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A B S T R A C T

Effective bridge structural health monitoring systems offer a route to assist in the safe and
economic operation of bridges, but have seen limited adoption onto the short and medium-span
bridges which represent the majority of our bridge stock. This lack of adoption is in part due to
the practical challenges of deploying bridge SHM systems in resource-constrained environments,
especially where long-term monitoring at transport network-scales is considered. This paper
tackles the problem of implementing an effective sampling method to facilitate long-term, bridge
rotation-based damage detection, particularly within the confines of a resource-constrained
setting. We demonstrate that leveraging readily available expected traffic-volume information
enables the creation of more effective bridge SHM sampling methods by capturing more vehicle
crossings in the same time. Furthermore, we introduce an empirically tuned, temperature-
capable bridge finite-element model for long-term simulations, incorporating a stochastic vehicle
arrival model and a feature error model to allow for the presence of any residual noise/dynamics
due to imperfect filtering or inaccuracies in the feature extraction stages. This allowed us to
simulate 60 years worth of bridge rotation monitoring data with varying damage severities
to evaluate the impact of environmental and operational variations on our proposed expected
traffic volume based sampling methods. Our results show that sampling only the peak traffic
hours was the most effective for the same reduced ‘on‘ time, i.e. for an 8x reduction in ‘on‘ time
only a 1.5x increase in the minimum detectable damage was observed versus a 2x increase for
naive random sampling.

. Introduction

Bridge design working lifespans are typically 100 years or more [1], thus making long-term bridge inspection and management
rocesses crucial. Conventionally, these rely on periodic visual inspections by engineers [2]. Bridge structural health monitoring
BSHM) uses quantitative sensor data and automation to offer the possibility of both enhanced diagnostic and prognostic capabilities.
dopting BSHM technologies provides a potentially promising avenue to augment existing ‘‘visual inspection only’’ regimes,
owever, it bears noting that its deployment is currently typically limited to long-span structures.
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Deploying these BSHM systems comes with various challenges mainly due to resource constraints, particularly when viewed at
he scale of entire transport networks, considering the multitude of short and medium span structures that make up the majority
f our bridge stock. In this context, we consider these ‘‘resource-constrained environments’’ to encompass not only technological
arriers, such as potentially restricted or intermittent energy sources and data transmission capabilities, but also economic and
nvironmental considerations, where crucially these constraints are interlinked. For example, lowering energy requirements could
ead to designs using smaller energy sources, such as self-powered energy harvesting devices; in turn, this could reduce financial costs
nd help minimise the embodied and operational carbon footprint of these systems. Furthermore, given the ever increasing financial
udgetary pressures faced by bridge owners and operators, even such small efficiencies can significantly impact the feasibility of
eploying BSHM systems at transport network-scales.

Our key observation is that sampling techniques typically developed for wireless sensor network (WSN) applications [3] align well
ith the challenges of BSHM, due to their focus on reducing the energy consumption used when measuring time-series sensor data.
hese methods allow the embedded system hardware to enter lower-power states (commonly referred to as sleep or idle) during

nactive periods, thus reducing energy consumption. It should be noted that BSHM typically requires continual recording during
ehicle crossings unlike many WSN applications such as [4], where sensor systems can wake up and take a single measurement
nd go back to sleep. As a consequence, sampling methods for BSHM systems are likely to require the system to remain in the
igher-power, active (‘on’) state for longer. Furthermore, a trade-off for sampling-based BSHM approaches would be that their
educed feature data volumes could result in reduced damage detection capability.

In spite of these challenges, in this paper, we demonstrate that incorporating basic information about expected traffic volumes
nto our sampling methods can offer improved damage detection performance versus naive random sampling approaches. Traffic-
olume information allows these sampling algorithms to capture more vehicle crossings for the same ‘on’ time, by focusing on
ime-periods with higher expected traffic volumes. In particular, the information used, i.e. the expected average traffic counts for
ach hour, would require no additional instrumentation and can be obtained easily in advance of deployment, both of which improve
ts suitability for implementing on low-cost embedded sensor systems.

In this paper, we consider the specific example of a rotation-based damage detection system on a typical highway bridge and
nvestigate the application of both our traffic-volume information based sampling methods and a naive random sampling approach.
otation-based bridge SHM approaches have became more widely used due to the more recent availability of relatively low cost
irect current (DC) micro-electromechanical systems (MEMS) accelerometers capable of monitoring the relatively small rotation
ransients on short-span bridges under vehicle loading.

Rigorously evaluating the likely damage detection capabilities of these sampling methods requires long-term bridge rotation data
ith known damage states, as well as realistic levels of environmental and operation variation. As carrying out long-term in situ

esting on live bridge structures with damage evolution is broadly infeasible, there exists only very limited data for these types of
ull-scale studies. Hence, most rotation-based BSHM work to date has been validated using numerical models or laboratory-scale
xperiments, which often do not account for long-term confounding effects, such as diurnal and seasonal temperature variation.
herefore, in this work, a method for simulating the required long-term bridge rotation data is proposed by developing an empirically
uned, temperature capable bridge finite-element (FE) model, which captures a realistic level of variation in structural stiffness state
aused by diurnal and seasonal temperature variation.

Specifically, our long-term bridge simulation approach is based on: (a) developing an updated FE model of the bridge so that
he mode shapes and frequencies predicted by the FE model match the values measured experimentally during a modal test; (b)
ong-term air temperature and bridge natural frequency measurements collected on the bridge allowed the creation of a time-series
ata model that can reliably predict a bridge natural frequency from air temperature measurements; and (c) a transformation that is
itted between bridge natural frequency values and corresponding Young’s modulus (𝐸) values via an FE model tuning procedure.

Thus, the transformed time-series data model’s output for a given air temperature time-series is a corresponding 𝐸 value time-series
that can be applied to an FE model for long-term numerical simulations to incorporate a more realistic level of seasonal and diurnal
stiffness variation. Furthermore, a stochastic model for vehicle arrivals in free-flow traffic based on a dataset consisting of one year’s
worth of weigh-in-motion (WIM) records is used to generate realistic temporal distributions of vehicles (axle weights and spacings).
Finally, an error model is applied to the rotation features used for damage detection (peak amplitude). This error model is used to
account for the presence of residual noise or bridge–vehicle dynamics due to imperfect filtering, as well as any inaccuracy introduced
by the peak prominence extraction algorithm.

The main contributions of this work are:

• Development of an empirically tuned, temperature capable FE model which allows the confounding effect of temperature
variation to be investigated on any proposed bridge damage detection method, thereby permitting realistic long-term
simulations that are not common in BSHM;

• Creation of a stochastic model for vehicle loading based on a WIM dataset that captures a realistic temporal distribution of
vehicles with varying axle numbers and weights.

• Development of several potentially useful adaptive sampling algorithms based on expected traffic-volume information with
their performance subsequently evaluated using numerical simulations of 60 years worth of healthy and damaged bridge data.

The remainder of this paper is organised as follows: Section 2 provides an overview of relevant previous work in the area of
rotation-based bridge damage detection. Section 3 describes the bridge rotation-based damage detection approach using the Earth
Movers’ Distance which has been adopted in this study. Section 4 presents the numerical models used to simulate long-term bridge
2

data with confounding effects due to environmental and loading variation. Section 5 sets out a number of candidate algorithms
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for sampling to permit operation in a resource-constrained environment. Subsequently, Section 6 employs the new environmentally
capable FE model to generate response data to test the performance of the sampling algorithms in long-term damage scenarios.
Finally, Section 7 presents a discussion of these results, and Section 8 sets out the conclusions of this work.

2. Background

To set the context for this work, we cover the main approaches for bridge damage detection using rotation measurements. These
an be categorised as follows: (1) rotation influence line (IL) approaches, and (2) rotation-based bridge WIM approaches, with each
f these described presently. This allows the performance of our sampling methods to be compared against the typical levels of
amage detectable in our rotation-based bridge SHM work for short to medium span bridges.

