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Time-dependent R-matrix theory for ultrafast atomic processes
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Centre for Theoretical Atomic, Molecular and Optical Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
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We describe an ab initio nonperturbative time-dependent R-matrix theory for ultrafast atomic processes. This
theory enables investigations of the interaction of few-femtosecond and -attosecond pulse lasers with complex
multielectron atoms and atomic ions. A derivation and analysis of the basic equations are given, which
propagate the atomic wave function in the presence of the laser field forward in time in the internal and
external R-matrix regions. To verify the accuracy of the approach, we investigate two-photon ionization of Ne
irradiated by an intense laser pulse and compare current results with those obtained using the R-matrix Floquet
method and an alternative time-dependent method. We also verify the capability of the current approach by
applying it to the study of two-dimensional momentum distributions of electrons ejected from Ne due to
irradiation by a sequence of 2 as light pulses in the presence of a 780 nm laser field.

DOI: 10.1103/PhysRevA.79.053411 PACS number�s�: 32.80.Rm, 31.15.A�, 32.80.Qk

I. INTRODUCTION

The development of attosecond light sources �1,2� has
enabled the observation of a wide variety of atomic pro-
cesses on ultrashort time scales. Recent examples include the
real-time observation of interference effects in double ioniza-
tion of Ne using a combination of infrared and ultrashort
pulses �3� and the stroboscopic study of single-ionization
events in Ar �4�. Attosecond pulses have also opened up the
possibility of studying inner-shell dynamics on ultrafast time
scales �5� and have allowed for the profiling of the electric
field of few-femtosecond laser pulses �6�.

At present, the most advanced theoretical approaches for
the description of atoms irradiated by intense short light
fields are approaches dedicated to two-active-electron sys-
tems. The most sophisticated of these approaches is the so-
called HELIUM approach of Parker and Taylor �7,8� in
which the laser-driven two-electron problem is solved by a
direct numerical integration of the full-dimensional time-
dependent Schrödinger equation �TDSE�. In this approach,
the major challenge of accurately describing the correlation
between the two electrons in He is treated without any sig-
nificant approximations. The method has been particularly
successful at describing recent measurements of electron dis-
tributions of singly and doubly ionized He in an intense 390
nm laser field �9�.

Although the full-dimensional approach has enjoyed
much success at describing single and double ionizations of
He in strong laser fields, its application to treating complex
atoms with more than two electrons is currently computa-
tionally intractable. The problem of accurately describing
multielectron atoms, such as Ne and Ar, in intense short laser
pulses therefore requires the development of other computa-
tionally tractable methods. One such method is the R-matrix
Floquet �RMF� approach �10� which combines the traditional
time-independent R-matrix method �11� with a Floquet ex-
pansion of the driven time-dependent wave function. In the
R-matrix method configuration space is separated into two
regions: an inner region in which all interactions between the
electrons and the laser field are described in full detail and an
outer region in which only long-range interactions are in-

cluded. Over the last two decades the RMF approach has
been successfully employed to describe a wide range of
atomic multiphoton processes �12–15�. This is an ab initio
theory, which is fully nonperturbative and is applicable to
arbitrary multielectron atoms and atomic ions, allowing an
accurate description of electron-electron correlation effects.
However, because this theory is based on the Floquet-Fourier
ansatz, its applications are confined to treating laser pulses
involving many cycles of the field, typically exceeding sev-
eral tens of femtoseconds in length. For the description of
complex atoms in ultrashort light fields, however, a direct
integration of the TDSE is required.

So far, the most advanced time-dependent numerical
simulations for complex multielectron atoms, such as Ne and
Ar, irradiated by ultrashort light fields have employed the
single-active-electron �SAE� approximation �16�, in which
the electrons are assumed to be effectively independent and
only the electron that is emitted is assumed to be “active.”
However, recent experiments have shown that the response
of multielectron atoms to ultrashort pulses consists of a co-
herent response of many electrons �3�. For example, due to
the high-frequency components of the ultrashort pulse,
shake-up states can be populated resulting in Auger transi-
tions that occur on a femtosecond time scale. Since the light
pulse duration is on the order of attoseconds, approaches are
required that can reliably describe such ultrafast multielec-
tron rearrangement dynamics.

We therefore recently initiated the development of time-
dependent R-matrix �TDRM� theory to describe complex
multielectron atoms in intense ultrashort light pulses. TDRM
theory was first proposed by Burke and Burke �17� for the
solution of a one-dimensional model problem. The goal of
our recent efforts has been to extend the one-dimensional
method to a three-dimensional �3D� method for the realistic
and accurate treatment of complex multielectron atoms in
intense ultrashort light fields. As an initial approach we in-
troduced an ab initio time-dependent method that employs
R-matrix basis functions in a box to investigate multiphoton
ionization of complex atoms �18�. The method, in which the
calculations are performed within an R-matrix inner �RMI�
region only, has been shown to give accurate results for mul-
tiphoton ionization of Ar irradiated by a 390 nm laser pulse
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�18�. We recently extended the RMI method by significantly
increasing the size of the box in which the calculations are
performed and also the number of continuum functions used
to describe the outgoing electron. By doing so we have been
able to study wave-packet interference effects on the two-
dimensional �2D� momentum distributions of electrons
ejected from Ne irradiated by a sequence of 2 as pulses in the
presence of a 390 nm laser field �19�. We note that an alter-
native RMI method has been developed independently from
us, which has been used to study multiphoton ionization of
Ne and Ar �20,21�.

