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Evolutionary Multi-objective Optimisation for
Large-scale Portfolio Selection with Both Random

and Uncertain Returns
Weilong Liu, Yong Zhang, Kailong Liu, Barry Quinn, Xingyu Yang, Qiao Peng

Abstract—With the advent of Big Data, managing large-
scale portfolios of thousands of securities is one of the most
challenging tasks in the asset management industry. This study
uses an evolutionary multi-objective technique to solve large-scale
portfolio optimisation problems with both long-term listed and
newly listed securities. The future returns of long-term listed
securities are defined as random variables whose probability
distributions are estimated based on sufficient historical data,
while the returns of newly listed securities are defined as
uncertain variables whose uncertainty distributions are estimated
based on experts’ knowledge. Our approach defines security
returns as theoretically uncertain random variables and pro-
poses a three-moment optimisation model with practical trading
constraints. In this study, a framework for applying arbitrary
multi-objective evolutionary algorithms to portfolio optimisation
is established, and a novel evolutionary algorithm based on
large-scale optimisation techniques is developed to solve the
proposed model. The experimental results show that the proposed
algorithm outperforms state-of-the-art evolutionary algorithms in
large-scale portfolio optimisation.

Index Terms—Evolutionary computations, Multi-objective op-
timisation, Portfolio optimisation, Large-scale investment, Uncer-
tain random variable.

I. INTRODUCTION

In 2022, the global asset management industry hit a new
high of 126 trillion of assets under management (AUM). This
figure represents 28 percent of global financial assets, up from
23 percent a decade ago (McKinsey, 2022). The computational
complexity of optimal portfolio construction, which simulta-
neously balances risk minimisation with return maximisation,
is perhaps the most intrinsic and recurrent financial problem
in the asset management industry. Modern Portfolio Theory
(MPT), first introduced by Markowitz [1], extols the virtues
of the first two moments of the Gaussian distribution (the so-
called mean-variance model) as sufficient to solve the problem
of optimal portfolio allocation based on practitioners’ views
on risk and return. In academia, the MPT continues to be
challenged from various perspectives. Some scholars have
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chosen to extend the mean-variance approach in non-trivial
directions [2], while others have attacked the statistical validity
of the mean-variance model and proposed practical extension
to accommodate fat-tailedness of risk factors [3], and or
improvements to the distribution of speculative assets [4]. In
this paper, we consider the practical challenge of large-scale
portfolio optimisation where historical data for some eligible
securities is limited.

Most existing portfolio optimisation models view finan-
cial asset returns as random variables whose distributional
characteristics can be extracted from historical data. When
there is a lack of sufficient historical data for newly listed
securities, scholars have proposed the use of fuzzy variables
estimated by experts’ judgement, leading to the development
of fuzzy portfolio optimisation theory [5–7]. Also, Liu [8]
propose the uncertainty theory as another alternative tool
for modelling indeterministic quantities that are subject to
experts’ estimates. Based on the uncertainty theory, portfolio
optimisation problems with complementary information are
able to be solved in uncertain environments [9–12].

This study addresses the real-world challenge of large-scale
portfolio optimisation problems when the eligible basket of se-
curities includes both established (long-term listed) and newly
listed entities. Since sufficient historical samples are available
for the long-term listed securities, it is usually assumed that
the security returns are random variables whose distributions
are statistically traceable. In contrast, since sufficient historical
data is not available for newly listed securities, security returns
are usually defined as uncertain variables whose distributions
are estimated based on experts’ estimates. In this hybrid
environment, uncertain random variables are introduced to deal
with the complex system with randomness and uncertainty
[13, 14]. Qin [15] first proposes a mean-variance portfolio
optimisation model to address this problem. Some scholars
have considered the asymmetry of uncertain returns on newly
listed securities, extending the work of Qin [15] by incorporat-
ing skewness as an additional objective [16, 17]. However, the
above literature treats returns on long-term listed securities as
being randomly normally distributed, ignoring the asymmetry
of random returns.

In practise, trading restrictions add fractions to real-world
portfolio optimisation and prevent the use of classical MPT
approaches. The inclusion of additional objectives and con-
straints significantly increases the complexity of solving port-
folio optimisation models. Multi-Objective Evolutionary Algo-
rithms (MOEAs) have proven to be a promising candidate to

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3349073



2

tackle these models and shine in the field of portfolio optimisa-
tion [18–21]. The main challenge in dealing with constrained 
multi-objective optimisation problems is to achieve a balance 
between convergence, diversity and feasibility. Researchers 
have made remarkable progress in developing evolutionary 
algorithmic solutions to constrained optimisation problems 
by using different constraint handling methods [22–27]. In 
this study, we focus on a set of real-world constraints in-
cluded in portfolio optimisation problems, such as cardinality 
constraints, minimum transaction lot constraints, boundary 
constraints and short selling prohibition. It is worth mentioning 
that these constraints are of various types, such as equality 
constraint constraints, inequality constraints and integer con-
straints, etc., which brings some challenges when trying to 
consider them directly with existing evolutionary algorithms. 
The computational complexity of such constrained portfolio 
optimisation problems motivates us to develop more efficient 
techniques for handling constraints when using MOEAs.

As the number of securities to be considered increases 
significantly, m ulti-objective p ortfolio o ptimisation becomes 
a typical large-scale challenge. This has led to an increase in 
academic efforts to solve the large-scale portfolio optimisation 
problem [28–32]. Various MOEAs have been employed to 
deal with the complexity of decision scenarios in large-scale 
investment landscapes, with remarkable results [21, 33–36]. 
Actually, most existing MOEAs have shown promising per-
formance in solving complex optimisation problems, but their 
performance may degrade when they handle a large number 
of decision variables [37]. This challenge has led to the rapid 
development of the Large-scale Multi-Objective Evolutionary 
Algorithm (LSMOEA). Three categories of LSMOEAs have 
been developed based on decision variable grouping [38–40], 
decision space reduction [41–44] and novel search strategies 
[45–47]. Our preliminary research has shown that the effec-
tiveness of the prevailing MOEAs in portfolio optimisation 
studies is inferior by state-of-the-art LSMOEAs when con-
fronted with large-scale portfolio models. This observation 
encourages us to integrate advanced large-scale optimisation 
methods into the field o f p ortfolio o ptimisation. Moreover, 
even the most advanced LSMOEAs have shown a potential 
improvement when confronted with portfolio optimisation 
problems involving thousands of individual assets.

To illustrate the above point, we compare the performance 
of several state-of-the-art portfolio optimisation algorithms in 
an example. We chose the Markowitz mean-variance (MV) 
model, selected for its true efficient f rontier c an b e easily 
approximated (as indicated by the red data markers in Fig. 
1). It is important to note that with the introduction of 
additional optimisation objectives and real-world constraints, 
the complexity of the solution problem increases, poten-
tially increasing the performance challenge of MOEAs. Our 
investigation includes two portfolio optimisation scenarios: 
one with 30 stocks (small-scale case) and the other with 
1000 stocks (large-scale case). We evaluate the performance 
of seven representative MOEAs: NSGA-II [48], WOF [41], 
LSMOF [42], LMOEADS [43], FLEA [49], LERD [50] and 
IFMOICA [21]. These algorithms are employed to find 120 
efficient s olutions f or t he M V m odels. T he fi rst al gorithm is

representative of classical MOEAs, the next five are state-of-
the-art LSMOEAs, and the last algorithm is representative
of advanced MOEAs for large-scale portfolio optimisation.
The parameters of the algorithm follow the original literature,
with a termination criterion set at 30000 function evaluations.
The efficient frontiers obtained by the different algorithms
are presented in Fig. 1. Fig. 1(a) suggests that most MOEAs
converge to the true efficient frontier in the small-scale
case, confirming the ability of the existing MOEAs to solve
small-scale portfolio optimisation problems. However, their
performance deteriorates significantly in the larger portfolio
case, as shown in Fig. 1(b). This apparent contrast highlights
the significant challenges and potential for improvement in
applying MOEAs to optimise large-scale portfolios.
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Fig. 1. The efficient fronts of the MV models obtained by the algorithms.

This study addresses a large-scale portfolio optimisation
problem involving long-term and newly listed securities in
an uncertain random environment. A multi-objective portfolio
optimisation model with realistic constraints is proposed. In
this model, the mean, variance and skewness of the portfolio
return serve as decision criteria and are complemented by
constraints such as cardinality, bounding, minimum trans-
action lot and no short selling to make the model more
comprehensive and applicable to real investment scenarios.
To solve the proposed model, a novel evolutionary algorithm
based on large-scale multi-objective optimisation techniques
is proposed. First, an encoder-decoder method is developed to
deal with the constraints and convert the proposed model into a
model without constraints. Then, an optimisation framework
based on variable space reduction is designed to solve the
converted model. Finally, a novel search strategy is developed
to improve the operational efficiency of the algorithm.

Based on the above discussion, a comparison of the features
with some important related works is given in TABLE I. The
main highlights and innovations of this study are summarised
below: (1) A multi-objective model for large-scale portfo-
lio optimisation problems with long-term listed and newly
listed securities has been proposed, taking into account the
asymmetry of both random and uncertain returns; (2) An
encoder-decoder method is presented to convert the proposed
model with realistic constraints into an unconstrained one,
allowing the application of arbitrary MOEAs to the proposed
constrained model; (3) A novel evolutionary algorithm based
on large-scale multi-objective optimisation techniques is de-
veloped to solve the proposed model effectively.

The rest of this paper is structured as follows: Section II
reviews the relevant literature. Section III briefly introduces the
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TABLE I
THE FEATURE COMPARISON WITH EXISTING APPROACHES.

