBA1A 6.8% (n = 11/161) Lissencephaly 3

TUBB 5.6% (n = 9/161) Cortical dysplasia, complex, with other brain

malformations

ARID1A/B 4.3% (n = 7/161) Coffin‐Siris

Absent corpus callosum 36% [28%–44%]

I2 = 46%

TUBA1A 7.5% (n = 8/107) Lissencephaly 3

ARID1A/B 6.5% (n = 7/107) Coffin‐Siris

TUBB 4.7% (n = 5/107) Cortical dysplasia, complex, with other brain

malformations
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4 | DISCUSSION

We report a systemic review and meta‐analysis assessing the incre-

mental yield of pES over standard genomic testing strategies for fe-

tuses with isolated CNS anomalies with an overall incremental

diagnostic yield of 27%. Unlike previous studies, we have categorised

cases as isolated single CNS anomaly, multiple CNS anomalies and

CNS with multisystem anomalies, thereby allowing us to review spe-

cific CNS anomaly sub‐categories. For isolated CNS anomalies, the

commonest syndromes and causative genes were Lissencephaly 3

(TUBA1A), Coffin‐Siris syndrome (ARID1A/B), both having an auto-

somal dominant inheritance pattern, and congenital X‐linked hydro-

cephalus (L1CAM).

Previous studies report variable diagnostic rates of pES in fetal

CNS abnormalities ranging from 13% to 71%.9,25,31,35,44,48,49 A recent

systematic review by Mellis et al. reported an incremental yield of

17% (95% Cl, 12%–22%).21 Variation in yield may be due to differ-

ences in sample size or depth of fetal phenotyping. Notably, our

research details a large dataset with high diagnostic rates. This may

be due to the selected nature of cases, strict review inclusion criteria

and the majority of cases adopting a trio exome approach.

The incremental yield increases when there is more than one

CNS anomaly. However, we demonstrate an apparent incremental

yield even in less severe single CNS anomalies such as isolated mild

ventriculomegaly. We report a 20% incremental yield with isolated

severe ventriculomegaly, which is lower than a recent systematic

review by Mustafa et al., who reported a yield of 35% although our

incremental yield with isolated ACC (36%) was similar to that of a

further study (30%) by the same group.50,51 Of note, these reviews

included fewer case numbers and studies with >3 cases compared to

our limitation of including >10 cases in an attempt to minimise se-

lection bias. Furthermore, the definition of CNS anomalies ideally

requires fetal MRI or advanced neurosonography as many CNS

anomalies are not readily detectable by ultrasound alone. Thus, cases

of mild ventriculomegaly and ACC, for example, may have underlying

cortical abnormalities only detectable by MRI, thus inflating the

“isolated” CNS anomaly category.

This systematic review reports Joubert syndrome, Meckel syn-

drome, Noonan syndrome, Lissencephaly and Coffin‐Siris syndrome

as the commonest syndromes identified when a causative pathogenic

variant was recorded with any CNS anomaly. The most common

genes included CEP290, TUBA1A, L1CAM and ARID1A. ARID1A,

L1CAM and CEP290 were all reported by Mustafa et al., in cases of

bilateral severe ventriculomegaly, both isolated and with extracranial

anomalies or other brain malformations.50 TUBA1A and L1CAM were

also the genes with the overall highest frequency in cases of ACC.51

Of note, many of the syndromes identified, which would typically

present prenatally with a multisystem phenotype, were reported as

an isolated CNS anomaly in 42% (n = 5) of Coffin‐Siris Syndrome;

33% (n = 9) of Joubert or Meckel Syndrome and 15% (n = 2) of

Noonan's Syndrome. This demonstrates the incomplete prenatal

phenotyping, or poor reporting, offered from prenatal imaging and

highlights the need for a low threshold to perform pES in cases of

apparently isolated CNS anomaly.