Although the RMI method has been successful at describ-
ing multielectron atoms in ultrashort laser fields, it is not a
truly time-dependent R-matrix theory, in that it does not ex-
ploit the natural division of configuration space occurring in
R-matrix theory, i.e., the reduction of the laser-atom problem
into a “complex” inner region close to the nucleus, in which
electron-electron interactions are fully described, and a
“simple” outer region in which an effective one-electron
problem is solved. As a result, any increase in the size of the
spatial region in which the calculations are performed will
place severe demands on computational resources.

In the most recent stage of our efforts, we have completed
the development of a full 3D TDRM method that includes
the R-matrix outer region. The method has recently been
applied to describe a proposed attosecond pump-probe ex-
periment that combines the use of a free-electron laser �FEL�
pulse and an attosecond pulse to explore ultrafast excitation
dynamics in Ne �22�. In this paper we describe the full 3D
TDRM theory in greater detail. The method can be used to
accurately describe the interaction of intense ultrashort light
fields with arbitrary multielectron atoms and atomic ions. As
a means of demonstrating the accuracy of the TDRM method
we first apply it to the study of electron wave packets ejected
from Ne irradiated by a FEL pulse and compare results using
the current method with those obtained using the RMI and
RMF methods. We also reveal the capability of the method
by applying it to the study of electron wave packets ejected
from Ne irradiated by a sequence of two ultrashort pulses in
the presence of a 780 nm laser field.

II. TIME-DEPENDENT R-MATRIX THEORY

A. Basic theory

In this section we describe an ab initio time-dependent
R-matrix theory of multiphoton ionization of atoms or
atomic ions by an intense ultrashort laser pulse, where we
assume that the atom or ion contains N+1 electrons and has
a nuclear charge Z. We also assume that the laser field, which
is treated classically using the dipole approximation, is lin-
early polarized, spatially homogeneous, and is described by
the vector potential A�t�. Neglecting relativistic effects, the
atomic system in the presence of the laser field is then de-
scribed by the TDSE which we write here as

H�t���XN+1,t� = i
�

�t
��XN+1,t� , �1�

where

H�t� = HN+1 +
1

c
A�t� · PN+1 +

N + 1

2c2 A2�t� . �2�

In this equation PN+1=�i=1
N+1pi is the total electron momentum

operator and HN+1 is the nonrelativistic Hamiltonian of the
�N+1�-electron atom or ion in the absence of the laser field
defined by

HN+1 = �
i=1

N+1 �−
1

2
�i

2 −
Z

ri
+ �

i�j=1

N+1
1

rij
� , �3�

where we have taken the origin of the coordinates to be in
the target nucleus, which we assume to have infinite mass,
and we have written rij = �ri−r j� where ri and r j are the vector
coordinates of the ith and jth electrons. Also in Eq. �1�,
XN+1	x1 ,x2 , . . . ,xN+1, where xi	ri�i are the space and spin
coordinates of the electron.

As discussed in the previous section, the RMF approach
for solving Eq. �1� is not applicable for ultrashort light fields
and we must therefore solve this equation directly using
time-dependent theory. In the rest of this paper we consider
the solution of Eq. �1� using the dipole length gauge in both
the R-matrix internal and external regions. This use of the
length gauge is in contrast to strong-field calculations for
one-electron and two-electron systems in which the velocity
form of the dipole operator is preferred. However, based on
previous investigations, using the RMI method �18�, we have
found that, for the interaction of the laser field with a multi-
electron atom, the laser field is best described using the
length form of the dipole operator. The velocity gauge ap-
pears to be less appropriate for multielectron systems since it
emphasizes short-range multielectron excitations near the
nucleus. As a consequence, the velocity gauge description of
the laser field requires a far better description of the atomic
structure than the length form of the dipole operator, placing
a greater computational demand on calculations using this
gauge. It should also be noted that in RMF theory the length
gauge is also used in the internal region but a transformation
is made to the velocity gauge in the external region and
possibly to the acceleration frame in the asymptotic region.
This is because in RMF theory the external and asymptotic
regions extend out to infinity where the length gauge di-
verges. This does not happen in TDRM theory when the time
frame does not exceed a few tens of femtoseconds. Also, the
transformation from the length gauge to the velocity gauge
on the R-matrix boundary r=a0 would have to be carried out
at each time step in TDRM theory which would introduce
accumulated errors.