Feature [15] [20] [51] [12] [52] [17] [16] Our
Asymmetric fuzzy returns × ✓ ✓ × × ✓ ✓ ✓
Asymmetric random returns × × × × × × × ✓
Skewness × ✓ × × × ✓ ✓ ✓
Environment Uncertain Random Uncertain Uncertain Uncertain Uncertain Uncertain Random Uncertain Random Uncertain Random
Cardinality × ✓ ✓ × × ✓ ✓ ✓
Transaction Lot × × × ✓ × × × ✓
Bounding × ✓ × ✓ × ✓ × ✓
No Short-selling × ✓ ✓ ✓ ✓ ✓ ✓ ✓
Risk-free Asset × × × × × × × ✓
Large-scale × × × × × × × ✓

uncertainty theory and uncertain random variables. Section IV
describes the proposed model. Section V explains the solution
algorithm. Section VI conducts case studies. Finally, Section
VII provides a conclusion.

II. LITERATURE REVIEW

Markowitz [1] proposes the MV portfolio optimisation
model, which formulates the problem in a mathematical
framework for the first time. The model uses mean and
variance to characterise return and risk, respectively. However,
variance treats investment returns above and below the mean
as equivalent to increased risk, which is unrealistic when
security returns are asymmetrically distributed. To address
this challenge, some scholars have replaced variance with a
measure of downside risk [53]; others have used skewness, the
third central moment, to measure the degree of asymmetry in
the distribution of returns [3, 54]. In these approaches, only
the randomness of financial markets is taken into account,
and security returns are treated as random variables whose
distributions can be derived from historical data. However,
in some emerging markets, there may be a lack of sufficient
trading data. In this case, some researchers consider security
returns as fuzzy variables whose distributions are estimated
by experts’ knowledge. With the development of fuzzy tech-
niques, researchers began to use fuzzy numbers to formulate
payoff distributions and to study fuzzy portfolio optimisation
problems based on three different approaches: fuzzy set theory
[5], possibility theory [55] and credibility theory [6, 56, 57].

However, fuzzy theory has been criticised for the paradoxes
associated with describing security returns using fuzzy num-
bers [58]. To better describe subjectively imprecise quantities,
Liu [8] proposes an uncertainty theory that deals with uncer-
tain quantities estimated by experts. Based on uncertainty the-
ory, many works have been done to solve uncertain portfolio
optimisation problems [9–12, 51, 52, 59]. In most real-world
situations, it is doubtful whether there is sufficient historical
data for all securities or for any securities. Consequently,
portfolio optimisation problems in the real world are usually
simultaneously associated with random and uncertain returns.
Liu [13, 14] proposes to use uncertain random variables to
model systems with randomness and uncertainty. Qin [15] is
the first to study portfolio optimisation problems in hybrid
environments using uncertain random variables. Li et al. [16]
present a mean-variance-skewness model for the uncertain
random portfolio optimisation problem. Mehlawat et al. [17]

propose a portfolio optimisation model using higher moments
in uncertain random environments.

In addition to uncertainty and randomness, real-world con-
straints are also important factors in portfolio optimisations.
The studies conducted in this area are very active, have
various constraints such as cardinality and transaction lots, and
are integrated into the existing portfolio optimisation models
[16, 17, 60]. However, the introduction of realistic constraints
has turned the models into NP-hard problems that can be com-
putationally very challenging. MOEA is a good candidate to
solve the models. Numerous works have been carried out with
the aim of using MOEAs to solve multi-objective portfolio
optimisation models with realistic constraints. Chen et al. [18]
design a novel hybrid MOEA to solve the multi-period mean-
variance-skewness model. Wang et al. [19] present a fuzzy
simulation-based particle swarm optimisation algorithm for
the bi-objective portfolio optimisation model. Chen et al. [20]
present a novel hybrid ICA-FA algorithm for solving multi-
period uncertain portfolio optimisation.

With the development of Big Data technologies, the field
of portfolio optimisation in large-scale scenarios has attracted
considerable attention. Numerous researchers have focused on
the challenge of solving large-scale MV portfolios and have
advanced the development of several efficient computational
approaches [28, 29, 31]. Nevertheless, there are still chal-
lenges in tackling large-scale portfolio optimisation models
that involve multiple objectives and complex constraints. In
this context, MOEAs have proven to be powerful tools for
tackling the computational complexity of large-scale portfolio
optimisation paradigms. A notable example is the work of
Branke et al. [33], who present an envelope-based MOEA
specifically tailored to the field of portfolio optimisation. Their
pioneering work shows remarkable superiority over several
existing MOEAs for portfolios consisting of hundreds of
assets. Similarly, Chen et al. [35] present a Genetic Relation
Algorithm with Guided Mutation for tackling large-scale port-
folio optimisation problems. Golmakani et al. [34] propose an
improved Particle Swarm Optimisation algorithm to overcome
the computational challenges of large-scale portfolio optimi-
sation with constraints. Liang et al. [36] introduce a Multi-
objective Dynamic Multi-Swarm Particle Swarm Optimiser to
meet the requirements of large-scale portfolio optimisation.
Li et al. [21] propose an improved Imperialist Competitive
Algorithm to the portfolio optimisation problem, and they
employ the parallelised optimisation techniques to improve
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ever table

computational efficiency in scenarios with large-scale individ-
ual assets.

MOEAs have shown promise in solving various optimi-
sation problems [37, 61]. In recent years, significant efforts 
have been made to solve large multi-objective optimisation 
problems, with performance improved mainly by three tech-
niques: grouping of decision variables [38–40], decision space 
reduction [41–44, 51] and novel search strategies [45–47]. In 
the last three years, a number of constrained multi-objective 
evolutionary algorithms have been developed for handling 
constraints, which exhibited outstanding performance on com-
plex constraints, small feasible regions, and large number 
of decision variables [22–24, 27]. There are various realistic 
constraints in large-scale portfolio optimisation problems, and 
solving them using evolutionary algorithms requires the design 
of effective constraint handling methods.

In summary, portfolio optimisation as a fundamental finan-
cial problem has attracted the interest of researchers in various 
fields. H owever, u sing a dvanced e volutionary a lgorithms to 
solve large-scale portfolio optimisation problems with both 
long-term listed and newly listed securities is still challenging. 
To meet this challenge, a large-scale uncertain random mean-
variance-skewness portfolio optimisation model is proposed. 
In this model, the future returns of long-term listed and newly 
listed securities are treated as random and uncertain vari-
ables, respectively. Additionlly, the constraints of cardinality, 
minimum transaction lot, boundary and prohibition of short 
selling are considered to fit t he r eal i nvestment w orld. Then, 
an encoder-decoder method is developed to convert the model 
into an unconstrained one so that any MOEA can be applied 
to solve the proposed model. Finally, a novel evolutionary 
algorithm based on large-scale multi-objective optimisation 
techniques is proposed to solve the transformed model.

III. PRELIMINARIES

Liu [8] proposes uncertainty theory as a branch of axiomatic 
mathematics to study uncertainty in relation to the degree of 
human belief. Let Γ be a non-empty set and ℓ be a σ-algebra 
over Γ. A function M : ℓ → [0, 1] is called an uncertain 
measure if it satisfies: (1) M(Γ) = 1; (2) M(Λ)+M(Λc) = 1 
for any event Λ ∈ ℓ; (3) For y coun sequence of
events Λ1,Λ2, . . ., we have M(

⋃∞
i Λi) ≤

∑∞
i M(Λi). The

triple (Γ, ℓ,M) is called an uncertain space. An uncertain
variable is a function ξ from an uncertain space (Γ, ℓ,M)
to the set of real numbers such that {ξ ∈ B} is an event for
any Borel set B. The uncertain distribution Φ of an uncertain
variable ξ is defined by Φξ(x) = M{ξ ≤ x} for any real
number x.

Definition 1: [13]. Let (Γ, ℓ,M) and (Ω,A, P ) be uncer-
tain space and probability space, respectively. The product
(Γ, ℓ,M)× (Ω,A, P ) is called a chance space. Θ ∈ ℓ×A is
called an uncertain random event. The chance measure of Θ
is defined by

Ch{Θ} =
∫ 1

0

P{ω ∈ Ω|M{γ ∈ Γ|(γ, ω) ∈ Θ} ≥ x} (1)

Definition 2: [13]. An uncertain random variable is a
function ξ from a chance space (Γ, ℓ,M) × (Ω,A, P ) to

the set of real numbers such that {ξ ∈ B} is and event in
ℓ × A for any Borel set B. Its chance distribution is defined
by Ψ(x) = Ch{ξ ≤ x}.

Definition 3: [14]. Let ξ be an uncertain random variable.
Its expected value is defined by

E[ξ] =

∫ +∞

0

Ch{ξ ≥ x}dx−
∫ 0

−∞
Ch{ξ ≤ x}dx (2)

provided that at least one of the two integrals exists.
Theorem 1: [14]. Let η1, . . . , ηn be independent random

variables with probability distributions Υ1, . . . ,Υn, respec-
tively, and let ξ1, . . . , ξn be independent uncertain variables
with probability distributions Φ1, . . . ,Φn, then the uncertain
random variable τ = f(η1, . . . , ηn, ξ1, . . . , ξn) has an ex-
pected value

E[τ ] =

∫
Rn

E[f(y1, . . . , yn, ξ1, . . . , ξn)]dΥ1 · · · dΥn (3)

Theorem 2: [13]. Let ξ1 be a random variable and ξ2 be
an uncertain variable. ξ1 or ξ2 can be regarded as a special
uncertain random variable, and ξ1 + ξ2 and ξ1 · ξ2 are also an
uncertain random variable.