It is important to highlight that the natural history of many

neurological condition abnormalities is such that changes may not be

detected until later in gestation. In this review, 200 cases (16%) were

identified after 24 weeks of gestation and 106 (8%) after 30 weeks.

This indicates the evolving nature of a CNS phenotype as pregnancy

progresses and the need for deep phenotyping. Within the limitations

T A B L E 2 (Continued)

CNS anomaly

Incremental yield (%)

[95% Cl] Most common affected genes Corresponding syndromes

Holoprosencephaly 34% [15%–53%]

I2 = 28%

SHH 38.5% (n = 5/13) Holoprosencephaly 3

Malformation of cortical

development

35% [26%–44%]

I2 = 55%

TUBA1A 9.8% (n = 9/92) Lissencephaly 3

TUBB 6.5% (n = 6/92) Cortical dysplasia, complex, with other brain

malformations

Type 1 cortical 40% [22%–57%]

I2 = 68%

COL4A1 7.9% (n = 3/38) Microangiopathy and leukoencephalopathy, pontine,

autosomal dominant

(Abnormal cell proliferation

and apoptosis)

Type 2 cortical 31% [15%–49%]

I2 = 63%

TUBB 15.4% (N = 4/26) Cortical dysplasia, complex, with other brain

malformations

(Abnormal cell migration) TUBA1A 11.5% (N = 3/26) Lissencephaly 3

Type 3 cortical 32% [21%–44%]

I2 = 4%

TUBB 13% (N = 3/23) Cortical dysplasia, complex, with other brain

malformations

(Abnormal post‐migrational

development)

TUBA1A 8.7% (N = 2/23) Lissencephaly 3

Abbreviations: CNS, central nervous system; N/S, not specified; VM, ventriculomegaly; VUS, variant of uncertain significance.
aDenominator is where a pathogenic variant genotype was recorded.
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of reporting, advanced neurosonography was not specifically re-

ported and fetal MRI was documented only as having been

performed in under a third of cases, which is likely a significant

under‐representation.52,53 Interestingly, Type 1 cortical anomalies

demonstrated the greatest yield, highlighting the importance of

investigating a primary or secondary microcephaly (defined prena-

tally as a head circumference (HC) more than 3 standard deviations

(SDs) below the mean for gestational age) which may only manifest in

the third trimester and the challenges regarding megalencephaly (HC

more than 2SDs above the mean for gestational age) which rarely

present prenatally but have a strong association with genes within

the P13L‐AKT‐mTOR pathway and often lead to developmental

delay, intellectual disability and early onset seizures.54 It is important

to consider that the cause may also be benign/familial in nature

hence it is always useful to measure the parental occipital frontal

circumference.55 Furthermore, whilst prenatal diagnosis may not

guide management in the index pregnancy in cases of serious CNS

abnormality, such as Lissencephaly or small cerebellum, it can be

extremely useful for guiding future pregnancies.

Key strengths of this study include the global‐scale contribution

depicted through the included studies which have contributed to this

large‐scale review of over 1500 cases of fetal CNS anomaly and the

subsequent classification of the CNS phenotype by a neuroradiolo-

gist. Limitations include the fact that the phenotype was limited to

what was provided by the authors and the phenotypic information

detailed within the included studies, including the lack of fetal MRI

results. Additionally, heterogeneity was high although we attempted

to minimise this by applying a random effects model and sub‐analysis

limited to studies with n ≥ 5 cases.

5 | CONCLUSION

The findings of this review reveal a high incremental yield for fetal

CNS anomalies with pES over and above standard genomic testing

strategies, most notably where there are multiple CNS anomalies,

particularly those affecting the midline, posterior fossa and cortex.

Prenatal exome sequencing in CNS anomalies can assist with pre-

natal genetic counseling, providing parents with more information on

prognosis and inheritance and assisting clinicians in developing tar-

geted management plans. Although one should always strive to

obtain a deep phenotype, pES can facilitate in establishing a diagnosis

where this is not feasible or where the CNS phenotype appears mild.
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