In order to solve the TDSE in the dipole length gauge we
transform Eq. �1� using the unitary gauge transformation

��XN+1,t� = exp
−
i

c
A�t� · RN+1��L�XN+1,t� , �4�

which yields the following time-dependent equation:

�HN+1 + E�t� · RN+1��L�XN+1,t� = i
�

�t
�L�XN+1,t� , �5�

where E�t� is the electric field of the laser pulse and RN+1
=�i=1

N+1ri. The boldface superscript L indicates that the inter-
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acting electrons are described in the dipole length gauge and
will be dropped for the rest of the paper.

We now write Eq. �5� in the form

i
�

�t
��XN+1,t� = �HN+1 + Hint�t����XN+1,t� , �6�

where

Hint�t� = E�t� · �
i=1

N+1

ri �7�

in the dipole length gauge. We then introduce a discrete mesh
in time defined by

tq = q�t, q = 0,1,2 . . . , �8�

where �t is the time interval. The solution of Eq. �6� at t
= tq+1 can then be expressed in terms of the solution at t= tq
as follows:

��XN+1,tq+1� =
1 − 1

2 i�tH�tq+1/2�

1 + 1
2 i�tH�tq+1/2�

��XN+1,tq� + O��t3� ,

�9�

where we have used the unitary Cayley form of the time
evolution operator exp�−itH�t�� and here we have written

tq+1/2 = tq +
1

2
�t . �10�

If we neglect terms of O��t3� then Eq. �9� can be rewritten as

�H�tq+1/2� − E���XN+1,tq+1� = ��XN+1,tq� , �11�

where

��XN+1,tq� = − �H�tq+1/2� + E���XN+1,tq� , �12�

and where H�tq+1/2� is the time-dependent Hamiltonian at the
midpoint. In this formalism the imaginary energy defines the
time step as E	2i�t−1. Equation �11� is an inhomogeneous
equation where the right-hand side can be calculated if the
wave function at time t= tq is known. Solving this equation
then yields the wave function at time t= tq+1. Hence this
equation enables the solution to be propagated forward in
time.

In the rest of this paper we present a theoretical analysis
of our R-matrix method for solving Eq. �11� which enables
the wave function to be propagated forward in time through
one time step from t= tq to t= tq+1. The solution of this equa-
tion is accomplished by partitioning configuration space into
two regions as shown in Fig. 1. We note that unlike the
partitioning scheme in R-matrix Floquet theory, described by
Burke et al. �10�, we omit the asymptotic region since we
make the external region large enough, so that the ejected-
electron wave function vanishes by the outer boundary r
=ap. However, the conditions used to define the boundary
r=a0 between the internal and external regions are the same
as in the R-matrix Floquet theory. That is, in the inner region
electron exchange and electron-electron correlation effects
between the ejected electron and the remaining N electrons
are important, while in the outer region electron exchange

and correlation effects between the ejected electron and the
remaining N electrons are negligible, and hence the ejected
electron moves in the local long-range multipole potential of
the residual N-electron atom or atomic ion together with the
laser field.

B. Internal region analysis

In order to solve Eq. �11� in the internal region we expand
the wave function ��XN+1 , tm+1� in Eq. �11� in a completely
antisymmetric R-matrix basis �k�XN+1� as follows:

� j
��XN+1,tm+1� = �

k

�k
��XN+1�Akj

� �tm+1� . �13�

In this equation, j labels the solution of Eq. �11� which cor-
responds to the initial bound state of the atom or ion before
the laser is switched on and Akj

� �tm+1� are the time-dependent
expansion coefficients, which depend on the boundary con-
ditions satisfied by the wave function � j

� at the initial time
t=0. Also, we have introduced the superscript � representing
the quantum numbers which depend on the symmetry of the
atomic state and the polarization of the laser photons. For the
nonrelativistic case described here � is given by

� = 	SMSML
�, �14�

where S is the total spin angular-momentum quantum num-
ber, MS and ML are the total spin and orbital magnetic quan-
tum numbers, 
� is the product of the parities of the photons
and the target state, and 	 serves to specify the remaining
quantum numbers.

We now expand the basis functions �k
� in Eq. �13� in a

close coupling with pseudostates expansion given by

�k�XN+1� = A�
pl

�̄p
��XN; r̂N+1�N+1�rN+1

−1 upl�rN+1�aplk

+ �
p

�p
��XN+1�bpk. �15�

In this equation A is the usual antisymmetrization operator

and �̄p
� are time-independent channel functions which are

formed by coupling the residual atom or ion state �i, with
the angular and spin functions Ylimli

and 
�1/2�mi
of the ejected

FIG. 1. Partitioning of configuration space in time-dependent
R-matrix theory.
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electron. The residual atom or ion states �i are chosen to
diagonalize the residual ion Hamiltonian HN as follows:

��i�HN�� j
 = Ei�ij , �16�

where HN is defined by Eq. �3� with N+1 replaced with N.
Also in Eq. �15� upl are the time-independent radial basis
functions which are nonvanishing on the boundary of the
internal region and �p

� are time-independent quadratically in-
tegrable antisymmetric functions, which are included to rep-
resent electron-electron correlation effects which vanish at
the boundary of the internal region. aplk and bpk are time-
independent coefficients obtained from a field-free diagonal-
ization. The summation variable p in the first expansion in
Eq. �15� represents both quantum numbers L and i. We as-
sume in Eq. �15�, and later equations, that n channel func-

tions �̄p
� are retained so that the index p goes over 1 to n.