Let η be a random variable and ξ be an uncertain variable.
η or ξ can be regarded as a special uncertain random variable.
η + ξ and η · ξ also can be regarded as uncertain random
variables, and their expected value can be obtained by

E[η + ξ] = E[η] + E[ξ] (4)
E[η · ξ] = E[η] · E[ξ] (5)

Proof Let us first prove Equation (4). Denote the probability
distribution of η by Υ. It follows from Theorem 1 that we have

E[η + ξ] =

∫
R
E[y + ξ]dΥ =

∫
R
E[y + E[ξ]]dΥ

= E[η] + E[ξ] (6)

The proof of Equation (5) is similar to the above process and
will not be repeated. □

Theorem 3: Denote the kth central moment of a variable x
by mk(x). Let η be a random variable and ξ be an uncertain
variable. For any a, b ∈ R, the second and third central
moments of (aη + bξ) are

m2(aη + bξ) = a2m2(η) + b2m2(ξ) (7)

m3(aη + bξ) = a3m3(η) + b3m3(ξ) (8)

Proof Let us first prove Equation (7). It follows from
Theorem 1 that we have

E [(η − E[η]) · (ξ − E[ξ])] = 0 (9)

Then, we have

m2(aη + bξ) = E[(a(η − E[η]) + b(ξ − E[ξ]))
2
]

= a2E
[
(η − E[η])2

]
+ b2E

[
(ξ − E[ξ])2

]
+ 2abE [(η − E[η]) · (ξ − E[ξ])]

= a2m2(η) + b2m2(ξ) (10)

The proof of Equation (3) is similar to the above process and
will not be repeated. □
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IV. MODEL FORMULATION

We consider a multi-objective portfolio optimisation prob-
lem with large-scale securities and a risk-free asset, where 
long-term listed and newly listed securities are represented 
simultaneously.

Let’s consider a scenario with n long-term listed securities, 
m newly listed securities, and a risk-free asset. Denote the 
random return of the i-th long-term listed security as ηi and 
the uncertain return of the j-th newly listed security as ξj , 
i = 1, . . . , n, j = 1, . . . , m. These returns are encapsulated 
in the vectors η = (η1, . . . , ηn)′ and ξ = (ξ1, . . . , ξm)′, 
respectively, with ′ representing the transpose operator. Denote 
the decision variables for the proportions allocated to the 
risk-free asset, the i-th long-term listed security and the j-
th newly listed security by x0, xi and yj , respectively. The 
portfolio vectors are symbolised as x = (x1, . . . , xn)

′ for 
the long-term listed securities and y = (y1, . . . , ym)′ for 
the newly listed securities. The portfolio vector for all assets, 
including the risk-free asset and securities, is represented as 
X = (x0, x′, y′)′. Then, the portfolio return is given by

R(X) = x0r0 + x′η + y′ξ (11)

It is worth noting that x′η is a random variable and y′ξ is an
uncertain variable, so R(X) can be considered an uncertain
random variable according to Theorem 2.

Denote the mean vector of long-term listed securities by µ.
The expected return of random return x′η is x′µ and the kth
central moment of x′η is E[(x′η − x′µ)k], which gives us
the follows:

(1) the second central moment, i.e., variance, of x′η is

V (x′η) = m2(x
′η) = x′Σx (12)

where Σ = E[(η − µ)(η − µ)′] is the covariance matrix.
(2) the third central moment of x′η is

m3(x
′η) = x′Θ(x⊗ x) (13)

where Θ = E[(η−µ)((η−µ)′⊗(η−µ)′)] is the co-skewness
matrix.

To simplify the modelling process, uncertain returns
ξ1, . . . , ξm are usually assumed to follow the same type of
uncertain distribution. Here, the uncertain returns ξj (j =
1, . . . ,m) is assumed to be a zigzag uncertain variable, whose
distribution is denoted byZ(aj , bj , cj).

In this case, the uncertain return y′ξ is also determined as
uncertain zigzag variable with distribution Z(y′a,y′b,y′c),
where a = (a1, . . . , am)′, b = (b1, . . . , bm)′ and c =
(c1, . . . , cm)′.

From the above discussions, the expected value of the
portfolio return R(X) can be determined as follows

E[R(X)] = x0r0 + E[x′η] + E[y′ξ]

= x0r0 + x′µ+ y′ · a+ 2b+ c

4
(14)

It follows from Theorem 3 that the variance of uncertain
random variable R(X) is determined by

V [R(X)] = m2(x
′η) +m2(y

′ξ)

= x′Σx+
5(y′b− y′a)2 + 5(y′c− y′b)2

48

+
6(y′b− y′a)(y′c− y′b)

48
(15)

and the third central moment of uncertain random variable
R(X) is determined by

m3(R(X)) = m3(x
′η) +m3(y

′ξ)

= x′Θ(x⊗ x) +
(y′a− 2y′b+ y′c)(y′c− y′a)2

32
(16)

Then, the skewness of the uncertain random variable R(X)
is determined by

S[R(X)] =
m3(R(X))

V [R(X)]3/2
(17)

Based on the above discussion, the three-moment port-
folio selection model can be constructed by optimising the
objectives in Equations (14)-(17) subject to some common
constraints, i.e.,

P1



min
X
{−E[R(X)], V [R(X)], − S[R(X)]} (18)

s.t. K ≤
n∑

i=1

sgn(xi) +
m∑
j=1

sign(yj) ≤ K (19)

W0xi/P
1
i ∈ N (20)

W0yj/P
2
j ∈ N (21)

sgn(xi)l
1
i ≤ sgn(xi)xi ≤ sgn(xi)u

1
i (22)

sgn(yj)l
2
j ≤ sgn(yj)yj ≤ sgn(yj)u

2
j (23)

x0 + x′1n + y′1m = 1 (24)
x0 ≥ 0, xi ≥ 0, yj ≥ 0 (25)
i = 1, . . . , n, j = 1, . . . ,m (26)

In the model, the Equation (19) represents the cardinality
constraint, which limits the number of securities held in the
portfolio to a certain interval [Kmin, Kmax]; Equations (20)
and (21) represent the minimum transaction lot constraint,
which limits the number of transaction lots invested in each
security to an integer, where W0 is the total capital and P 1

i

and P 2
j are the price of a round lot of i-th long-term listed

security and j-th newly listed security, respectively; Equations
(22) and (23) represent the boundary constraints that limit the
investment share of each security to an interval; Equations (24)
represent the budget constraint that ensures that all available
capital is used; Equation (25) prohibits short selling.

V. SOLUTION ALGORITHM

Considering that the proposed model P1 is a multi-objective
programming model with complex constraints, it would be
tedious to solve it using conventional optimisation approaches.
In this study, an encoder-decoder method is first developed
to convert the model P1 into an unconstrained model. Then,
a novel MOEA method based on large-scale optimisation

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3349073



6

techniques is proposed to solve the converted model. The 
optimisation framework of the proposed solution algorithm is 
presented in Fig. 2. Next, we introduce the essential compo-
nents of the solution algorithm.

Fig. 2. The optimisation framework of the proposed solution algorithm.

A. Constraint Handling Method

In this section, we introduce a novel approach to deal with
some common constraints in portfolio optimisation, which
provides a theoretical contribution to the application of MOEA
in the field of portfolio optimisation. The innovative constraint
handling method is used to transform portfolio optimisation
problems with practical constraints into those without con-
straints. This transformation enables a more efficient applica-
tion of existing MOEAs to constrained portfolio optimisation
problems. Compared to conventional methods for handling
constraints in MOEAs, our proposed method avoids the need
for repeated evaluations of the feasibility of solutions and
mitigates the risk of solution failure due to a large number
of infeasible solutions in the population.

A portfolio vector X = (x0,x
′,y′)′ is encoded by a real

value vector p in the following search space

∆ = {p = (p0, p1, . . . , pn+m, pn+m+1)
′ :

0 ≤ pk ≤ 1, k = 0, . . . , n+m+ 1} (27)

Given a representative vector p ∈ ∆, a unique solution X
of the model P1 satisfying all constraints is obtained by a
decoding method, i.e., X = Decode(p). Next, we introduce
the decoding method in detail.

First, the element pn+m+1 is used to indicate the number of
the held securities in the portfolio. Specifically, the cardinality
of the portfolio X is formulated as follows

K = Round (Kmin + pn+m+1 (Kmax −Kmin)) (28)

where Round(·) is the round function.
Second, the elements p1, . . . , pn+m are sorted in descending

order to p̃1, . . . , p̃n+m. Denote the serial number of the ele-
ment pk in the new order sequence by qk, k = 1, . . . , n +
m. The first K elements in the new order sequence, i.e.
p̃1, . . . , p̃K , are selected to form a potential portfolio. The
index sets of the selected long-term listed and newly listed
securities are thus respectively represented by

S1 = {k : qk ≤ K, k = 1, . . . , n} (29)
S2 = {k − n : qk ≤ K, k = n+ 1, . . . , n+m} (30)

Then, a potential portfolio X̃ = (x̃0, x̃
′, ỹ′)′ is formulated

by the normalisation operation as follows

x̃0 =
p0

p0 +
∑K

k=1 p̃k
(31)

x̃i =


p̃qi

p0 +
∑K

k=1 p̃k
, if i ∈ S1

0, if i /∈ S1

(32)

ỹj =


p̃qn+j

p0 +
∑K

k=1 p̃k
, if j ∈ S2

0, if j /∈ S2

(33)

Note that the potential solution meets the constraints of
cardinality, budget and no short sales.