Rotation ILs can be measured directly using a vehicle of known weight [5] and in some studies, have been used to infer both
he existence and location of damage in a structure. Zeinali et al. [6,7] proposed an approach for damage detection of beams using
lexural rigidity estimation based on rotation ILs, where the rotation was measured at the supports using chequer board targets which
ere tracked using computer vision. Whilst the authors showed damage detection and localisation in spite of noise, the laboratory

cale demonstration uses a simply supported slender steel bar which showed levels of rotation around 3.5mrad kN−1, which is more
than an order of magnitude greater than the level of rotation one would expect on a simply supported bridge span. Hence, based
on the measurement approach and the magnitude of rotation simulated, it is very hard to infer how this approach would perform
on a realistic full-scale bridge structure.

Hester et al. [8] proposed the difference between rotation ILs obtained for both healthy and damaged states to detect and localise
damage, using the bridge response for a vehicle of known weight. This work showed that for a simply supported bridge that the
most effective sensor locations are over the supports, as this corresponds to the locations with the maximum rotation amplitudes.
Laboratory-scale experiments [9] on a 5.4m simply supported beam structure showed the difference of rotation ILs approach could
etect damage as low as a 7% loss of stiffness over 2.5% of the span length. Alamdari et al. [10] proposed a similar damage detection
pproach based on the difference between rotation ILs in pre- and post-damage conditions, using simulations and laboratory tests.

Rotation-based bridge WIM, e.g. [11], has been proposed by some authors as a means for detecting damage. The approach
resented by O’Brien et al. [12] was based on the overestimation of vehicle weights by a rotation-based bridge WIM system following
amage. It showed that there is statistical repeatability in the tandem weights of five axle vehicles which can be used for bridge
amage detection and that the level of sensitivity of rotation to damage is related to the distance of the measurement from the
ocation of the damage. They proposed to address this issue by placing one inclinometer at each end of the bridge. Separately, Wei
t al. [13] proposed the same approach as [12], but instead used two axle vehicles as the fluctuation form of their axle weight time
istory is more simple to analyse.

The limitations of the above work are: the additional instrumentation complexity incurred, e.g. requiring costly and relatively
ncommon bridge WIM setups; the requirement for bridge closures to carry out static load tests for calibration; and the indirect
pproaches adopted by these approaches, necessitating calculating intermediate results such as ILs or axle weights.

This section has focused on studies which have used rotation measurements for bridge damage detection, of which there are not
any, and a summary of these has been presented in Table 1.

. Rotation-based bridge damage detection approach

Modern DC MEMS accelerometers have emerged as a cost-effective way to monitor the relatively small amplitude rotation
ransients typically observed under vehicle loading on short span bridges. Measuring rotation at the supports has been shown to
e the most effective for detecting damage [12]. For the typical short span bridge considered in this work, this means that even
relatively sparse sensor network with DC MEMS accelerometers positioned at the ends of spans can be used for monitoring. The

xact number of sensor nodes required can be varied depending on the operational needs and financial budget available to monitor
he structure-under-test, but at a minimum, this would likely consist of two accelerometers (one at either end of span) placed under
ach traffic lane. If more sensor nodes can be deployed, it would be the next sparsest arrangement would consist of DC MEMS
ccelerometers be placed at both ends of each longitudinal bridge beam.

Assuming the axis of the sensor is oriented in the bridge’s longitudinal direction, this acceleration signal can be filtered to
xtract the static rotation component. Under typical highway vehicle loading, for each crossing there will be a corresponding
otation transient. The approach used in this work uses the peak amplitude of these transients as the feature to be tracked to
etect damage. The distributions of these rotation peak amplitudes are recorded over time, where a shift in distribution will be
oted post-damage, for which the Earth Movers’ Distance (EMD) is used to quantify the post-damage shift in the distributions of
hese rotation amplitudes [15]. Furthermore, as we subsequently describe for this particular scenario involving two one-dimensional
istributions, there exists a closed form solution that is readily implementable on the sort of low-power microprocessor needed in
resource-constrained environment due to its relatively low computational cost. Thus, by using the EMD to quantifying this shift

n the distribution, the presence of damage can be established.
The EMD, which in mathematics is also known as the first Mallows or Wasserstein distance, is given by:

𝓁1 (𝑢, 𝑣) = inf |𝑥 − 𝑦|𝑑𝜋 (𝑥, 𝑦) , (1)
3

𝜋∈𝜞 (𝑢,𝑣)∫R×R
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Table 1
Summary of studies using bridge rotation for damage detection including equivalent damage level using the 𝛿 metric of Sinha et al. [14].

Study type Bridge description Damage used Equivalent 𝛿

Laboratory [6] Simply-supported 532mm long × 24.5mm
wide × 1.5mm thick steel bar

55mm long section with 38% stiffness loss located
at approximately third-span

0.15

Laboratory [7] Propped cantilever with 680mm long × 76.2mm
wide × 3.2mm steel bar

40% stiffness loss from 0.25 L to 0.35 L 0.16

1-D FE [8] Simply supported 20 m long bridge and 10 m
wide consisting of 9 No Y3 precast beams spaced
at 1.25 m centres with a 160 mm thick deck slab

30% stiffness loss over 1 m (5% length) at quarter
span

0.11

3-D FE [8] 20 m long by 10 m wide precast concrete and
continuous slab bridge (support conditions
unspecified)

3L/8 span location as 12.1% reduction in stiffness
over 3 m length and 5 m width

0.11

Laboratory [9] Simply supported 5.6 m long steel I-beam section
oriented in the weak direction

Stiffening of 16%, 25%, and 50% over 7.5%, 5%,
and 2.5% span lengths

0.06

3-D FE [10] Cable-stayed 46.2 m long by 6.3 m wide bridge
with 16 stay cables

Symmetric and asymmetric cable failures N/A

1-D FE [12] Simply supported 20 m long bridge and 10 m
wide consisting of 9 No Y3 precast beams spaced
at 1.25 m centres with a 160 mm thick deck slab

Localised stiffness loss over 1 m (5% length) at
mid-span with severities: 10%, 30%, and 50%

0.03

3-D FE [12] 20 m long and 11 m wide simply supported
bridge, composed of a 0.2 m thick solid slab and
0.9 m deep 10 beams spaced at 1 m apart

Damage modelled over 3 m length at L/4, L/2 and
3L/4 span locations (one at a time), in
longitudinal direction 32% reduction in central
1 m and 10% in outer 1 m lengths, across half of
the bridge width, i.e. full width of a traffic lane.

0.12

1-D FE [13] 20 m long bridge with elastic modulus of
206 × 106 kNm−2 and the section moment of inertia
of 8.1 × 10−3 m4.

5%–15% stiffness reduction over 1.5 m located at
3 m, 6 m, 10 m, and 14 m

0.12

where 𝜞 (𝑢, 𝑣) are the set of probability distributions on R ×R, with marginals, 𝑢 and 𝑣. If 𝑈 and 𝑉 are the cumulative distribution
functions of 𝑢 and 𝑣, this also equals:

𝓁1 (𝑢, 𝑣) = ∫

+∞

−∞
|𝑈 − 𝑉 |. (2)

A fuller exposition of the above equations can be found in [16].
This work considers only one-dimensional, empirical distributions and these are a special case for which the EMD has an exact

solution. If 𝑋 and 𝑌 are empirical distributions of the two datasets, i.e. 𝑋 = {𝑥1 ≤ ⋯ ≤ 𝑥𝑛} and 𝑌 = {𝑦1 ≤ ⋯ ≤ 𝑦𝑛}, both of size 𝑛,
hen the EMD is calculated [17] as:

EMD (𝑋, 𝑌 ) =
𝑛
∑

𝑖=1
|𝑥𝑖 − 𝑦𝑖|. (3)

It is evident that the application of Eq. (3) requires that both distributions are the same size. In practice, however, the distributions
sed in this application are relatively large, and thus, need to be resampled or binned to meet this requirement [17]. This, therefore,
llows the EMD to be computed efficiently by even a relatively low-powered system, specifically, by: (1) obtaining the empirical
istributions by sorting the rotation datasets; (2) resampling these distributions to have the same size, as both will be relatively
arge and will already approximately be the same size; this can be achieved simply and with minimal loss of accuracy by dropping
amples from the larger distribution; and (3) calculating the EMD as the summation of the difference between these distributions.
y using the EMD to quantify the shift between distributions, then the damage indicators, DILL, and DIRR, are formulated as:

DILL = EMD
(

𝐿0, 𝐿𝑖
)

, and (4)

DIRR = EMD
(

𝑅0, 𝑅𝑖
)

, (5)

here 𝐿𝑖 and 𝑅𝑖 are the distribution of maximum rotation values at the left and right ends of the span for the 𝑖th year.