Also, we assume that, in the first expansion, nc radial basis
functions upl , l=1, . . . ,nc are included in each channel. Fi-
nally, in the second expansion in Eq. �15�, the summation
variable p goes over nb quadratically integrable functions,
�p

�, which vanish at the boundary of the internal region.
These functions are included to allow for other short-range
correlation effects in the internal region that are not ad-
equately represented by the first expansion in Eq. �15�. It
should also be noted that pseudostates are retained in Eq.
�15� to represent high-lying continuum states of the residual
ion. We find it convenient to rewrite Eq. �15� in the concise
form

�k�XN+1� = �
k�=1

nt

�k��XN+1�ck�k, �17�

where k=1, . . . ,nt and nt=nnc+nb is the total number of lin-
early independent basis functions �k�XN+1� retained in the
expansion in Eq. �15� and ck�k represents the coefficients aplk
and bpk.

In order to solve equation Eq. �11� in the inner region to
yield the wave function ��XN+1 , tq+1�, we observe that the
Hamiltonian H�tq+1/2� is not Hermitian in this region owing
to the presence of the kinetic energy − 1

2�i
2 term in H�tq+1/2�.

Consequently we introduce the Bloch operator

L =
1

2 �
i=1

N+1

��ri − a0�� d

dri
−

b0 − 1

ri
� , �18�

such that HN+1+L is Hermitian in the internal region for any
value of the arbitrary constant b0.

Using this result we can rewrite Eq. �11� in the internal
region as

�H + L − E�� = L� + � , �19�

which has the formal solution

� = �H + L − E�−1�L� + �� , �20�

where for notational simplicity we have omitted the argu-
ments in H, �, and �. Equation �11� then becomes

��
 = �
k,k�

��k
��k�
1

H + L − E
��k�
��k���L��
 + ��
� , �21�

which can be written as

��XN+1,tq+1� = �
k

�k�XN+1�Bk�E,tq+1� , �22�

where the summation is over the total number of linearly
independent basis functions retained in the expansion in Eq.
�15�. Our objective is to determine the coefficients Bk�E , tq+1�
which express the wave function ��XN+1 , tq+1� in the internal
region in terms of the R-matrix basis functions �k�XN+1� de-
fined by Eq. �15�.

In order to achieve this objective we project Eq. �21� onto

the n channel functions �̄p
� and evaluate it on the boundary

rN+1=a0 of the internal region. We obtain

Fp�a0� = �
p�=1

n

Rpp��E�a0F̄p��a0� + Tp�a0� , �23�

where p=1, . . . ,n and where the reduced radial-wave func-
tions Fp�a0� are defined by

Fp�a0� = ��̄p
��XN; r̂N+1�N+1�rN+1

−1 ��
rN+1=a0
� , �24�

where p=1, . . . ,n and where we note that the prime on the
matrix elements in this and later equations means that the
integral is carried out over space and spin coordinates of all
N+1 electrons except the radial coordinate rN+1 of the
ejected electron. The R-matrix elements Rpp��E� in Eq. �23�
are defined by

Rpp��E� =
1

2a0
�
kk�

�pk� 1

H + L − E
�

kk�

�p�k�, �25�

where p , p�=1, . . . ,n and where the surface amplitudes �pk
are defined by

�pk = ��̄p
��XN; r̂N+1�N+1�rN+1

−1 ��k
rN+1=a0
� , �26�

where p=1, . . . ,n; k=1, . . . ,nt. Also, the modified derivative

functions F̄p�a0� in Eq. �23� are defined by

F̄p�a0� = �dFp

dr
�

r=a0

, p = 1, . . . ,n . �27�

Finally, the inhomogeneous vector Tp�a0� in Eq. �23� is de-
fined by

Tp�a0� = �
kk�

�pk� 1

H + L − E
�

kk�

Sk, p = 1, . . . ,n , �28�

where it follows from Eqs. �11� and �12� that

Sk = ��k��
, k = 1, . . . ,nt. �29�

The wave function ��XN+1 , tq� in Eq. �29� has been obtained
at the end of the previous time step t= tq and is thus known.
Hence the vector Sk and all the quantities on the right-hand
side of Eq. �29� can be calculated and the inhomogeneous
vector Tp�a0� can be determined.
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Returning to Eqs. �21� and �22�, the coefficients
Bk�E , tq+1� can now be written as