The next step is to check whether the potential solution sat-
isfies the bounding constraints. If it does not, it will be moved
into the feasible space. Let l̃1i = l1i /(

∑
i∈S1

l1i +
∑

j∈S2
l2j )

and l̃2j = l2j/(
∑

i∈S1
l1i +

∑
j∈S2

l2j ) for i ∈ S1 and j ∈ S2,
respectively. The feasibility of potential solution X is tested
under the bounding constraints by the following Equation (34)

θ1 = max
i∈S1

{
max{l1i − x̃i, 0}+min{u1

i − x̃i, 0}
l̃1i − x̃i

}

θ2 = max
j∈S2

{
max{l2j − ỹj , 0}+min{u2

j − ỹj , 0}
l̃2j − ỹj

}
θ = max{θ1, θ2}

(34)

If θ = 0, the potential solution satisfies all the bounding
constraints; otherwise, θ > 0, and the potential solution is
revised to {

x̃i ← x̃i + θ · (l̃1i − x̃i), if i ∈ S1

ỹj ← ỹj + θ · (l̃2j − ỹj), if j ∈ S2

(35)

Finally, to satisfy the minimum transaction lot constraint,
the potential solution X̃ is transformed into a feasible solution
of Model P1 as follows:

xi =
P 1
i

W0
·
⌊
W0x̃i

P 1
i

⌋
, i = 1, . . . , n

yj =
P 2
j

W0
·

⌊
W0ỹj
P 2
j

⌋
, j = 1, . . . ,m

x0 = x̃0 +
n∑

i=1

(x̃i − xi) +
m∑
j=1

(ỹj − yj)

(36)

where ⌊·⌋ is the floor function. Hereby, we assume W0l
1
i and

W0l
2
i are an integer multiple of P 1

i and P 2
i , respectively, to

ensure the cardinality constraint always holds1.
In summary, the model P1 can be transformed into the

following model:

P2


min
p
{−E[R(X)], V [R(X)],−S[R(X)]}

s.t. X = Decoder(p)

0 ≤ pk ≤ 1, k = 0, . . . , n+m+ 1

1This assumption ensures that when a security is held, its investment amount
after adjusted by the floor function (see Equation (36)) is still greater than
the given lower bound.
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where Decoder() is the decoding function that maps a rep-
resentation vector p ∈ ∆ to a feasible solution for the 
constrained model P1. It is clear that the transformed model 
is an unconstrained optimisation model in the search space ∆. 
In the next subsection, a novel MOEA based on large-scale 
optimisation techniques called LMWOEA is proposed to solve 
it in the case of large-scale investment.

B. Large-scale Evolutionary Algorithm

Although the constraint handling method allows for the
easy application of arbitrary MOEAs to the proposed models,
there are still significant challenges in terms of computational
accuracy and time, especially given the large-scale securities.
To efficiently solve the model P2, a novel evolutionary algo-
rithm named LSWOEA based on large-scale multi-objective
optimisation techniques is designed. The algorithm first applies
a weighting optimisation-based decision variable reduction
technique and then develops a novel dispersed target-guided
search strategy to improve the search performance. LSWOEA
is briefly introduced in Algorithm 1.

Algorithm 1 LSWOEA(P2, B,A1)
Require: Problem P2, Multi-objective optimiser A, Single-objective

optimiser B.
Ensure: Solution population S.

1: FEmax,g1, ps← Parameter Setting. //FEmax: Maximum number
of function evaluations; g1: Number of maximum iterations in
the normal optimisation step; ps: Population size.

2: S ← Randomly initialise population of size ps for Problem P2.
3: repeat
4: S ← Weighting Optimisation(S, P2, B). //See Algorithm 2.
5: g ← 1.
6: while g ≤ g1 do
7: S1 ← Generate an offspring population of S by the multi-

objective optimiser A.
8: S ← Conduct the environment selection on S ∪ S1.
9: R ← Create a set of reference vectors. //See Subsection

V-B2.
10: S ← Dispersed Target Guided Strategy(S, P2, R). //See

Algorithm 3.
11: g ← g + 1.
12: end while
13: until All function evaluations are used.
14: return S

It should be noted that a population-based multi-objective
optimiser and a single-objective optimiser must be included
in the optimisation process. In this study, at each generation,
the multi-objective optimiser A is randomly selected from
the traditional MOEAs, including NSGA-II [48], MOEA-D
[62], SMPSO [63] and NSGA-III [64], and the single-objective
optimiser B is implemented by the widely used DE [65].

1) Decision Space Reduction Method: In recent
years, large-scale multi-objective evolutionary algorithms
(LSMOEAs) have become a vibrant area of research in
which a large number of advanced techniques have emerged.
We hypothesise that the use of these techniques could
effectively solve complex large-scale portfolio optimisation
problems. Therefore, we evaluate the effectiveness of various
advanced LSMOEAs for large-scale portfolio optimisation.
Our findings show that LSMOF [42] excels in large-scale

portfolio optimisation. This finding is an important motivation
to integrate the decision space reduction methods of LSMOF
[42] into our proposed algorithm. From a practical point
of view, the application of the decision space reduction
technique greatly improves the solution performance of
MOEAs in large-scale portfolio optimisation and provides
valuable insights to overcome the challenges posed by such
problems.

Let N = n+m+1 be the dimension of decision variables.
Taking a fixed solution p̃ as a reference point, two direction
vectors are defined as follows{

vl = p̃− 0N

vu = 1N − p̃
(37)

where 0N and 1N are the lower and upper boundary points
of the search space. Given two weight variables w1 and w2

between 0 and 0.5, two corresponding points in the search
space are determined by

pnew
1 = 0N + w1

vl

∥vl∥
lmax

pnew
2 = 1N − w2

vu

∥vu∥
lmax

(38)

where lmax = ∥1N − 0N∥ =
√
N is the maximum diagram

length in the search space. Then the objective values associated
with the weight variables w1 and w2 can be calculated as
follows {

gl(x̃, w1) = f(xnew
1 )

g2(x̃, w2) = f(xnew
2 )

(39)

Given a set of reference solutions of size h, once
each of them is associated with two weighting vari-
ables, a total number of 2h new solutions can be con-
structed. Specifically, denote the set of reference solutions
by P̃ = {p̃′

1, . . . , p̃
′
h} and the weight vector by w =

(w11, w12, . . . , wh1, wh2)
′. The corresponding 2h solutions,

denoted by pnew
11 ,pnew

12 , . . . ,pnew
h1 ,pnew

h2 , can be generated
according to Equations (37) and (38) and their objective values
can be calculated according to Equation (39). Assume that
the set of reference points P̃ is given. In this case, the
optimisation of the decision vector p in the original problem
can be converted into an optimisation of the weight vector w
to find a set of superior solutions for the original problem.
Here the metric of hypervolume (HV) [66] is used to evaluate
the quality of a set of solutions. Denote the HV of 2h solutions
associated with the weight vector w and the reference point
set X̃ by H(w, X̃). Then, for an arbitrary but fixed set
of reference solutions P̃ , the original problem P can be
reconstructed as the following one-objective model

P3(X̃)


max
w

f(w) = H(w, X̃)

s.t. w = (w11, w12, . . . , wh1, wh2)
′ ∈ R2h

0 ≤ wj1, wj2 ≤ 0.5, j = 1, . . . , h

It can be seen that the weighting optimisation problem P3(X̃)
has only 2h < N decision variables, which serves the purpose
of decision space reduction by bounding the search space.
Model P3(X̃) is optimised with a single objective optimiser
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with population size psw. In each iteration, up to 2h · psw 
new solutions (de-duplicated) to the original problem P can 
be obtained, which are collected as candidate solutions.

Obviously, the original problem P and the weight optimi-
sation problem P3(X̃ ) are complementary. On the one hand, 
Model P can reach all possible solutions, but it can converge 
very slowly in a large-dimensional space. On the other hand, 
Model P3(X̃ ) has the disadvantage of restricting the search 
space and the advantage of searching a smaller space more 
thoroughly. To exploit the synergy of these two formulations, 
two different optimisation phases are alternated: a normal 
optimisation step and a weight optimisation step. The original 
problem P is optimised in the normal optimisation step for 
fixed f unction evaluations o f g 1. T hen, t he w eighting optimi-
sation step is performed for h different reference solutions, as 
shown in Algorithm 2.

Algorithm 2 Weighting Optimisation(S, P,B)
Require: Population S, Original Problem P , Single-objective opti-

miser B.
Ensure: New Population S.

1: h, psw, g2 ← Parameter setting. //h: Number of reference solu-
tions; psw: Population size; g2: Maximum number of iterations.

2: X̃ = {x̃1, . . . , x̃h} ← Conduct the environment selection on S
to select h reference solutions.

3: P3(X̃)← Construct a weighting optimisation problem.
4: H ← Randomly initialise population of size psw for problem

P3(X̃).
5: S1 ← Collect the generated candidate solutions based on the

initial population H . //See Equations (37) and (38).
6: for all g = 1, . . . , g2 do
7: H ← Optimize Problem P3(X̃) with optimiser B.
8: S2 ← Collect the generated candidate solutions based on the

current population H . //See Equations (37) and (38).
9: S1 ← S1 ∪ S2.

10: end for
11: S ← Conduct the environment selection on S ∪ S1 to select ps

solutions.
12: return S

2) A novel search strategy: We introduce a novel search
strategy based on a distributed goal-directed approach to
further improve the solution performance of the proposed
algorithm. This search strategy consists of assigning a unique
reference point to each parent solution, followed by deriving
a unique single-objective search goal for each parent solution
based on their respective reference points. This technique
improves the convergence and dispersion of the resulting
solution set, which is facilitated by the decentralised search
directions for each parent solution.

First, a set of reference vectors R = {r1, . . . , rNf
} on a

normalised (M−1)-dimensional hyperplane is established for
the M -objective problem. In this study, a method from [67] is
used to generate the Nf reference vectors widely distributed
on the entire normalised hyperplane.

Second, the objective vectors of the parent population are
normalised. Suppose that Nf solutions are selected from the
current population to form the parent population denoted
by Sp = {p1, . . . ,pNf

}. The ideal point and the anti-ideal
point of the population are determined by the minimum and
maximum values for each objective function, respectively, i.e.,

zmin = (zmin
1 , . . . , zmin

M )′ and zmax = (zmax
1 , . . . , zmax

M )′.
Then the normalised objective functions for each solution are
defined by

fn
i (p|Sp) =

fi(p)− zmin
i

zmax
i − zmin

i

, i = 1, . . . ,M (40)

Then each member of the parent population is associated with
a unique reference vector. The matching problem is considered
as a classical assignment problem where the objective is to
minimise the total distance between individuals and relevant
reference points. Denote the decision variable as D = {dij} ∈
RNf×Nf . Then the assignment model is formulated as follows

P4



min
D

Nf∑
i=1

Nf∑
j=1

dij · ∥fn(xi|Sp)− rj∥

s.t.