. Long-term bridge simulation methods

To robustly test the sampling methods proposed here as a means of addressing the challenge of implementing a rotation-based
SHM approach in a resource-constrained environment, the appropriate numerical models to simulate long-term bridge rotation data
ith both environmental and loading variations were required. Specifically, Section 4.1 describes the bridge FE model and damage
odel used in this work, Section 4.2 presents the approach used to incorporate the effect of seasonal and diurnal environmental

ariation into this FE model, and Section 4.3 describes the method used to generate random vehicle arrivals over time to allow
raffic loading to be applied to the FE model.
4
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Fig. 1. Sketch of the beam discretised model subject to a 3-axle vehicle (point loads 𝑃1, 𝑃2, and 𝑃3) with measurements for midspan displacement and LHS and
RHS rotations indicated.

4.1. Bridge finite-element model

The numerical model used here is similar to that used in a number of other BSHM studies [18,19] (Fig. 1). The model has
been created to approximate a typical 34m span concrete beam and slab highway bridge. The simulated transverse width is slightly
wider than one traffic lane to allow for some transverse load distribution into adjacent beams. This model was used as it represents a
very common bridge type, and therefore is characteristic of many in-service bridges. Further work in [15] showed that the rotation
response predicted by the model was consistent with the response measured on-site.

Despite a wide array of bridge damage mechanisms, one commonality is a resultant loss of structural stiffness, either globally, or
locally. Hence, damage is introduced in the FE model by allowing for a localised loss in stiffness, e.g. due to a crack. A number of
different crack damage models have been proposed, for instance, in the case of a vibrating cantilever, some studies have modelled
a breathing crack [20]. However, when simulating damage to single span bridges under moving loads, this is commonly envisioned
as a non-breathing crack. This is based on the assumption that the dead load of the bridges is large relative to the live load, which
effectively maintains the crack in an open position.

The stiffness reduction used in this work is the one proposed by Sinha et al. [14] which quantifies a gradual loss of bending
stiffness in the vicinity of the crack; specifically, for a beam with width, 𝑤, and depth, 𝑑, the loss of bending stiffness extends a
distance, 𝑙𝑐 = 1.5𝑑, at both sides of the crack location, 𝑥𝑐 . This loss of stiffness is modelled by introducing a reduced moment of
inertia, 𝐼 , in those elements close to a crack with height, ℎ, as follows:

𝐼 (𝑥) =

{

𝐼𝑐 + |

|

𝑥 − 𝑥𝑐 || (𝐼0 − 𝐼𝑐 )∕𝑙𝑐 , if |𝑥 − 𝑥𝑐 | ≤ 𝑙𝑐 ,
𝐼0, otherwise,

(6)

where 𝐼0 is the moment of inertia in the undamaged beam, and 𝐼𝑐 denotes the reduced moment of inertia at the damage location,
as described in [14].

Due to the fairly regular geometry of bridge beams and slabs, understandably much of the previous work on bridge elements
envisage rectangular beams, where the ratio, 𝛿 = ℎ∕𝑑, has often been used to characterise the severity of the damage. Values of
𝛿 = 0.1 and 𝛿 = 0.2 represent localised losses in stiffness of 27.1% and 48.8% respectively of the inertia of a healthy rectangular
section. The same equivalency between 𝛿 and associated percentage stiffness loss is maintained for the beam sections in this work
and can be calculated as, % Stif fness Loss =

(

1 − (1 − 𝛿)3
)

× 100.

4.2. Environmentally capable bridge finite-element model under diurnal and seasonal variation

To capture the variation in structural stiffness due to both diurnal and seasonal temperature variation requires a FE model that
can simulate this typical variation seen in structural stiffness. Whilst there is no direct, global measure of a structure’s stiffness,
tracking bridge natural frequencies is a recognised method of observing long-term trends in bridge stiffness [21]. These long-term
trends in bridge stiffness can be observed as the measured bridge natural frequency is a function of the structure’s geometry and
material properties. For example, consider the equation for the first natural frequency, 𝑓1, of an idealised simply supported beam:

𝑓1 =
1
2𝜋

√

48𝐸𝐼
𝑀𝐿3

, (7)

where the mass, 𝑀 , moment of inertia, 𝐼 , and length, 𝐿, can all assumed to be invariant and any change in frequency will infer a
change in Young’s modulus, 𝐸.

If one had a way of reliably predicting the time-series of 𝐸 values over several years, it would be possible to simulate this natural
variation in stiffness in the FE model. The rotation or displacement values predicted by the FE model would then contain a realistic
level of the confounding effect due to temperature. Herein, the approach proposed to predict the time-series of 𝐸 values for a given
temperature time-series, 𝑇 , is as follows:

1. Development of an FE model that correctly predicts the mode shape and frequency measured during a modal test carried out
at the start of the study;
5
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Fig. 2. (a) Sketches of the span dimensions of the bridge, (b) plan view of the bridge with schematic of the modal test instrumentation, (c) photograph of
accelerometer location on pavement, and (d) plot showing the first mode shape and frequency obtained from the modal test.

2. Capture of a long-term dataset from the bridge consisting of: (a) bridge natural frequencies, which were extracted from
ambient vibration data, and (b) hourly air temperature measurements covering the same period;

3. Fitting of a time-series data model to the long-term bridge frequency and temperature data, thereby allowing the first modal
frequencies, 𝑓1[0]…𝑓1[𝑛], to be predicted for a given sequence of hourly temperature data, 𝑇 [0]… 𝑇 [𝑛]; and

4. Fitting a transformation between first modal frequencies and the corresponding 𝐸[𝑡] values using an FE model tuning process.

4.2.1. Bridge finite element model updating
As the focus of this study (and the vast majority of previous work) is on monitoring a single-span structure, ideally, there would

be long-term frequency data available for such a bridge. However, due to the limited availability of long-term bridge frequency
measurement data, we used the long term frequency data available to us, which, in this case, was for the three-span, two-lane wide,
reinforced concrete slab bridge shown in Fig. 2. Thus, we will use this bridge data to develop a data model that can generate a
6
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Fig. 3. Sketches of (a) the span dimensions of the bridge, (b) the idealised beam and supports used in the finite-element model; and (c) plot of the first mode
hape predicted by the finite-element model.

ealistic time series of Young’s modulus (𝐸) values for a concrete bridge based on air temperature time-series. Subsequently, this
data model is used to generate 𝐸 value time-series to be applied to the single-span reinforced concrete bridge model shown in Fig. 1.

The bridge consists of two 11.4m long side spans, and an 19m long centre span. The overall widths of the deck the carriageway
are 16m and 10m respectively.

ridge modal test
Prior to the long-term monitoring period, a modal test was carried out on the bridge. The test points were arranged as shown

n Fig. 2(b). The accelerometers were mounted immediately adjacent to the parapet guard rail by temporarily gluing metal blocks
nto the pavement as indicated in Fig. 2(c). The first mode shape is shown in Fig. 2(d), with the first modal frequency found to be
.54Hz.

ridge finite element model
As shown in Fig. 3(a), the bridge has been idealised as a continuous beam with the two piers modelled as columns with fixed

onnections and pin-roller supports at the ends. The FE model used is the same as that described in [15]. In this FE model, several
ey assumptions have been made including that the material is homogeneous and exhibits linear elastic behaviour meaning that
ithin the elastic limit, its stress and strain are directly proportional . Therefore, only small deformations can be modelled so as

o stay below the elastic limit of the material. However, given that the load due to the passage of even a relatively heavy truck is
ithin the ultimate limit state design loads for a bridge, such as specified by the Eurocode standards [22], then in all likelihood the
ridge’s response will be linear elastic for the type of loads we are modelling, i.e. free-flow traffic.