Bk�E,tq+1� = � 1

H + L − E
�

kk�
�1

2 �
p=1

n

�pkF̄p�a0� + Sk� ,

�30�

where k=1, . . . ,nt and where �pk, F̄p�a0�, and Sk are defined
by Eqs. �26�, �27�, and �29� respectively. The only unknown

in this definition of Bk�E , tq+1� is F̄p�a0� which we will see in
the rest of this paper can be determined from the results of
the propagation in the external region. Hence Bk�E , tq+1� can
be calculated and the wave function ��XN+1 , tq+1�, which
provides the starting point for the calculation in the next time
step, can be determined from Eq. �22�. It should be noted at
this point that in our current computational implementation
of the TDRM method, we apply a linear solver approach to
Eq. �21� at each time step, in order to obtain the R matrix and
T vector at the inner region boundary. Alternatively, the R
matrix and T vector can be obtained by diagonalizing the
operator H+L−E in the R-matrix basis described by Eq.
�15� at each time step. This diagonalization of the operator
H+L−E at each time step could be made more efficient
using an iterative procedure �23� where in this method the
result from the previous time step would be used as a starting
point. A similar iterative procedure could also be used to
solve the simultaneous equations at each time step, which
could prove useful for very large matrices.

In concluding this internal region analysis, it is conve-
nient for future reference to rewrite Eq. �23� in matrix nota-
tion as

F�a0� = Ra0F�a0� + T�a0� , �31�

where

F�a0� = �dF

dr
�

r=a0

. �32�

The R matrix R and the inhomogeneous vector T at r=a0 are
defined by Eqs. �25� and �28�, respectively. These quantities
then provide the boundary condition for propagating R and
T in the external region as described below.

C. External region analysis

We now consider the solution of Eq. �11� in the external
region. In this region we expand the wave function as fol-
lows:

��XN+1,tq+1� = �
p=1

n

�̄p
��XN; r̂N+1�N+1�rN+1

−1 Fp�rN+1� ,

�33�

where a0�rN+1�ap and where, as in the internal region, we
have omitted the time dependence in Fp�rN+1�. As in Eq.
�15�, the subscript p represents the channel quantum num-
bers L and i. The reduced radial functions Fp�r� in Eq. �33�
are analytical continuations of the functions which are de-
fined by Eq. �24� on the boundary of the internal region.

Coupled second order differential equations satisfied by
the reduced radial-wave functions Fp�r�, which represent the
motion of the electron in the pth channel, can be obtained by
substituting Eq. �33� into Eq. �11� and projecting onto the

channel functions �̄p
�. In order to solve the coupled inhomo-

geneous second-order differential equations, we first write
them in standard matrix form as follows:

�H − EI�F�r� = ��r� , �34�

where the Hamiltonian matrix H is now defined by

H = −
1

2
�I

d2

dr2 + V�r� − 2W�r� + k2� , �35�

where I is the unit matrix and V�r� is given by

V�r� = −
l�l + 1�

r2 +
2�Z − N�

r
�36�

and k2 can be expressed in terms of the diagonal energy
eigenvalue matrix E of the residual N-electron atom or ion
by the equation

k2 = − 2E . �37�

Also in Eq. �35�, W�r� is the long-range potential matrix
coupling the channels which is given by

W = WE + WD + WP. �38�

Here WE arises from the electron-electron and electron-
nuclear potential terms in the Hamiltonian H�tq+1/2�, while
WD and WP arise, respectively, from the interaction of the
light field with the residual N-electron atom or ion and from
the interaction of the light field with the ejected electron.
Explicit expressions for the potential matrices WE, WD, and
WP can be found in the Appendix. It should be noted that
here we use the length gauge in the external region rather
than the velocity gauge as is the case in �10�. Finally, the
inhomogeneous term ��r� in Eq. �34� is defined for a single
channel by

�p�r� = ��̄p
��XN; r̂N+1�N+1�rN+1

−1 ��
 , �39�

where � has already been defined in Eq. �12� and where we
have omitted the time variable in ��r� and in the potential
terms W�r� in Eq. �35� for notational convenience. The com-
plex energy E in Eqs. �34� and �37� can be conveniently
measured from the lowest threshold of the residual atom or
ion.

In order to solve Eq. �34�, we now introduce the Bloch
operator Ls defined by the equation

Ls =
1

2
I���r − as�

d

dr
− ��r − as−1�

d

dr
� , �40�

such that H+Ls is Hermitian over the subregion as−1�r
�as in the space of functions satisfying arbitrary boundary
conditions at r=as−1 and r=as. We can then rewrite Eq. �34�
in the sth subregion as

�H + Ls − EI�F�r� = LsF�r� + ��r� , �41�

which has the formal solution
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F�r� = �H + Ls − EI�−1�LsF�r� + ��r�� . �42�

The Green’s function in this equation is defined as the solu-
tion of the following equation in the subregion:

�H + Ls − EI�Gs�r,r�� =
1

2
I��r − r�� . �43�

We use a similar method introduced by Baluja et al. �24� to
obtain a spectral representation of Gs�r ,r�� in Eq. �43�
where, in this case, instead of using a basis of orthonormal
shifted Legendre polynomials, we use a basis of B splines
and solve a system of linear equations in each subregion. It
should be noted that implementing the approach by using B
splines as a basis set adds complexity to the evaluation of the
linear equations in the external region due to their nonor-
thogonality, and that the analysis given here is with respect
to the use of orthonormal functions as a basis set.