Nf∑
i=1

dij = 1, j = 1, . . . , Nf

Nf∑
j=1

dij = 1, i = 1, . . . , Nf

dij ∈ {0, 1}

(41)

where ∥ · ∥ is the L2-norm function and dij = 1 indicates
that the solution xi is ordered to the reference point rj . It can
be seen that the model P3 is an integer linear programming
problem that can be solved with the function ‘intlinprog’ in
MATLAB.

Next, the search direction for each parent solution is con-
structed. Define a target function for the parent solution xi

f t
i (x|D) =

Nf∑
j=1

di,jr
′
jf

n(x|Sp), i = 1, . . . , Nf (42)

where fn(x|Sp) = (fn
1 (x|Sp), . . . , f

n
M (x|Sp))

′. Then we
randomly generate a direction vector vi = (vi,1, . . . , vi,N )′

for the parent solution xi, where vi,1 ∈ {−1, 1}. Let

gi = f t
i (pi + δvi|D)− f t

i (pi − δvi|D), i = 1, . . . , Nf (43)

where δ is a fully small positive number. gi > 0 indicates that
a small step in xi towards direction vi will cause the target
value f t

i (xi|D) to increase, and vice versa.
Finally, the offspring solution pnew

i of the parent solution pi

is generated along the search direction that reduces the target
function:

pnew
i =

{
pi + rand · (0.5 + 0.5vi − pi), if gi ≤ 0

pi + rand · (0.5− 0.5vi − pi), if gi > 0
(44)

where rand ∈ [0, 1] is a random coefficients. Equation
(44) drives solution xnew

i in the direction of decreasing the
objective value and ensures that its elements remain between
[0, 1].

In summary, Algorithm 3 represents the pseudocode of the
dispersed target-guided search strategy.

VI. NUMERICAL EXPERIMENTS

In this section, a numerical experiment is presented to
illustrate the applicability and effectiveness of the proposed
model and algorithm.
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Algorithm 3 Dispersed Target Guided Strategy(S, P,R)
Require: Population S, Problem P , A Set of Reference Solutions

R = (r′
1, . . . , r

′
Nf

).
Ensure: New Population S.

1: Sp ← Randomly select Nf solutions from Population S as
parents.

2: fn
1 (x|Sp), . . . , f

n
M (x|Sp)← Define the normalize functions for

the parent population. //See Equation (40).
3: D ← Assign each parent to a unique reference vector by solving

Problem P4.
4: for all i = 1, . . . , Nf do
5: f t

i (x|D)← Define the target objective function for the parent
solution xi. //See Equation (42).

6: vi ← Randly generate a direction vector for the parent
solution xi and construct the judgment indicator gi. //See
Equation (43).

7: xnew
i ← Generate a offspring population for the parent

solution xi. //See Equation (44).
8: end for
9: S ← Conduct the environment selection on S ∪ {xnew

i }Nf

i=1.
10: return S

A. Implementation in A Small Case

Now consider a portfolio optimisation problem with 20
long-term listed securities (A1-A20) and 10 newly listed
securities (A21-A30). The securities are randomly selected
from the Shanghai Stock Exchange (SSE). We use historical
data of 614 weekly returns to estimate the random returns
and historical data of only 51 weekly returns to the uncertain
returns.

The initial capital W0 is set at CNY 1 million. A round
lot of securities on the SSE is 100 shares. The minimum and
maximum number of securities held is set at Kmin = 9 and
Kmax = 21, respectively. The minimum investment amount
of securities is 0.01, and the upper limits of investment shares
are set at 0.6 for all securities. Additionally, some general
parameters for the proposed LSWOEA are given as follows:
FEmax = 30000, ps = 120, g1 = 50, h = 10, psw = 10 and
g2 = 50.

The LSWOEA algorithm is used to address the portfolio
optimisation problem and obtain a set of effective solutions.
Investors can review the options generated and select the
investment strategy that best fits their objectives. For exam-
ple, if an investor’s primary objective is to achieve a high
return, the first step would be to identify a set of proposed
solutions where the target for risk and skewness exceeds
the 30th percentile. The investment strategy with the highest
expected return would then be selected from this group of
solutions. We show three investment strategies with different
target preferences in Fig. 3. Note that securities with an
investment share of 0 have not been included for reasons
of space. The number shown above each bar represents the
number of transaction lots (100 shares/lot). As can be seen
in Fig. 3, the solutions satisfy all realistic constraints, such
as the cardinality constraint, the minimum transaction lot
constraint and the bounding constraint. The return preference
and skewness preference investment strategies allocate more
funds to A30 and A18, respectively, while the risk preference
investment strategy tends to hold the risk-free asset. The results
indicate that the proposed approach is practical to solve the

multi-objective portfolio optimisation problem with realistic
constraints.

B. Algorithm Comparison
Next, we gradually increase the number of securities in the

experiments and examine six different data sets composed of
long-term listed securities with quantities of n = 20, 150, 300,
450, 600 and 750 and newly listed securities with quantities
of m = 10, 50, 100, 150, 200 and 250.

To empirically investigate the performance of LSWOEA,
nine existing MOEAs are selected as the baselines for the
experiments, namely, SparseEA [22], SECSO [68], MSKEA
[69], MPMMEA [70], LSWOF-NSGA-II [42], LMOEADS
[43], FLEA [49], LERD [50]) and IFMOICA [21]. For fair
comparisons, the population size and the maximum number
of objective evaluations for all algorithms are set to 120 and
30000, respectively. Other recommended parameter settings
for the compared algorithms are taken from the original
literature. All compared algorithms are reproduced based on
the PlatEMO [71] and the original literature. To evaluate the
algorithms directly, we use the indicator hypervolume (HV)
[66] to quantify the performance of each solution set. This in-
dicator is well known for measuring convergence and diversity
in multi-objective optimisation and is therefore popular when
the true Pareto front of the problem is unknown. For a more
accurate calculation, the objective space is normalised to [0,
1] by the max-min method based on all solutions in a test.
The reference point for calculating HV is set to the maximum
values of the normalised objectives, i.e. (1, 1, 1)′.

In the comparisons, we repeated the comparisons for each
algorithm in 200 runs to obtain statistical results. The box-
plots of the resulting HV scores are shown in Fig. 4. This
analysis shows that our LSWOEA algorithm outperforms the
benchmark algorithms in all six datasets. It is noteworthy
that among the benchmark algorithms, three that specialise in
large-scale sparse MOEAs (SparseEA, SECSO and MSKEA)
show commendable performance, which is consistent with the
sparse nature of our proposed portfolio model. However, our
LSWOEA algorithm significantly outperforms these alterna-
tives in terms of solution efficiency and stability, confirming
its superior performance capabilities.

For a more intuitive presentation, we listed the best, 75th
quantile, median, 25th quantile, worst and mean HV values
achieved by each algorithm in the 200 tests, as summarised
in TABLE II. We also performed statistical tests to illustrate
the statistical significance of our experimental results. To this
end, we used the Mann-Whitney U test, a widely recognised
non-parametric statistical method, to assess significant differ-
ences in the HV values generated by each pair of algorithms
[72, 73]. Given the 45 pairwise comparisons between the ten
algorithms, the Bonferroni correction method is applied to
adjust the significance level and the new alpha level is set
at α = 0.05/45 = 0.0011. We list the p values resulting from
these statistical tests for the proposed LSWOEA algorithm
compared to each comparison algorithm in the last row of
each database in TABLE II.

TABLE II shows that all p values are much smaller than
α, indicating a significant difference between the HV values
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Fig. 3. The three investment strategies with different objective preferences.
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(b) n = 150, m = 50
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(c) n = 300, m = 100
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(d) n = 450, m = 150
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(e) n = 600, m = 200
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Fig. 4. The boxplots of the HVs of the algorithms.

generated by the LSWOEA algorithm and the values generated
by the other algorithms. As can be seen from the table,
LSWOEA achieves higher HV values than other algorithms in
the most cases. Although the worst HV of LSWOEA is slightly
lower than the other algorithms at some datasets, it consistently
outperforms the other algorithms in terms of other quantiles
and mean performance. For example, LSWOEA consistently
achieves the optimal HV value of the 25th percentile for
all datasets, demonstrating its robust performance even under
less favourable conditions. In summary, LSWOEA exhibits a
remarkable ability to tackle large-scale portfolio optimisation
problems, indicating its potential to improve the performance
of evolutionary algorithms in optimisation.

To verify the effectiveness of the proposed constraint han-
dling method, we have conducted extensive experiments to
evaluate this approach in the context of portfolio optimisa-
tion. For comparison, we use some SoTA constrained multi-
objective evolutionary algorithms (CMOEAs) to directly solve
the proposed model with 1000 securities. In particular, integer
constraints in the model are handled by the encoding method,

while other inequality or equality constraints are handled by
the constraint violation method. We select six SoTA CMOEAs
as follows: CCMO [22], cDPEA [23], ICMA [24], MOEAD-
DAE [25], SparseEA [74], and MSKEA [69]. Moreover, we
apply the above algorithms to the model after eliminating
the constraints to verify the effectiveness of the proposed
constraint handling method. We ran each algorithm 50 times
independently and plot the mean HV values in Fig. 5.

Fig. 5 shows that, with the exception of the ICMA algo-
rithm, applying the evaluated CMOEAs to the model after
eliminating constraints achieves higher HV values than apply-
ing them directly to the model before eliminating constraints.
This observation shows that our proposed constraint handling
method effectively improves the solution performance of most
algorithms for solving portfolio optimisation problems with
constraints. Moreover, Fig. 5 suggests that our proposed
LSWOEA algorithm achieves higher HV values than all six
CMOEAs after constraint elimination, indicating that the pro-
posed solution algorithm has significant advantages in solving
large-scale portfolio optimisation problems with constraints.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3349073



11

TABLE II
THE BEST, 75TH QUANTILE, MEDIAN, 25TH QUANTILE, WORST AND MEAN HVS OF THE ALGORITHMS AND THE RESULTS OF THE STATISTICAL TESTS.