Furthermore, for simplicity, the geometry has been modelled as idealised, so any small defects or deviations have been ignored,
nd the boundary conditions are also modelled as idealised restraints. The pin supports have been modelled as having no rotational
estraint, when in the real-world this is not possible. Whereas, whilst the full fixed supports at the bases of the piers are modelled
s being restrained in all degrees of freedom, in reality these may have some flexibility.

Based on site measurements, the depth of the slab is 0.6m and the columns are modelled as 2.25m tall with a 3m × 1m cross-
section. To get the modal frequency of the FE model to match the value from the day of the modal test (5.54Hz), it was found
that the corresponding 𝐸 value was 28.43GPa. The air temperature recorded during the modal testing period varied between 9.1 ◦C
and 15.9 ◦C. The mode shape predicted by the FE model is shown in Fig. 3(b), and this matches quite well with the experimentally
measured mode shape shown in Fig. 2(d).

4.2.2. Long-term dataset of natural frequency and air temperature measurements
As described above, long-term data of bridge natural frequency and air temperature was collected in order to allow the diurnal

and seasonal variation in bridge first natural frequency against air temperatures to be observed.
7
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Fig. 4. Photographs showing (a) Multifunction Extended Life acceleration logger, and (b) type of weatherproof enclosure used to secure the logger onto bridge.

Fig. 5. Plots of raw acceleration data for both: (a) a 24 h window and (b) a single vehicle crossing event.

Bridge natural frequency data collection
This long-term bridge natural frequency dataset was recently collected by researchers at Queen’s University Belfast. Triaxial

acceleration was recorded at 128Hz using a Multifunction Extended Life acceleration logger from Gulf Coast Data Concepts, LLC.
The readings were timestamped using a real-time clock chip and recorded onto an onboard micro-SD card. The logger is powered
using 2 D-cell batteries, which give a run-time of up to 60 days of continuous recording.

The logger is pictured in Fig. 4(a) and shows both the weather-sealed case and the internal circuitry. A larger weather-sealed
enclosure was secured onto the bridge at the quarter-span point to house the logger. Fig. 4(b) shows an example of this enclosure
with the logger in place; the blue foam inserts in the enclosure ensured the logger was aligned consistently after being replaced
when changing batteries or the micro-SD card. The quarter-span point was used for the long-term monitoring as a modal test carried
out on the bridge before installation showed that the acceleration data from this point gave a high degree of modal energy to track
the mode, and also this was a logistically convenient location to install the enclosure.

As an example of the acceleration signals recorded, Fig. 5(a) shows the raw acceleration data over a 24 h window; it can be
noted that there is a higher amplitude and variance during the ‘daytime’ hours, i.e. 06:00–21:00, due to the higher number of vehicle
crossings. Fig. 5(b) shows the typical acceleration waveform due to a single vehicle crossing. In particular, the free decay after the
vehicle leaves the bridge can be seen.

To extract the frequencies from the long-term bridge acceleration measurements, the data was first binned into hourly windows,
which were processed using a covariance-driven stochastic subspace identification (SSI) algorithm [23,24]. The full two years and
three months covered by the natural frequency dataset are plotted in Fig. 6(a) with air temperature and frequency plotted against
the left and right y-axes respectively.

Frequency data
Looking at just the frequency data in the first instance, the annual seasonality of the frequency data in the plot can be observed.

Fig. 6(b) presents a single week of frequency data starting from 2019-06-01 in which the diurnal trends can be seen.
It is apparent from the time-series in Fig. 6 that: (1) there are a number of outliers in the frequency data below 5.4Hz and above

6.0Hz, and (2) there are periods of missing values with varying lengths. The longer periods of missing values occur whenever the
8
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Fig. 6. Plot of raw first natural frequency values returned from the stochastic subspace identification algorithm and air temperature data for: (a) the full duration
of the dataset and (b) a single week (indicated by the grey shaded region). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

logger’s batteries were depleted, before being replaced. The large gaps in 2020 were due to the COVID-19 regulations in Northern
Ireland preventing any site visits. Due to the covariance-driven SSI method used, not every hour window returns a frequency as SSI
algorithm screens out periods with low energy in the signal. However, in some windows, particularly at night when there are lower
traffic volumes, the SSI algorithm returns anomalous frequency values as there was not enough external excitation to the structure
to precisely obtain the modal frequency. The corresponding pre-processing steps to rectify these issues, (1) and (2), are described
in Section 4.2.3.

Air temperature data
The air temperature measurements used are taken from the UK’s Met Office Integrated Data Archive System (MIDAS) data

collection [25], which is available under the Open Government Licence. The closest weather station in the MIDAS data collection
with hourly data available was located approximately 9 km away to the north-west of the bridge location. The air temperature data
from this station covering the same period as the frequency measurements is plotted in Fig. 6. The annual cycles in air temperature
are apparent in the two year plot (Fig. 6(a)). In Fig. 6(b), the diurnal temperature cycles are clearly visible. In both these plots, the
negative correlation between air temperature and frequency can be also be observed.

4.2.3. Time-series data model
Data models that can predict bridge natural frequencies based on temperature have been proposed previously, such as [21].

Various data modelling approaches have been proposed for long-term approaches, such as artificial neural networks [26] and
auto-regressive with exogenous inputs models [21].

In this work, an autoregressive distributed lag (ARDL) model [27,28] is fitted to capture the relationship between the air
temperature and bridge natural frequency data. Specifically, the ARDL model has the form:

𝑦[𝑡] = 𝛽0 + 𝛽1𝑦[𝑡 − 1] +⋯ + 𝛽𝑝𝑦[𝑡 − 𝑝] + 𝛼0𝑥[𝑡] +⋯ 𝛼𝑞𝑥[𝑡 − 𝑞] + 𝜀[𝑡], (8)

where the independent variable, 𝑥[𝑡], is air temperature, the dependent variable, 𝑦[𝑡] is bridge natural frequency, and 𝜀[𝑡] represents
a white noise error. This model can capture short-run effects by including lagged terms of the air temperature, e.g. 𝛼1 represents
the effect of a unit change in air temperature one hour ago on the current bridge natural frequency. The lagged values of the bridge
natural frequency help to model the effect of ‘memory’ or ‘inertia’ in the system, i.e. a large, positive value for 𝛽1 would indicate
that if the bridge natural frequency was high one hour ago then the bridge natural frequency is likely high now as well. In order to
9
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Fig. 7. Plots showing the outlier detection and interpolation pre-processing steps applied to the natural frequency data for: (a) the full duration of the data set,
and (b) 5 days worth of data (indicated by the grey shaded region). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

fit this ARDL model to our data, it is essential to carefully optimise the choice of these lag lengths, denoted 𝑝 and 𝑞, using a model
selection technique, in this case by holdout validation, which is described subsequently.

A key assumption of this data model is that the relationship between air temperature (𝑥) and bridge natural frequency (𝑦) is
linear. However, incorporating lags of both the air temperature and bridge natural frequency allows the model to better capture the
dynamic relationship between these variables, i.e. that bridge natural frequency does not change instantaneously with varying air
temperature, but instead may depend on past temperatures and its own past values.