We can now rewrite Eq. �43� with as−1�r�as as

F�r� = 2�
as−1

as

Gs�r,r��LsF�r��dr� + J�r� , �44�

where

J�r� = 2�
as−1

as

Gs�r,r����r��dr�. �45�

Evaluating Eq. �44� at r=as−1 and r=as then yields the fol-
lowing equations:

F�as−1� = Rs−1as−1�dF

dr
�

r=as−1

+ T�as−1� �46�

and

F�as� = Rsas�dF

dr
�

r=as

+ T�as� , �47�

where in this case the R matrix and T vector on the boundary
r=a0 of the internal region are given by Eqs. �25� and �28�.
We then obtain the following outward propagation equations
for Rs and T�as�:

asRs = Gs�as,as� − G�as,as−1��Gs�as−1,as−1� + as−1Rs−1�−1

� Gs�as−1,as� , �48�

T�as� = J�as� + Gs�as,as−1��Gs�as−1,as−1� + as−1Rs−1�−1

� �T�as−1� − J�as−1�� . �49�

Finally we obtain the following inward propagation equation
for the wave function:

F�as−1� = as−1Rs−1�Gs�as−1,as−1� + as−1Rs−1�−1

� �Gs�as−1,as�as
−1Rs

−1�F�as� − T�as��

+ Gs�as−1,as−1�as−1
−1 Rs−1

−1 T�as−1� + J�as−1�� .

�50�

The wave function for all values of r can then be obtained
from Eq. �44� and hence the inhomogeneous terms in Eqs.
�11� and �34� can be calculated for the next time integration

step. In this way Eq. �11� can be stepped forward in time for
all positive tq given the wave function at time t=0. The re-
sults for multiphoton ionization of Ne discussed below indi-
cate that this procedure is stable.

III. APPLICATION TO NEON

As a first step to verifying the accuracy of the present
TDRM method we investigate electron wave packets ejected
from Ne irradiated by a laser pulse with a central photon
energy �0=17 eV and compare results obtained using the
current method with results obtained using the RMI method.
The RMI method has recently been developed by both the
present authors �18� and by a separate group �20� and has
been established as a highly accurate method for obtaining
multiphoton ionization rates for multielectron atoms.

For both the RMI and TDRM calculations in the R-matrix
inner region we use the R-matrix basis developed for single-
photon ionization of Ne �25�. In the case of the TDRM cal-
culations, we use an inner region radius of 20 a.u. The set of
continuum orbitals contains 60 continuum functions for each
available angular momentum l of the continuum electron.
The results presented here have been obtained including only
the 1s22s22p5 2Po ground state of Ne+ as a target state. De-
tails on all the orbital functions used in the calculation can be
found in Ref. �25�. The description of Ne includes all
1s22s22p5�l channels up to L=Lmax where Lmax=5. In the
outer region we propagated the R matrix and T vector out-
ward to a radial distance of 200 a.u. in order to prevent any
reflections of the wave function from the outer region bound-
ary. Each external region sector was typically 3 a.u. wide and
contained 35 B splines per channel with order k=9. For the
RMI calculations, we used a box size of 140 a.u. with 100
continuum functions for each available angular momentum l
of the continuum electron. Similar pulse shapes to those used
in Ref. �18� have been used here with a three-cycle sin2 turn
on of the electric field followed by a three-cycle sin2 turn off.
In the calculations we used a laser pulse with a peak intensity
I0=5�1013 W /cm2 and we typically use 200 time steps per
cycle.

Figure 2 shows the real part of the 1S �l=1� partial con-
tinuum wave function of Ne calculated 1.46 fs �6 cyles� after
the end of the 6 cycle 17 eV laser field. The blue solid thin
line shows the R-matrix outer region part of the wave func-
tion obtained using the present TDRM method and the black
dashed-dotted line shows the corresponding R-matrix inner
region part of the wave function. The TDRM results are
compared to results obtained using the RMI method �red
dashed line�. The comparison of the time-dependent wave
functions obtained using the current TDRM method to those
obtained using the highly accurate RMI method represents
one of the most stringent tests of accuracy for the present
TDRM method. The excellent agreement between the results
of the two independent methods as is evident in Fig. 2 veri-
fies the accuracy and reliability of the TDRM method. We
have also compared the results for the other ionization chan-
nels included in the calculation and have found the same
level of agreement between the two methods.