(n, m) - LSWOEA SparseEA SECSO MSKEA MPMMEA LSMOF LMOEADS FLEA LERD IFMOICA

(20, 10)

Best 0.4841 0.4705 0.4789 0.4422 0.4805 0.4715 0.4794 0.4692 0.4784 0.3454
75th quantile 0.4739 0.4458 0.4518 0.4198 0.4691 0.4528 0.4655 0.2663 0.4520 0.1858
Median 0.4687 0.4194 0.4231 0.3949 0.4579 0.4466 0.4527 0.2417 0.4210 0.1646
25th quantile 0.4576 0.3940 0.3977 0.3630 0.4495 0.4354 0.4293 0.2101 0.3715 0.1482
Worst 0.4226 0.3676 0.3645 0.3415 0.4278 0.3573 0.3986 0.0960 0.1873 0.1288
Mean 0.4654 0.4196 0.4238 0.3930 0.4583 0.4424 0.4496 0.2415 0.3965 0.1722
p-value - 4.83E-67 4.83E-67 4.90E-67 2.47E-09 2.52E-42 1.71E-19 4.69E-66 1.62E-36 4.83E-67

(150, 50)

Best 0.6048 0.5352 0.5743 0.5423 0.5945 0.5720 0.5631 0.5647 0.5643 0.0110
75th quantile 0.5706 0.5023 0.5062 0.5132 0.5474 0.5385 0.5474 0.3861 0.4085 0.0099
Median 0.5633 0.4690 0.4783 0.4902 0.5323 0.5161 0.5405 0.2872 0.3421 0.0096
25th quantile 0.5530 0.4479 0.4490 0.4641 0.5127 0.4888 0.5342 0.2052 0.2310 0.0093
Worst 0.5076 0.3379 0.3185 0.3315 0.3041 0.3578 0.4913 0.0230 0.0243 0.0085
Mean 0.5627 0.4734 0.4757 0.4861 0.5294 0.5108 0.5396 0.2872 0.3183 0.0096
p-value - 1.12E-66 5.61E-67 3.51E-47 1.22E-36 1.33E-52 3.42E-47 1.62E-64 3.09E-65 4.83E-67

(300, 100)

Best 0.5875 0.5355 0.5391 0.5285 0.5782 0.5435 0.5350 0.5452 0.1337 0.0080
75th quantile 0.5594 0.4941 0.4631 0.4998 0.5143 0.4883 0.5153 0.0314 0.0121 0.0069
Median 0.5497 0.4724 0.4384 0.4702 0.4913 0.4557 0.5054 0.0121 0.0110 0.0067
25th quantile 0.5417 0.4469 0.4103 0.4457 0.4559 0.4143 0.4935 0.0066 0.0102 0.0065
Worst 0.4416 0.3370 0.2296 0.3491 0.0597 0.1606 0.4107 0.0054 0.0081 0.0061
Mean 0.5490 0.4702 0.4340 0.4721 0.4596 0.4440 0.5017 0.0477 0.0152 0.0067
p-value - 1.71E-64 1.51E-66 1.94E-43 3.44E-52 1.92E-63 1.49E-60 2.91E-66 4.83E-67 4.83E-67

(450, 150)

Best 0.6050 0.5458 0.5489 0.5358 0.5657 0.5659 0.5415 0.5236 0.0125 0.0065
75th quantile 0.5707 0.5109 0.4767 0.5041 0.5260 0.4910 0.5103 0.0130 0.0090 0.0058
Median 0.5644 0.4865 0.4455 0.4801 0.4883 0.4532 0.4967 0.0056 0.0086 0.0057
25th quantile 0.5554 0.4636 0.4194 0.4573 0.2563 0.3956 0.4797 0.0051 0.0080 0.0055
Worst 0.1797 0.3721 0.2476 0.3414 0.0122 0.0814 0.0292 0.0045 0.0069 0.0051
Mean 0.5596 0.4856 0.4446 0.4780 0.4029 0.4357 0.4713 0.0240 0.0086 0.0057
p-value - 1.14E-63 2.40E-64 6.65E-52 6.01E-58 8.10E-62 2.54E-63 6.14E-67 4.83E-67 4.83E-67

(600, 200)

Best 0.6107 0.5598 0.5640 0.5532 0.6022 0.6068 0.5423 0.3618 0.0123 0.0063
75th quantile 0.5865 0.5245 0.4941 0.5259 0.5405 0.4969 0.4917 0.0066 0.0087 0.0059
Median 0.5805 0.4987 0.4660 0.4996 0.4928 0.4499 0.4720 0.0054 0.0082 0.0058
25th quantile 0.5727 0.4763 0.4381 0.4686 0.0924 0.3609 0.4322 0.0050 0.0077 0.0056
Worst 0.1925 0.1521 0.1326 0.1810 0.0090 0.0248 0.0210 0.0046 0.0064 0.0052
Mean 0.5775 0.4897 0.4591 0.4932 0.3589 0.4148 0.4362 0.0100 0.0082 0.0058
p-value - 4.61E-65 1.35E-65 5.41E-51 1.09E-56 1.28E-63 1.59E-65 4.90E-67 4.83E-67 4.83E-67

(750, 250)

Best 0.6247 0.5636 0.5790 0.5592 0.6056 0.6021 0.5375 0.3600 0.0111 0.0071
75th quantile 0.5974 0.5365 0.4980 0.5228 0.5526 0.5043 0.4558 0.0063 0.0090 0.0064
Median 0.5895 0.5133 0.4663 0.5010 0.5206 0.4461 0.4102 0.0056 0.0085 0.0063
25th quantile 0.5767 0.4820 0.4402 0.4761 0.1322 0.3684 0.1537 0.0053 0.0081 0.0062
Worst 0.1922 0.1434 0.1502 0.2301 0.0098 0.0735 0.0175 0.0049 0.0067 0.0058
Mean 0.5827 0.4977 0.4626 0.4933 0.3825 0.4130 0.3333 0.0096 0.0086 0.0063
p-value - 2.25E-49 1.51E-53 5.49E-39 1.23E-45 9.24E-51 3.55E-57 5.61E-67 4.83E-67 4.83E-67
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Fig. 5. The mean HVs obtained by the algorithms before and after the
elimination of constraints.

C. Further Analysis

The running time is an important factor to explain the
functionality of the algorithm in practical applications. The
relevant codes of our experiments are implemented in MAT-

LAB R2021a, with Windows 11 systems configured as Intel
(R) Core (TM) i7-12700H CPU with 2.30 GHz. We present
the average CPU time of the comparative algorithms with
different numbers of securities in Fig. 6. Fig. 6 shows the
LSWOEA has a slightly higher running time than the com-
parative algorithms. As the number of securities increases, the
running time of the LSWOEA also increases slightly. In the
case of 1000 securities, the LSWOEA takes about 15 seconds
to execute, which is within an acceptable range and indicates
that it is implementable and practical in large-scale portfolio
optimisation.

Moreover, we conducted an experiment to evaluate and
compare the performance of the algorithms at different num-
bers of maximum function evaluations FEmax. Specifically,
we applied the algorithms to solve the portfolio optimisation
problem with (n = 750,m = 250) dimensions 50 times and
recorded the efficient solutions obtained by the algorithms
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Fig. 6. The average CPU time of the comparative algorithms with different
numbers of securities.

at FEmax = 20000, 25000, . . . , 60000. We then plotted the
mean HV values of the algorithms over these 50 tests in
Fig. 7. Fig. 7 shows that The average HV values of FLEA,
LERD and IFMOICA almost overlap near 0, indicating that
they perform poorly in large-scale portfolio optimisation. The
MPMMEA, LSMOF and LMOEADS algorithms exhibit a
significant increase in mean HV at higher FEmax values. This
observation indicates that these algorithms benefit significantly
from a higher number of iterations. In contrast, the LSWOEA,
SparseEA and MSKEA algorithms show a slight increase in
mean HV with increasing FEmax. This observation indicates
that our proposed LSWOEA algorithm already achieves good
convergence results at 20000 function evaluations, which
means that further increasing the number of iterations does
not significantly increase the performance of the algorithm.
The experimental results show the accelerated convergence
of our proposed LSWOEA algorithm to a superior set of
approximate Pareto-optimal solutions. This is a convincing
proof of the superior solution performance and excellent con-
vergence efficiency of the proposed algorithm, which enhances
the robustness and credibility of our study.
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Fig. 7. The mean HVs obtained by the algorithms under different numbers
of FEmax.

In our proposed LSWOEA algorithm, the parameters g1 and
g2 are used to control the number of iterations during the
normal optimisation and weight optimisation steps in a main
loop. We performed an empirical analysis of the influence of
these two parameters in the revised manuscript. To do so,
we used LSWOEA with different values for g1 and g2 to
handle portfolio optimisation problems with different security

dimensions. Specifically, We set g1 to 10, 30, . . . , 130 and
kept g2 constant at 50. Conversely, g1 is set to 50 and g2
is set to 10, 30, . . . , 130. For each parameter combination, the
algorithm is run 50 times, followed by the calculation of the
mean hypervolume (HV) values for the resulting solution sets.
The summarised results are shown in Fig. 8.
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Fig. 8. The mean HVs obtained by LSWOEA with different settings of g1
and g2.

Fig. 8(a) shows that the influence of g1 on the performance
of the algorithm is negligible when dealing with scenarios
characterised by a low security dimension. However, the
performance of the algorithm shows an increasing trend when
g1 increases in the context of higher security dimensions. We
therefore recommend setting g1 above 50 when dealing with
large portfolio optimisation problems. Fig. 8(b) shows that
the performance of the proposed algorithm does not seem to
be affected by different settings of g2. This phenomenon is
mainly due to the minimal number of function evaluations
required during the weighting optimisation step to achieve
convergence, which is consistent with the observations of the
LSMOF algorithm [42].