Data pre-processing
As explained above, there are some measurement periods, often at night, when there are not enough vehicles crossing the bridge

to get reliable frequencies, but the SSI algorithm does not always screen out these windows. The resulting small number of anomalous
points are removed using a Hampel filter [29] which employs the Hampel identifier (an outlier robust estimator of the 3-sigma rule
in statistics) over a sliding window to identify and remove these anomalous points. Observations lying outside a rolling interval of
�̃�[𝑡]±ℎ×(1.4825×MAD[𝑡]) are outliers, where �̃� is the median of window, and MAD is the median absolute deviation of the window.
The consistency constant, 1.4826, ensures that 1.4826 × MAD is an outlier robust estimator of the standard deviation for normally
distributed data. The window length for the filter was set at 24 h and the outlier threshold, ℎ = 3.5, was used as recommended by
other researchers [30].

As shown in Fig. 7(a), out of a total of 21 434 data points, this filter removes 839 (3.84%) of the data points as outliers, i.e. the
points above and below the main band of frequencies. Fig. 7(b) presents five days of data, and as it is reasonable to assume the bridge
natural frequency evolves smoothly, indicates that some likely outliers remain such as the two points around 2019-09-30. However,
it was found that further decreases of the threshold or window length, resulted in more clearly false positives being removed.

The distribution of outliers detected throughout the hours of the day are plotted in Fig. 8, to check that the outliers are being
removed mostly at night, when it is to be expected that the lower traffic volume would lead to more erroneous frequencies from the
SSI algorithm. It is clear that the majority of the outliers have been detected during the night as would be expected, only 10.1% of
the outliers occurred during the ‘day time’ hours of 07:00–19:59, compared to 89.9% during the ‘night time’ hours of 20:00–06:59.

Time-series data model fitting
The pre-processed long-term air temperature and frequency dataset were split by partitioning the data into a 70% training set

and a 30% testing set, as shown in Fig. 9, where the vertical dashed line indicates the partition boundary. This split ensured that the
testing set contained at least a full cycle of the annual temperature cycle. Furthermore, as the fitting of the ARDL model requires
10
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Fig. 8. Histogram plotting the density of outliers detected for each hour of the day.

Fig. 9. Full pre-processed dataset of bridge natural frequency and air temperature with the training and test set split annotated. Grey shaded region indicates
validation set used to select model hyper-parameters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

selecting orders for the auto-regressive and distributed lag components, a further hold out of 20% from the end of the training set
was made to form a validation set.

The orders, 𝑝, and 𝑞 for the auto-regressive and distributed lag components are first estimated by training the ARDL model
for varying orders up to maximum lags of 9 h. Using the held-out set, it was established that (𝑝 = 4, 𝑞 = 2) gave the smallest
root-mean-square error (RMSE) (0.472Hz). Using these orders, the ARDL model was then trained using the full training set and the
RMSE was computed as 0.053Hz and 0.050Hz for predictions using the training and test set respectively. The predicted frequency
data is plotted in Fig. 10(a), where it can be observed that the model is achieving a good recreation of the annual seasonal cycles
of frequency. Figs. 10(b) and 10(c) show one week’s worth of predicted frequencies from both the training and testing set. These
plots show that the model is capable of approximating the diurnal variation in frequency as well, and the similar performance in
both the training and testing data would suggest no over-fitting has occurred.

In addition to visually assessing the fit of the predictions in Fig. 10, the distribution of the residuals of the model can be examined
in Fig. 11, where it can be noted that the residuals from the training and testing set are very similar, which is an important metric
in ascertaining the accuracy of the time-series data model. Specifically, Fig. 11(a) shows the histogram of residuals, and shows
an approximately normal distribution with a mean of zero for both the training and test data. Fig. 11(b) shows that the residual
frequency does not vary significantly with predicted frequency or between training and testing sets. Finally, Fig. 11(c), plots the
residual at each time step versus the residual at the previous time step. This allows the presence of serial correlation to be observed.
In this case the positive serial correlation means that a prediction with a positive error will likely be part of run of positive errors
(or similarly for negative errors).

4.2.4. Transformation from bridge natural frequency to Young’s modulus values
A transformation was then fitted to allow the time-series data model to predict 𝐸 values for reinforced concrete for a given air

temperature time-series. Firstly, the FE model was tuned by taking a series of first natural frequencies between the minimum and
maximum natural frequencies predicted in the dataset. For each natural frequency, the FE model’s stiffness, 𝐸, was varied such that
the natural frequency matched that obtained from the eigenfrequency analysis.

The resulting Young’s modulus values are plotted in Fig. 12. In this instance, it was found that a linear fit, 𝐸 = 11.34 𝑓1−32.1 GPa,
was a very good approximation (𝑅2 > 0.99); however, it is acknowledged that this choice of function will depend on the particular
structure under test and its structural properties. This linear transform is applied to the previously shown predicted frequency data
to obtain the 𝐸 values to apply to our FE model.
11
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Fig. 10. Predicted bridge first natural frequency for (a) full duration of long-term measurement dataset, (b) one week window in training set, and (c) one week
window in test set.

For illustration, the fitted ARDL model and transformation can be applied to 51 years worth of air temperature data from
Aldergrove Airport, Northern Ireland [25]. The resulting predicted reinforced concrete 𝐸 value time-series are plotted in Fig. 13(a),
where the annual cycles due to seasonal temperature variation can be observed. Figs. 13(b) and 13(c) plot two years, and one
week’s, worth of air temperatures and predicted 𝐸 values, respectively, to allow the variation over short time frames due to diurnal
temperature variations to be observed.

Thus, we now have a method of getting an 𝐸 value time-series for reinforced concrete for a given temperature time-series with
a reasonable level of variation due to seasonal and diurnal temperature changes, which can be applied to the single span bridge
model shown in Fig. 1.

4.3. Stochastic vehicle arrival model

Modelling traffic flows is well established in civil engineering with the most fundamental model being that of a Poisson
distribution [31–33], which models the probability of the number of events, 𝑛, occurring in a given interval with an average
occurrence rate, 𝜆, as:

𝑃 (𝑛) = 𝜆𝑛 𝑒−𝜆. (9)
12
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Fig. 11. Diagnostic plots of (a) histograms of residuals, (b) residual versus prediction, and (c) serial correlation plot.

Fig. 12. Plot of tuned FE model Young’s modulus values, 𝐸, versus first natural frequency, 𝑓1.
13
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Fig. 13. Predicted bridge Young’s modulus values for (a) 51 years spanning 1970–2021, (b) two years for 1994–1995, and (c) one week from August 1995.

In this work, we use the Poisson distribution with the value of 𝜆 varying over time to randomly generate the sequence of vehicle
arrivals at the bridge. A limitation of the model is that this only generates temporal distributions of vehicles for free-flow traffic
conditions.

Using data from a WIM dataset [34], we justify the application of a Poisson distribution using data for a single site to obtain
the hourly vehicle counts for a particular day-of-the-week and hour-of-the-day, which, in this case, was Fridays between 07:00:00
and 07:59:59. The histogram of these hourly counts of 2-axle vehicles is shown in Fig. 14(a). The theoretical Poisson distribution is
obtained by setting the average rate of occurrences, 𝜆, to the mean value of the histogram (77.98 h−1). Similar histograms and Poisson
distributions were plotted for 5-axle (𝜆 = 69.18 h−1), and 6-axle (𝜆 = 31.78 h−1) vehicle counts in Figs. 14(c) and 14(e), respectively.
In all of these figures, a good correspondence can be observed between the WIM data and the Poisson distributions. To further
increase the temporal granularity of the vehicle arrivals, the minute-level vehicle counts can also be modelled as demonstrated by
the plots in Figs. 14(b), 14(d) and 14(f). At this level, the Poisson distribution provides an even better approximation of the observed
WIM data.