As a second means of demonstrating the accuracy of the
current TDRM method, we compare two-photon ionization
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generalized cross sections for Ne with cross sections ob-
tained using the time-independent RMF method. We use the
same atomic structure basis as described above. However, in
order to obtain TDRM cross sections which are comparable
to the RMF results, we irradiate Ne with a 100 cycle �30 fs�
laser pulse and therefore extend the R-matrix external region
to a radius ap=1000 a.u. We obtain the generalized cross
section ��N� in units of cm2N sN−1 for N-photon ionization
from the relation

��N� = �8
	�N�3.5 � 1016

I
�N

�N�a0
2Nt0

N−1, �51�

where I is the intensity in W cm−2, � is the laser frequency
in a.u., 	 is the fine-structure constant, and a0 here is the
atomic unit of length and is not to be confused with the
radius of the R-matrix inner region boundary. t0 is the atomic
unit of time. � here is the total ionization rate which is ob-
tained using the TDRM method by investigating the increase
in the norm of the external region wave function beyond a
radial distance of r=80 a.u. Figure 3 shows our results for
the generalized two-photon cross section of Ne in a photon
energy region from 11 to 19 eV compared to results obtained
using the RMF method. Agreement between the two sets of
results is excellent, typically within 5% of each other away
from resonance. The poorer agreement for energies close to
the resonance structure corresponding to the 2p53s 1Po state
is due to the finite bandwidth of our pulse which is not
present for the infinitely long pulse described in the RMF
approach. As a consequence, the RMF pulse can resolve the
sharp structure, whereas we obtain a broader resonance peak
due to the frequency width of our pulse. It should also be
noted that the RMF results have been shifted by −0.315 eV
to compare with the TDRM results. The reason for the reso-
nance appearing at different energies for the two methods is
due to the fact that a larger configuration-interaction basis

was used for the current TDRM calculations and therefore
the atomic structure is better described in the current TDRM
approach.

As a third means of verifying the capability of the TDRM
method, we apply it to the study of electrons ejected from
multielectron atoms irradiated by a sequence of extreme
ultra-violet �XUV� attosecond pulses. The momentum distri-
butions of electrons ejected from Ne by light fields combin-
ing optical radiation and sequences of ultrashort light pulses
are currently receiving considerable interest �26,27�. The ex-
perimental results show noticeable interference structures
arising from the wave packets generated by the different ul-
trashort pulses. The experiments compared very well with
theoretical results obtained using the strong-field approxima-
tion and semiclassical model calculations. In a recent report,
we obtained momentum distributions for electrons ejected
from Ne by a sequence of two ultrashort pulses in the pres-
ence of a 390 nm laser field using our recently developed
RMI approach �19�. The results obtained using the RMI ap-
proach compared very well with a semiclassical model cal-
culation. Due to the multielectron nature of the RMI ap-
proach, we were able to obtain momentum distributions for
both emissions of a 2p electron and the emission of a 2s
electron. Also, since the RMI approach is dedicated to treat-
ing complex atoms, a single calculation describes the emis-
sion of 2p electrons with both �m�=1 and m=0, which is not
the case for SAE approaches.

In this paper, we apply our current TDRM method in
order to obtain momentum distributions of electrons ejected
from Ne by a sequence of two ultrashort pulses in the pres-
ence of a 780 nm laser field. Such a calculation is now made
possible due to the fact that in the current TDRM method we
can limit the computationally demanding calculation of the
interelectronic and exchange effects between all the electrons
in Ne to an R-matrix inner region and deal with an effective
one-electron problem in the R-matrix outer region as dis-
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FIG. 2. �Color online� Real part of the 1S �l=1� partial con-
tinuum wave function of Ne calculated 1.46 fs �6 cycles� after the
end of the 6 cycle 17 eV laser field. The blue solid line shows the
R-matrix outer region part of the wave function obtained using the
present TDRM method and the black dashed-dotted line shows the
corresponding R-matrix inner region part of the wave function. The
TDRM results are compared to results obtained using the RMI
method �red dashed line�.
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FIG. 3. �Color online� Generalized cross section for two-photon
ionization of Ne as function of photon energy. The filled circles
represent the results obtained using the current TDRM approach.
The solid line represents results obtained by McKenna and van der
Hart using the RMF approach. �The RMF results were shifted by
−0.315 eV.� The present results were obtained by using a laser
pulse with a peak intensity of I0=1012 Wcm−2.
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cussed in Secs. I and II. This division of the laser-atom in-
teraction into a complex inner region problem and a simple
outer region problem as seen in Fig. 1 is not present in the
RMI approach which places a much greater computational
demand on such box-based methods and therefore limits
such approaches to much smaller problems.

The light field in the present calculations consists of a
superposition of two fields, linearly polarized in the z direc-
tion: a short 780 nm laser pulse and two ultrashort light
pulses. The 780 nm laser field has a three-cycle sin2 turn on
of the electric field, two cycles at constant peak amplitude,
followed by a three-cycle sin2 turn off. The ultrashort light
pulses are made up a combination of the 17th, 19th, 21st and
23rd harmonics of the 780 nm radiation and a Gaussian time
envelope. The first ultrashort pulse occurs at an extremum of
the electric field for the 780 nm pulse and the second one
occurs half a 780 nm cycle later. The field in the second
ultrashort pulse has the opposite sign to the field in the first
ultrashort pulse. A schematic of the light field is given in Fig.
4. The peak intensity of the 780 nm laser field was chosen to
be 2.0�1012 W /cm2 in order to suppress any multiphoton
ionization due to this field. The peak of the ultrashort light
pulse corresponds to an intensity of 5.0�1012 W /cm2.