VII. CONCLUSION

This study discusses the application of evolutionary multi-
objective optimisation to a large-scale portfolio selection
problem with long-term listed and newly listed securities. A
model of multi-objective portfolio optimisation with real con-
straints is proposed. In terms of solution algorithms, this study
addresses two dilemmas of MOEA in large-scale portfolio
optimisation problems. On the one hand, an encoder-decoder
method is developed to deal with the complex constraints
and to provide a solution framework for applying arbitrary
MOEAs to portfolio selection problems. On the other hand, a
novel MOEA for large-scale portfolio optimisation is proposed
enrich the practise of evolutionary algorithms in the portfolio
optimisation community.

To evaluate the effectiveness of the proposed model and
algorithm, a numerical experiment analysis is performed for a
large-scale portfolio optimisation problem with hundreds of se-
curities. To illustrate the practicality of the proposed approach,
the experiment first systematically examines a small-scale
problem. The number of securities is then gradually increased
to allow a comparison of the proposed LSWOEA with some
state-of-the-art MOEAs. The experimental results show that
LSWOEA maintains excellent performance and stability when
the number of securities significantly increases, while all
other compared algorithms drop sharply. Despite a slightly
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longer run time compared to other benchmark MOEAs, the 
LSWOEA still demonstrates superior solution performance, 
enabling it to solve portfolio selection problems involving 
thousands of securities effectively. In summary, the proposed 
approach provides an effective solution framework for large-
scale portfolio optimisation and enriches the practical appli-
cability of evolutionary algorithms and portfolio optimisation 
in the context of Big Data.

Considering some limitations of this study, the main ways in 
which it can be extended in the future are as follows. Firstly, 
the algorithm presented in the novel search strategy uses a 
modified pseudo-gradient method for s ingle-objective optimi-
sation. The potential for further improvements can be realised 
by incorporating more advanced and effective optimisation 
techniques. Secondly, it should be noted that our proposed 
algorithm does not have a significant a dvantage i n t erms of 
running time. Our future research may focus on improving 
the solution efficiency. Finally, in future work we may look at 
the economic significant o f t he p roposed m ethod b y running 
a number of financial backtests on h istorical financial data.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support 
provided by the Humanities and Social Science Fund of 
the Ministry of Education [grant number 21YJA630117], the 
National Natural Science Foundation of China [grant number 
72371080; 62373224], the Guangdong Basic and Applied Ba-
sic Research Foundation [grant number 2023A1515012840], 
and the Special Project of Guangzhou Basic and Applied Basic 
Research [grant number SL2024A04J02640].

REFERENCES

[1] H. Markowitz, “Portfolio selection,” The Journal of Fi-
nance, vol. 7, no. 1, pp. 77–91, 1952.

[2] N. Lassance, “Reconciling mean-variance portfolio the-
ory with non-gaussian returns,” European Journal of
Operational Research, vol. 297, no. 2, pp. 729–740,
2022.

[3] P. Theodossiou and C. S. Savva, “Skewness and the
relation between risk and return,” Management Science,
vol. 62, no. 6, pp. 1598–1609, 2015.

[4] J. Borovicka, L. P. Hansen, and J. A. Scheinkman,
“Misspecified recovery,” Journal of Finance, vol. 71,
no. 6, pp. 2493–2544, 2016.

[5] P. Gupta, M. K. Mehlawat, and A. Saxena, “Asset port-
folio optimization using fuzzy mathematical program-
ming,” Information Sciences, vol. 178, no. 6, pp. 1734–
1755, 2008.

[6] M. K. Mehlawat, P. Gupta, A. Kumar, S. Yadav, and
A. Aggarwal, “Multiobjective fuzzy portfolio perfor-
mance evaluation using data envelopment analysis under
credibilistic framework,” IEEE Transactions on Fuzzy
Systems, vol. 28, no. 11, pp. 2726–2737, 2020.

[7] Y. Zhang, W. L. Liu, and X. Y. Yang, “An automatic
trading system for fuzzy portfolio optimization problem
with sell orders,” Expert Systems with Applications, vol.
187, 2022.

[8] B. Liu, Uncertainty theory. 2nd ed. Berlin: Springer-
Verlag, 2007, vol. 154.

[9] X. X. Huang, “A risk index model for portfolio selec-
tion with returns subject to experts’ estimations,” Fuzzy
Optimization and Decision Making, vol. 11, no. 4, pp.
451–463, 2012.

[10] X. X. Huang and H. Di, “Uncertain portfolio selection
with background risk,” Applied Mathematics and Com-
putation, vol. 276, pp. 284–296, 2016.

[11] J. Zhai and M. Y. Bai, “Mean-risk model for uncertain
portfolio selection with background risk,” Journal of
Computational and Applied Mathematics, vol. 330, pp.
59–69, 2018.

[12] Y. Z. Dai and Z. F. Qin, “Multi-period uncertain portfolio
optimization model with minimum transaction lots and
dynamic risk preference,” Applied Soft Computing, vol.
109, p. 107519, 2021.

[13] Y. Liu, “Uncertain random variables: A mixture of uncer-
tainty and randomness,” Soft Computing, vol. 17, no. 4,
pp. 625–634, 2013a.

[14] ——, “Uncertain random programming with applica-
tions,” Fuzzy Optimization and Decision Making, vol. 12,
no. 2, pp. 153–169, 2013b.

[15] Z. F. Qin, “Mean-variance model for portfolio optimiza-
tion problem in the simultaneous presence of random
and uncertain returns,” European Journal of Operational
Research, vol. 245, no. 2, pp. 480–488, 2015.

[16] B. Li and K. L. Teo, “Portfolio optimization in real
financial markets with both uncertainty and randomness,”
Applied Mathematical Modelling, vol. 100, pp. 125–137,
2021.

[17] M. K. Mehlawat, P. Gupta, and A. Z. Khan, “Portfolio
optimization using higher moments in an uncertain ran-
dom environment,” Information Sciences, vol. 567, pp.
348–374, 2021.

[18] W. Chen, Y. Wang, P. Gupta, and M. K. Mehlawat,
“A novel hybrid heuristic algorithm for a new uncertain
mean-variance-skewness portfolio selection model with
real constraints,” Applied Intelligence, vol. 48, no. 9, pp.
2996–3018, 2018.

[19] B. Wang, Y. Li, S. M. Wang, and J. Z. Watada, “A multi-
objective portfolio selection model with fuzzy value-at-
risk ratio,” IEEE Transactions on Fuzzy Systems, vol. 26,
no. 6, pp. 3673–3687, 2018.

[20] W. Chen, D. D. Li, and Y. J. Liu, “A novel hybrid
ICA-FA algorithm for multiperiod uncertain portfolio
optimization model based on multiple criteria,” IEEE
Transactions on Fuzzy Systems, vol. 27, no. 5, pp. 1023–
1036, 2019.

[21] C. Li, Y. L. Wu, Z. H. Lu, J. Wang, and Y. H. Hu,
“A multiperiod multiobjective portfolio selection model
with fuzzy random returns for large scale securities data,”
IEEE Transactions on Fuzzy Systems, vol. 29, no. 1, pp.
59–74, 2021.

[22] Y. Tian, X. Zhang, C. Wang, and Y. Jin, “An evolution-
ary algorithm for large-scale sparse multiobjective opti-
mization problems,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 2, pp. 380–393, 2020.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3349073



14

[23] M. Ming, A. Trivedi, R. Wang, D. Srinivasan, and
T. Zhang, “A dual-population-based evolutionary algo-
rithm for constrained multiobjective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 25,
no. 4, pp. 739–753, 2021.

[24] J. Yuan, H.-L. Liu, Y.-S. Ong, and Z. He, “Indicator-
based evolutionary algorithm for solving constrained
multiobjective optimization problems,” IEEE Transac-
tions on Evolutionary Computation, vol. 26, no. 2, pp.
379–391, 2022.

[25] Q. Zhu, Q. Zhang, and Q. Lin, “A constrained multi-
objective evolutionary algorithm with detect-and-escape
strategy,” IEEE Transactions on Evolutionary Computa-
tion, vol. 24, no. 5, pp. 938–947, 2020.

[26] K. Yu, J. Liang, B. Qu, Y. Luo, and C. Yue, “Dynamic
selection preference-assisted constrained multiobjective
differential evolution,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 52, no. 5, pp. 2954–
2965, 2022.

[27] J. Liang, K. Qiao, K. Yu, B. Qu, C. Yue, W. Guo,
and L. Wang, “Utilizing the relationship between un-
constrained and constrained pareto fronts for constrained
multiobjective optimization,” IEEE Transactions on Cy-
bernetics, vol. 53, no. 6, pp. 3873–3886, 2023.

[28] A. Perold, “Large-scale portfolio optimization,” Manage-
ment Science, vol. 30, no. 10, pp. 1143–1160, 1984.

[29] M. Hirschberger, Y. Qi, and R. E. Steuer, “Large-scale
MV efficient frontier computation via a procedure of
parametric quadratic programming,” European Journal
of Operational Research, vol. 204, no. 3, pp. 581–588,
AUG 1 2010.

[30] J. A. Sirignano, G. Tsoukalas, and K. Giesecke, “Large-
scale loan portfolio selection,” Operations Research,
vol. 64, no. 6, pp. 1239–1255, 2016.

[31] B. Chu, J. Knight, and S. Satchell, “Large deviations
theorems for optimal investment problems with large
portfolios,” European Journal of Operational Research,
vol. 211, no. 3, pp. 533–555, JUN 16 2011.

[32] M. Costola, B. Maillet, Z. Yuan, and X. Zhang, “Mean-
variance efficient large portfolios: a simple machine
learning heuristic technique based on the two-fund sep-
aration theorem,” Annals of Operations Research, 2022
SEP 9 2022.

[33] J. Branke, B. Scheckenbach, M. Stein, K. Deb, and
H. Schmeck, “Portfolio optimization with an envelope-
based multi-objective evolutionary algorithm,” European
Journal of Operational Research, vol. 199, no. 3, pp.
684–693, 2009.