To generate a random sequence of vehicle arrivals, this only requires the average rate of vehicles for a particular axle count, 𝜆,
which can be randomly sampled from the WIM dataset. For each minute, a random sample is then taken from a Poisson distribution
with value of 𝜆 for each vehicle class. To demonstrate the result of this process, a random sequence of vehicle arrivals for a Friday
between 07:00 and 08:00 is shown in Fig. 15(a). Similarly, a random sequence of vehicle arrivals for a Friday between 15:00–16:00
14
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Fig. 14. Histograms and fitted Poisson distributions for (a) hourly 2-axle vehicle counts, (b) minute-level 2-axle vehicle counts, (c) hourly five-axle vehicle
ounts, (d) minute-level five-axle vehicle counts, (e) hourly six-axle vehicle counts, and (f) minute-level six-axle vehicle counts.

nd 22:00–23:00 are plotted in Figs. 15(b) and 15(c) showing that the model can recreate the differences in total volumes and
omposition of traffic at different times of the day. However, it should be noted that a limitation of this approach is that it only
odels free-flow traffic arrivals.

The process to then generate axle weights and spacings for each of the vehicle arrivals is illustrated using the first six vehicles
n Fig. 15(a), namely, a 5-axle vehicle, two 2-axle vehicles, a 6-axle vehicle, a 5-axle vehicle, and a 3-axle vehicle. This consists
f taking a random sample with replacement from the subset of the WIM dataset that has the required axle count. The resulting
nsembles of point forces obtained from this sampling for these first six vehicles are shown in Fig. 16.

A traffic profile can then be generated by first randomly sampling an average rate of arrival of each vehicle by axle count for
very hour, and to ensure the rate of arrivals varies smoothly, these are interpolated across the minutes in each hour period. A
andom draw is then made from the Poisson distribution with the corresponding 𝜆 for each minute and axle count. Finally, axle

weights and spacings are obtained by taking random samples from the WIM dataset with replacement, i.e. a particular ‘vehicle’
from the WIM dataset can be sampled multiple times, just like randomly selecting tokens from a bag and replacing them after each
15
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Fig. 15. Random generated sequences of vehicle arrivals for (a) 07:00–08:00, (b) 15:00–16:00, and (c) 22:00–23:00.

. Sampling methods based on expected traffic volumes for resource-constrained environments

To demonstrate the potential for leveraging knowledge of expected traffic volumes for long-term bridge monitoring, three
ampling methods have been proposed, which allow the system to elect when to be ‘on’, or to conserve power and go into a low-
ower ‘sleep’ state. For simplicity, we assume that each sampling method will elect the state of the system for each hour of the
ay. As an example of a typical resource-constraint, we will consider a system with a limited energy budget, which we simulate by
estricting the ‘on’ time of the system. Therefore, each sampling algorithm was tuned such that it would not exceed the chosen ‘on’
ime limit, i.e. it would not oversample and exhaust the systems energy budget for a given time-period.

This limit was chosen as 12.5% of the hours in each month, as this represents almost an order of magnitude less ‘on’ time, whilst
onveniently dividing the 24 h of a day into a whole number, thereby preventing the peak traffic-volume hours method described
elow being penalised. As the maximum rotation amplitude data set obtained using these sampling methods will be smaller than
he total population, it is unfair to compare its performance against a damage detector utilising the full population, cf. standard
rror of the mean, SEM𝑁 = 𝑠∕𝑁

1
2 , where 𝑠 is the standard deviation of the sample, and 𝑁 , the sample size. Hence, a wholly random

hourly sampling approach is presented to serve as a fair comparison for the rest of the algorithms and then compared with two
sampling methods based on expected traffic volumes.
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Fig. 16. Randomly selected axle configurations (weights and spacings) for 6 vehicles.

.1. Random hourly sampling windows

The first method described serves as a benchmark for the rest of the algorithms described herein. This naive sampling approach
onsists simply of a random election process carried out at the start of each hour, wherein the system decides whether or not it will
e in the ‘on’ state for the next hour, ℎ ∈ {0,… , 23}, at random. The state election is based on the following inequality:

state (ℎ) =
{

‘on’, if 𝑋 ≤ 𝑘𝑡, 𝑋 ∼ 𝑈 (0, 1),
‘off’, otherwise.

(10)

he threshold, 𝑘on, can be set as the ratio of the time that we desire the system to be ‘on’, Timeon and the total time,
Timeon + Timeoff

)

, i.e.:

𝑘on ≈
Timeon

Timeon + Timeoff
. (11)

5.2. Peak traffic volume hours sampling

If the target is to optimise the number of vehicle crossings captured, it would seem reasonable to focus the sensor system’s limited
resources on only the subset of hours of the day that have the highest traffic counts. In advance of the monitoring, a traffic survey
17



Mechanical Systems and Signal Processing 208 (2024) 110933A.J. Ferguson et al.
could be conducted to establish the temporal distribution of traffic on the bridge under test, or it would be trivial to incorporate
some traffic counting functionality into the sensor system. This sampling algorithm can be described as follows: firstly, let the set,
𝐶 = {𝑐0,… , 𝑐23}, be the aggregated average counts, or volumes, of traffic in each hour of the day. The subset of hours, 𝑆, for which
we want the system to be ‘on’, can then be obtained as the 𝑛 largest expected traffic volume hours, where 𝑘on again represents the
desired proportion of time to have the system ‘on’, i.e.:

𝑆 =
{

ℎ0,… , ℎ𝑛 ∣ 𝑐ℎ0 ≥ ⋯ ≥ 𝑐ℎ𝑛 ≥ 𝑐𝑖∀𝑖 ∉ 𝑆
}

, 𝑛 = ⌊24 𝑘on⌋. (12)

The state election for each hour, ℎ, can then simply be determined as follows:

state (ℎ) =
{

‘on’, if ℎ ∈ 𝑆,
‘off’, otherwise.

(13)

5.3. Traffic volume probability proportional sampling

Instead of restricting the sampling to only the subset of hours which had the largest traffic counts, it may be advantageous to
allow sampling in any hour. However, to expend the system’s limited resources more efficiently, it would seem sensible to make
the system more likely to be ‘on’ during hours which are more likely to have higher numbers of vehicle crossing. To estimate the
likelihood of a given vehicle crossing occurring in a given hour, ℎ, the aggregated traffic counts, 𝐶, can be used, i.e.:

𝑃 (ℎ) =
𝑐ℎ
𝛴𝐶

The state election can then be determined by:

state (ℎ) =
{

‘on’, if 𝑋 ≤ 𝑘𝑣𝑃 (ℎ) , 𝑋 ∼ 𝑈 (0, 1),
‘off’, otherwise,

(14)

where 𝑘𝑣 is a coefficient that can be varied to ensure that the system is ‘on’ for the desired proportion of the time, 𝑘on.
As the state election is carried out continually for each hour, ℎ ∈ {0,… , 23}, a reliable estimation of the value for 𝑘𝑣 can be

determined through simulation by running the state election process for a large number of hours with a range of 𝑘𝑣 values and
recording the proportion of ‘on’ hours. Repeating this procedure multiple times allows a confidence interval for the ‘on’ time to be
obtained for increasing values of 𝑘𝑣, from which an appropriate value can be chosen depending on the target ‘on’ time.

6. Numerical simulations and results

To assess the performance of the sampling methods set out in the previous section (Section 5), 60 years worth of long-term
bridge rotation data was generated using the environmentally capable FE model. The bridge modelled used is the single-span bridge
shown in Fig. 1. The 𝐸 values to apply to the model at each time-step are obtained by applying the ARDL model and transformation
developed in Sections 4.2.3 and 4.2.4 to 60 year’s of air temperature data from Aldergrove Airport, Northern Ireland [25]. To
simulate representative loading the stochastic vehicle arrival model, described in Section 4.3 was used.

In previous work [15], these long-term numerical simulations consisted of: (a) running a dynamic solve for each vehicle crossing,
(b) applying an empirically-tuned sensor noise model based on Fourier-transformed surrogates, (c) low-pass filtering to obtain the
static rotation component, and (d) extracting the maximum rotation amplitude via a peak prominence algorithm to obtain our
damage-sensitive feature, 𝐴𝑑 .