[34] H. R. Golmakani and M. Fazel, “Constrained portfolio
selection using particle swarm optimization,” Expert Sys-
tems with Applications, vol. 38, no. 7, pp. 8327–8335,
JUL 2011.

[35] Y. Chen, S. Mabu, and K. Hirasawa, “Genetic relation al-
gorithm with guided mutation for the large-scale portfolio
optimization,” Expert Systems with Applications, vol. 38,
no. 4, pp. 3353–3363, APR 2011.

[36] J. J. Liang and B. Y. Qu, “Large-scale portfolio optimiza-
tion using multi-objective dynamic mutli-swarm particle

swarm optimizer,” in 2013 IEEE Symposium On Swarm
Intelligence (SIS). IEEE; IEEE Computat Intelligence
Soc, 2013, pp. 1–6, iEEE Symposium on Swarm Intelli-
gence (SIS), Singapore, SINGAPORE, APR 16-19, 2013.

[37] Y. Tian, L. C. Si, X. Y. Zhang, R. Cheng, C. He,
K. C. Tan, and Y. C. Jin, “Evolutionary large-scale
multi-objective optimization: A survey,” ACM Computing
Surveys, vol. 54, no. 8, pp. 1–34, 2021.

[38] X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and
M. Gong, “A multiobjective evolutionary algorithm based
on decision variable analyses for multiobjective optimiza-
tion problems with large-scale variables,” IEEE Transac-
tions on Evolutionary Computation, vol. 20, no. 2, pp.
275–298, 2016.

[39] B. Cao, J. W. Zhao, Z. H. Lv, and X. Liu, “A distributed
parallel cooperative coevolutionary multiobjective evo-
lutionary algorithm for large-scale optimization,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 4,
pp. 2030–2038, 2017.

[40] W. Du, W. M. Zhong, Y. Tang, W. L. Du, and Y. C. Jin,
“High-dimensional robust multi-objective optimization
for order scheduling: A decision variable classification
approach,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 1, pp. 293–304, 2019.

[41] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima,
“A framework for large-scale multiobjective optimization
based on problem transformation,” IEEE Transactions on
Evolutionary Computation, vol. 22, no. 2, pp. 260–275,
2018.

[42] C. He, L. H. Li, Y. Tian, X. Y. Zhang, R. Cheng, Y. C.
Jin, and X. Yao, “Accelerating large-scale multiobjective
optimization via problem reformulation,” IEEE Transac-
tions on Evolutionary Computation, vol. 23, no. 6, pp.
949–961, 2019.

[43] S. Qin, C. Sun, Y. Jin, Y. Tan, and J. Fieldsend, “Large-
scale evolutionary multiobjective optimization assisted
by directed sampling,” IEEE Transactions on Evolution-
ary Computation, vol. 25, no. 4, pp. 724–738, 2021.

[44] Y. Tian, C. Lu, X. Zhang, F. Cheng, and Y. Jin, “A
pattern mining-based evolutionary algorithm for large-
scale sparse multiobjective optimization problems,” IEEE
Transactions on Cybernetics, vol. 52, no. 7, pp. 6784–
6797, 2022.

[45] W. Hong, K. Tang, A. Zhou, H. Ishibuchi, and X. Yao, “A
scalable indicator-based evolutionary algorithm for large-
scale multiobjective optimization,” IEEE Transactions on
Evolutionary Computation, vol. 23, no. 3, pp. 525–537,
2019.

[46] Y. Tian, X. T. Zheng, X. Y. Zhang, and Y. C. Jin,
“Efficient large-scale multiobjective optimization based
on a competitive swarm optimizer,” IEEE Transactions
on Cybernetics, vol. 50, no. 8, pp. 3696–3708, 2020.

[47] C. He, R. Cheng, and D. Yazdani, “Adaptive offspring
generation for evolutionary large-scale multiobjective op-
timization,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 52, no. 2, pp. 786–798, 2022.

[48] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,”

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3349073



15

IEEE Transactions on Evolutionary Computation, vol. 6,
no. 2, pp. 182–197, 2002.

[49] L. Li, C. He, R. Cheng, H. Li, L. Pan, and Y. Jin, “A
fast sampling based evolutionary algorithm for million-
dimensional multiobjective optimization,” Swarm and
Evolutionary Computation, vol. 75, p. 101181, 2022.

[50] C. He, R. Cheng, L. Li, K. C. Tan, and Y. Jin, “Large-
scale multiobjective optimization via reformulated deci-
sion variable analysis,” IEEE Transactions on Evolution-
ary Computation (Early Access), 2022.

[51] J. H. Chang, L. Sun, B. Zhang, and J. Peng, “Multi-
period portfolio selection with mental accounts and re-
alistic constraints based on uncertainty theory,” Journal
of Computational and Applied Mathematics, vol. 377, p.
112892, 2020.

[52] X. X. Huang and G. W. Jiang, “Portfolio management
with background risk under uncertain mean-variance util-
ity,” Fuzzy Optimization and Decision Making, vol. 20,
no. 3, pp. 315–330, 2021.

[53] A. Rigamonti and K. Lucivjanska, “Mean-semivariance
portfolio optimization using minimum average partial,”
Annals of Operations Research, 2022.

[54] X. Li, Z. Qin, and S. Kar, “Mean-variance-skewness
model for portfolio selection with fuzzy returns,” Euro-
pean Journal of Operational Research, vol. 202, no. 1,
pp. 239–247, 2010.

[55] Y. J. Liu, W. G. Zhang, and P. Gupta, “Multiperiod port-
folio performance evaluation model based on possibility
theory,” IEEE Transactions on Fuzzy Systems, vol. 28,
no. 12, pp. 3391–3405, 2020.

[56] X. X. Huang, “Mean-entropy models for fuzzy portfolio
selection,” IEEE Transactions on Fuzzy Systems, vol. 16,
no. 4, pp. 1096–1101, 2008.

[57] M. K. Mehlawat and P. Gupta, “Fuzzy chance-
constrained multiobjective portfolio selection model,”
IEEE Transactions on Fuzzy Systems, vol. 22, no. 3, pp.
653–671, 2014.

[58] X. X. Huang and H. Y. Ying, “Risk index based models
for portfolio adjusting problem with returns subject to
experts’ evaluations,” Economic Modelling, vol. 30, pp.
61–66, 2013.

[59] B. Li, Y. F. Sun, and K. L. Teo, “An analytic solution
for multi-period uncertain portfolio selection problem,”
Fuzzy Optimization and Decision Making, vol. 21, no. 2,
pp. 319–333, 2022.

[60] Y.-J. Liu and W.-G. Zhang, “A multi-period fuzzy portfo-
lio optimization model with minimum transaction lots,”
European Journal of Operational Research, vol. 242,
no. 3, pp. 933–941, 2015.

[61] K. Yu, D. Zhang, J. Liang, K. Chen, C. Yue, K. Qiao,
and L. Wang, “A correlation-guided layered prediction
approach for evolutionary dynamic multiobjective opti-
mization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 27, no. 5, pp. 1398–1412, 2023.

[62] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolu-
tionary algorithm based on decomposition,” IEEE Trans-
actions on Evolutionary Computation, vol. 11, no. 6, pp.
712–731, 2007.

[63] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. C.
Coello, F. Luna, and E. Alba, “SMPSO: A new PSO-
based metaheuristic for multi-objective optimization,” in
2009 IEEE Symposium on Computational Intelligence in
Multi-Criteria Decision-Making(MCDM), 2009, Confer-
ence Proceedings, pp. 66–73.

[64] K. Deb and H. Jain, “An evolutionary many-objective
optimization algorithm using reference-point-based non-
dominated sorting approach, Part I: Solving problems
with box constraints,” IEEE Transactions on Evolution-
ary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[65] J. Zhang and A. C. Sanderson, “JADE: Adaptive dif-
ferential evolution with optional external archive,” IEEE
Transactions on Evolutionary Computation, vol. 13,
no. 5, pp. 945–958, 2009.

[66] L. While, P. Hingston, L. Barone, and S. Huband,
“A faster algorithm for calculating hypervolume,” IEEE
Transactions on Evolutionary Computation, vol. 10,
no. 1, pp. 29–38, 2006.

[67] I. Das and J. E. Dennis, “Normal-boundary intersection:
A new method for generating the pareto surface in non-
linear multicriteria optimization problems,” Siam Journal
on Optimization, vol. 8, no. 3, pp. 631–657, 1998.

[68] X. Wang, K. Zhang, J. Wang, and Y. Jin, “An en-
hanced competitive swarm optimizer with strongly con-
vex sparse operator for large-scale multiobjective opti-
mization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 26, no. 5, pp. 859–871, 2022.

[69] Z. Ding, L. Chen, D. Sun, and X. Zhang, “A multi-stage
knowledge-guided evolutionary algorithm for large-scale
sparse multi-objective optimization problems,” Swarm
and Evolutionary Computation, vol. 73, p. 101119, 2022.

[70] Y. Tian, R. Liu, X. Zhang, H. Ma, K. C. Tan, and Y. Jin,
“A multipopulation evolutionary algorithm for solving
large-scale multimodal multiobjective optimization prob-
lems,” IEEE Transactions on Evolutionary Computation,
vol. 25, no. 3, pp. 405–418, 2021.

[71] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A
MATLAB platform for evolutionary multi-objective op-
timization,” IEEE Computational Intelligence Magazine,
vol. 12, no. 4, pp. 73–87, 2017.

[72] H. B. Mann and D. R. Whitney, “On a Test of Whether
one of Two Random Variables is Stochastically Larger
than the Other,” The Annals of Mathematical Statistics,
vol. 18, no. 1, pp. 50 – 60, 1947.

[73] J. D. Knowles, L. Thiele, and E. Zitzler, “A tutorial on
the performance assessment of stochastic multiobjective
optimizers.” TIK Report, 2006.

[74] Y. Tian, X. Zhang, C. Wang, and Y. Jin, “An evolution-
ary algorithm for large-scale sparse multiobjective opti-
mization problems,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 2, pp. 380–393, 2020.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3349073