Due to the very large number of simulations needed, it was determined that using the environmentally capable FE model with a
full dynamic solver was not a sensible approach as results could not be returned in a reasonable time-frame. For this work, however,
we did not require the exact dynamic response, but needed to capture the variation in the measured maximum static rotation
amplitude due to both dynamics and the signal processing stage. Thus, to speed up the simulations, static solves, i.e. 𝑭 = 𝐊𝒙, were
carried out to obtain the rotation amplitudes used as the feature for our EMD-based damage detection approach, with a random mul-
tiplicative error term, 𝜀, added to allow for any variation that would arise from the vehicle dynamics or signal processing, such that:

𝐴𝑑 = 𝜀 × 𝐴𝑠,

where 𝐴𝑠 is the rotation amplitude (peak prominences) obtained with the static solver. The multiplicative error model avoids the
heteroscedasticity over varying gross vehicle weight/rotation amplitude that occurs with an additive error model.

The distribution for this multiplicative error, 𝜀, was sampled by running the same 1000 random vehicles through both the full
dynamic solver and signal processing (𝐴𝑑), and the static solver and peak amplitude (𝐴𝑠). The multiplicative error between these
was calculated and plotted for the LHS rotations in Fig. 17, giving errors with a mean, 𝜇 = 1.02, and standard deviation, 𝜎 = 0.0277.

The one-sample Kolmogorov–Smirnov (K–S) test was used to check the goodness of fit between the simulated error distribution
and a fitted parametric distribution with a significance, 𝛼 = 0.05; where the null hypothesis of the test is that the distributions are
identical with the alternative hypothesis being that they are non-identical. First, a normal distribution was fitted to the simulated
errors, which had mean, 𝜇 = 1.02, and standard deviation, 𝜎 = 0.0276. From Fig. 17, it can be seen that the normal distribution
exaggerates the tails of the error distribution, consequently leading to a decrease in probability density around the mean. This lack
of fit is confirmed by the K-S test (𝑝 < 0.001), indicating that the null hypothesis can be rejected, i.e. the simulated error distribution
18
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Fig. 17. Plot of multiplicative error, 𝜀, distribution from dynamic and static simulations and fitted normal and t-distributions.

Fig. 18. Scatter plots of 60 years for six crack damage levels of: (a) DILL and (b) DIRR.

A Student’s t-distribution (Fig. 17) was then fitted to the simulated errors as the degrees of freedom parameter allows the mass
f the distribution to be more concentrated around the mean (as in the simulated error distribution). The parameters of the fitted
istribution were found to have 𝜈 = 2.21 degrees of freedom, and a mean, 𝜇 = 1.02, and standard deviation, 𝜎 = 0.0468. The K-S test

(𝑝 = 0.328) showed that this fitted t-distribution was identical to the simulated error distribution to a 5% significance; therefore,
in the remaining simulations, we will use random multiplicative error values from t-distributions (fitted in the manner described
above) to introduce an appropriate level of variation to our simulated results.

6.1. Numerical simulation results with no sampling

The long-term numerical simulations were carried out for the single-span bridge described in Section 4.1 with localised damage
at the third-span location from the LHS.

For illustration, the bridge was first subjected to six damage levels, 𝛿 ∈ {0.0, 0.01, 0.025, 0.05, 0.1, 0.2}. The mean (and standard
deviation (SD)) of the number of vehicle events per annum was 100 278 (437.2). The results of applying the EMD-based metrics,
ILL and DIRR, to these 60-year sets of rotation amplitudes are plotted in Fig. 18. Specifically, in Fig. 18(a), it can be seen that

or the LHS end-of-span, the increases due to increasing damage levels are more pronounced than the corresponding RHS results
Fig. 18(b)). In these results, it can also be observed that both a short-term variation and a longer-term trend exist in the damage
etection metrics for all damage levels.

The damage detection capability is assessed by observing which damage levels have prediction intervals (PIs) for the damage
ndicator, DI, that are disjoint to the corresponding PI of the ‘healthy’ (𝛿 = 0.0) case; this means that with PIs, 𝐻 = [ℎ𝑎, ℎ𝑏], for the
healthy’ case, and 𝐷 = [𝑑𝑎, 𝑑𝑏], for the damaged case, these would be disjoint when 𝐻 ∩𝐷 = ∅. Assuming the system was originally
n the ‘healthy’ state, this means that for a given confidence level, in this case 95%, observations from a future damaged state would
ppear as outliers, thus being readily detected by outlier analysis. This approach was adopted as it was felt to offer a conservative
stimate of the level of damage which would likely be observable, whilst being a rather general result, i.e. this does not depend on
particular choice of outlier detection algorithm or other such implementation-specific details.

Kernel density estimation is used to obtain a non-parametric estimator, 𝑓 (𝑥), for the probability density function (PDF) of the
amage detection metric values for each damage level. The PI can then be obtained from the estimator of the inverse cumulative
19
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Fig. 19. Plots of 95% PIs and medians for EMD-based damage indicators, DILL and DIRR, with no sampling over varying damage severity of: (a) DILL and (b)
IRR. Horizontal black dashed line indicates upper bound of PI for ‘healthy’ (𝛿 = 0.0) condition.

Fig. 20. Plots of 95% PIs and medians for EMD-based damage indicators, DILL and DIRR, with random hourly sampling over varying damage severity of: (a)
DILL and (b) DIRR. Horizontal black dashed line indicates upper bound of PI for ‘healthy’ (𝛿 = 0.0) condition.

distribution function, 𝐹−1(𝑝) = 𝑥, where 𝑝 ∈ [0, 1], such that, 𝑓 (𝑥) = 𝑝. Therefore, the 95% PI is, [𝐹−1(0.025), 𝐹−1(0.975)], i.e. the
nterval bounding the central 95% of the estimated PDF.

To more clearly observe the behaviour of these PIs with increasing damage severity, the numerical simulations were repeated
or 0.0 ≤ 𝛿 ≤ 0.2 in 0.02 increments, and these PIs are plotted in Fig. 19. From Fig. 19(a), it can be seen that for the LHS end-of-span
amage indicator, DILL, that damages of at least 𝛿 = 0.04 would be observable; and for the RHS end-of-span damage indicator, DIRR,
n Fig. 19(b), it can be seen that, as expected, damage would likely only be observed from at least 𝛿 = 0.08, due to the damage
eing closer to the opposite end of the span.

.2. Numerical simulation results with sampling

This section shows the effect of applying the various sampling methods, described in the previous section, on the damage
etection capability of our EMD-based damage detection approach. To ensure a reasonable comparison between these approaches,
he proportion of ‘on’ hours in each month has been kept constant at 12.5%. This ensures that any variation in the number of vehicle
rossings captured, and the damage detection capability, can be related to the efficiency of the sampling method employed.

.2.1. Randomly hourly sampling windows
After applying the random hourly sampling method, the mean (SD) of the number of vehicle events per annum was 12 531 (252.4).

he 95% PIs for the damage detection metrics, DILL and DIRR, are plotted in Fig. 20. For the LHS end-of-span damage indicator,
DILL, it can be seen that the minimum damage level detectable is at least 𝛿 = 0.08. For the RHS end-of-span, this also shows reduced
sensitivity to damage, with the minimum level of damage likely to be detected being 𝛿 = 0.14.

6.2.2. Peak traffic volume hours-only sampling
After applying the peak traffic volume hours-only sampling, the mean (SD) of the number of vehicle events per annum was

19 341 (155.3). The 95% PIs for the damage detection metrics, DILL and DIRR, are plotted in Fig. 21. For the LHS end-of-span damage
ndicator, DILL, it can be seen that the minimum damage level detectable is at least 𝛿 = 0.06; and the RHS end-of-span damage
20

indicator, DIRR, again shows reduced damage sensitivity, with the minimum levels of damage likely to be detected being 𝛿 = 0.10.
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Fig. 21. Plots of 95% PIs and medians for EMD-based damage indicators, DILL and DIRR, with peak traffic volume hours only sampling over varying damage
severity of: (a) DILL and (b) DIRR. Horizontal black dashed line indicates upper bound of PI for ‘healthy’ (𝛿 = 0.0) condition.

Fig. 22. Plots of 95% PIs and medians for EMD-based damage indicators, DILL and DIRR, with expected traffic volume proportional sampling over varying
damage severity of: (a) DILL and (b) DIRR. Horizontal black dashed line indicates upper bound of PI for ‘healthy’ (𝛿 = 0.0) condition.

Table 2
Summary of results for each sampling method showing mean number of vehicles crossings
captured per year, 𝑁year, and estimated minimum damage severity detectable using the rotation
measured at the LHS end-of-span, 𝛿LHS, and the RHS end-of-span, 𝛿RHS.

Sampling method 𝑇on 𝑁year 𝛿LHS 𝛿RHS

No sampling 100.0% 100 278 0.04 0.08
Peak traffic hours 12.5% 19 341 0.06 0.10
Traffic volume prop. 12.5% 15 304 0.08 0.14
Random hourly 12.5% 12 531 0.08 0.14

6.2.3. Expected traffic volume proportional sampling
After applying the expected traffic volume proportional sampling, the mean (SD) of the number of vehicle events per annum

as 15 304 (209.4). The 95% PIs for the damage detection metrics, DILL and DIRR, are plotted in Fig. 22. For the LHS end-of-span
amage indicator, DILL, it can be seen that the minimum damage level detectable is at least 𝛿 = 0.08; and the RHS end-of-span
amage indicator, DIRR, again shows reduced damage sensitivity, with the minimum level of damage likely to be detected being
= 0.14.

.3. Summary

For convenience, the results of all the sampling methods presented in this section, as well as the no sampling case, are presented
n Table 2. These results, which have been ordered in decreasing average annual sample size, 𝑁year, firstly, show that the larger

sample sizes obtained using peak traffic hours only, offer improved damage detection capability relative to the other sampling
methods that do not attempt to maximise traffic volume. Furthermore, these results indicate that the relationship between sample
size and damage detection capability is better than reciprocal, i.e. when using an eighth of the number of vehicle crossings, the
minimum damage detectable is not eight times worse, it appears to be more like 1.5–2 times worse. Finally, we have given a short
summary of the advantages and disadvantages of each sampling method in Table 3.
21
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Table 3
Summary of the advantages and disadvantages of the three sampling methods tested.

Sampling method Advantages Disadvantages

Random hourly • Straightforward to implement as it does not require prior
knowledge about expected traffic volumes.
• Provides an unbiased sample of the bridge’s behaviour.

• Inefficient as might be awake during periods with very
little traffic.

Peak traffic hours • Likely capture the maximum number of vehicle crossings
for the same ‘on’ time.
• System ‘on’ periods are consistent so makes power budget
easier to design for.

• Needs accurate traffic data. If the expected traffic data
goes out of date, or traffic patterns change, then this method
may not be as effective.
• Will miss rare or unexpected events that might occur
during off-peak hours.

Traffic-volume • Intended to balance the desire to capture as many vehicle
crossings as possible while also capturing these at varying
times of the day.

• Needs accurate traffic data. If the expected traffic data
goes out of date, or traffic patterns change, then this method
may not be as effective.

7. Discussion

The results with no sampling applied (Section 6.1) showed that damage detection was possible down to 𝛿 = 0.04 for the LHS
nd-of-span rotation data (due its closer proximity to the damage at third-span), and 𝛿 = 0.08 for the RHS end-of-span.

This demonstrates the effectiveness of our EMD-based damage detection approach, as these levels of detectable damage are lower
han those reported for most other rotation-based methods (summarised in Table 1) despite the higher level of confounding effects
onsidered in this study. To improve the robustness of our findings, the numerical simulations used in this study accounted for
onfounding effects using the following models: (a) seasonal and diurnal bridge stiffness changes using our temperature-capable FE
odel, (b) a stochastic vehicle arrival model for free-flow traffic with random axle weights and spacings taken from a WIM dataset,

nd (c) a feature error model was employed to allow for the presence of residual noise and dynamics due to imperfect filtering or
naccuracies in the feature extraction stages.

When sampling was applied in Section 6.2, as expected, the damage detection capability for all three sampling methods was
educed with the minimum detectable damage level increasing. Specifically, the system ‘on’ time was restricted (12.5% ‘on’ time) to

model the effect of a power budget constraint, where the three sampling methods were applied to overcome this resource-constraint.
Of the three methods tested, the peak traffic hours only sampling method, which captured larger sample sizes, appears to be less
penalised being able to detect damages down to 𝛿 = 0.06 compared to both the traffic volume probability proportional and naive
andom hourly sampling methods, which only detected damages down to 𝛿 = 0.08. However, it should be noted that even with the

penalty associated with an 8x reduction in system ‘on’ time, these levels of damage are still comparable to those detected by other
rotation-based BSHM studies (Table 1).

These initial findings suggest that for a given power budget, sampling strategies that maximise the number of measured vehicle
events offer lesser reductions in damage detection performance. For the moment, this has only been shown using long-term numerical
simulations for one bridge. Based on engineering judgement, it would seem plausible that employing these methods on other bridges
would achieve similar results. However, further work, both numerical simulations and experimental is needed to validate this.

In reality, fully validating this approach would involve field experiments and a situation whereby known damage could be
introduced into the bridge during the experiment. Unfortunately, this is not logistically feasible. However, in future work, we hope
to do the initial step of this validation to establish that the healthy rotation distributions obtained from long-term (i.e. multi-year)
field measurements are in line with the distributions generated via numerical simulations.

Validation of these findings via numerical simulation should involve repeating the methods over a wider variety of scenarios
to better characterise the uncertainty in minimum detectable damage levels. Furthermore, future simulation work should consider
more fine-grained models, for example, by incorporating a more complex vehicle arrival model that can recreate unique events or
outliers, such as heavy traffic during roadworks.

Another possible avenue for future study could be to investigate better means of choosing the baseline from which to compute
the EMD. For example, during the initial period of operation more data could be collected to form a ‘healthy’ reference set. Then,
subsequent years could be monitored at a reduced sampling level which helps address the challenge of power sources/batteries
degrading over time, as it may be possible to find a more optimal baseline, e.g. from the intersection of the current and reference
sets’ temperature distributions.

Overall, the numerical simulation results presented in this work demonstrate that knowledge of expected traffic volumes can
be beneficial when implementing sampling strategies for BSHM systems, as sampling methods aimed at capturing more vehicle
crossings showed better damage detection capability for the same resource usage.

8. Conclusions

This study demonstrated how knowledge of expected traffic volumes could be used to create more efficient sampling methods for
long-term rotation-based bridge SHM by capturing more vehicle crossings for the same resource usage, where the system’s ‘on’ time
was restricted to simulate a limited energy budget. This paper also introduced an empirically tuned, temperature-capable bridge
22
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finite-element model for long-term simulations, incorporating a stochastic vehicle arrival model and a feature error model to allow
for the presence of any residual noise/dynamics due to imperfect filtering or inaccuracies in the feature extraction stages. This
allowed us to simulate 60 years worth of bridge rotation monitoring data with varying damage severities to evaluate the impact of
environmental and operational variations on our proposed expected traffic volume based sampling methods.

Our EMD-based damage detection approach using maximum end-of-span rotation amplitudes was evaluated using 60 year’s
orth of bridge rotation data simulated by these models. These results showed a clear detection of damages above 𝛿 = 0.04 from

the healthy condition using a 95% PI, which despite the greater degree of confounding effects, is at the lower end of the state of
the art in this area (Table 1).

Subsequently, three sampling methods were presented based on: (1) random hourly sampling, (2) peak traffic hours sampling,
and (3) expected traffic volume probability proportional sampling. Each method was applied to this simulated long-term bridge data
and the performance of our EMD based damage detection method was assessed using the disjoint PI approach. Our findings revealed
that whilst employing sampling reduces the sensitivity of damage detection, strategies focusing on capturing the maximum number
of vehicle crossings, specifically during peak traffic hours, may yield better results within the same resource constraints. This offers a
valuable insight into methods for optimising long-term monitoring strategies for BSHM systems, particularly in resource-constrained
settings.
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