For the present calculations we use the same inner region
basis as for the two-photon calculations described above.
However, for these calculations the description of Ne in-
cludes all 1s22s22p5�l channels up to Lmax=9. Also, due to
the long propagation time needed for wave packets moving
in the presence of the 780 nm laser field, a large outer region
radius of ap=4000 a.u is required in order to prevent reflec-
tions of the wave function from the outer region boundary.
The ability to propagate the R matrix and T vector out to
such a large radial distance also greatly improves the mo-
mentum resolution, needed to observe interferences between
the wave packets.

As discussed in Ref. �19�, the basis set used in the inner
region consists of multielectron wave functions, whereas the
observable of interest is the momentum of a single outgoing
electron. We therefore need to decouple the outer-electron

wave function from the full multielectron wave function and
follow the same procedure as in Ref. �19�. Once we have
obtained the channel functions, we need to decouple the spin
and angular momentum of the continuum electron wave
function from the Ne+ target state. This decoupling can be
done using Clebsch-Gordan coefficients. After we have ob-
tained the wave function for the emitted electron, we trans-
form it, for r�200 a.u., into momentum representation un-
der the assumption that the long-range Coulomb potential is
negligible.

Figure 5 compares the ejected-electron momentum distri-
butions obtained with the TDRM approach with those ob-
tained using a simple model calculation. The model calcula-
tion is the same as that described in Ref. �19�, in which it is
assumed that the electrons are only emitted at the peak of an
ultrashort pulse. Electrons emitted during the first ultrashort
pulse then gain a phase difference with electrons emitted
during the second ultrashort pulse of

��1 = � k2

2
+ EIP��T , �52�

where k is the momentum of the outgoing electron, EIP is the
ionization potential of Ne, and �T is the time delay between
the two pulses. The presence of the weak 780 nm laser field
generates a second phase difference between the two pulses.
Once a wave packet is generated, its center moves under the
influence of the 780 nm laser field. At the time the second
wave packet is generated, the center of the first wave packet
is stationary with a displacement of 2E0 /�2 a.u. This dis-
placement leads to an additional phase factor for the first
wave packet of

��2 = − 2kz
E0

�2 , �53�
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FIG. 4. Schematic of the electric field used in the present cal-
culations. The dashed line shows the 780 nm laser pulse and the
solid line shows the two ultrashort pulses.
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FIG. 5. �Color online� Momentum distributions �k��k��2 in the
kxkz plane for the ejection of a 2p electron from Ne irradiated by
780 nm laser light and a sequence of two ultrashort pulses with
delays as shown in Fig. 4. The distribution obtained using the
TDRM approach is shown on the right half, while that obtained
from the model is shown on the left half. The distributions are
shown using a linear scale.
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where kz is the component of the momentum along the laser
polarization axis and E0 and � are the field strength and
frequency of the 780 nm radiation, respectively. The sign
difference between the two pulses leads to an additional
phase difference of 
. Figure 5 shows that both momentum
distributions are in good qualitative agreement with each
other, verifying the capability of the present TDRM method
to describe ultrafast dynamics of multielectron atoms.

As mentioned in Ref. �19�, one of the key advantages of
such a multielectron approach is that the emitted electron
wave function separates naturally into its separate magnetic
quantum number distributions. This is important when deple-
tion of the initial state becomes appreciable since these emis-
sion processes compete with each other. Figure 6 shows the
ejected-electron momentum distributions obtained for m=0
and �m�=1. These distributions are obtained from a single
calculation, as opposed to SAE approaches where separate
calculations are needed. The general behavior of these distri-
butions is as expected from the properties of the Legendre
polynomials.

The second main advantage of the TDRM approach is the
capability to describe ionization leaving the residual ion in
an excited state. Although we do not include a second target
state in the present calculations, we have included the first
excited state of Ne+ in a separate study of ultrafast ionization
processes and as a result have been able to study ultrafast
ionization from the 2s shell in Ne �22�.

IV. CONCLUSION

In conclusion, we have presented a detailed analysis of an
ab initio 3D time-dependent R-matrix theory for ultrafast
multielectron processes. This theory enables single ioniza-
tion of atoms and atomic ions in intense ultrashort laser
pulses to be accurately calculated. Our theory is completely
ab initio, fully nonperturbative, and can be applied to an

arbitrary atomic system. We demonstrate the accuracy of the
current approach by finding excellent agreement between Ne
continuum wave functions obtained using the current method
at the end of a 17 eV FEL pulse with those obtained using a
separate time-dependent RMI method. We have compared
generalized two-photon ionization cross sections for Ne ob-
tained using the current method with results obtained using
the time-independent RMF method and have found excellent
agreement. We also verify the capability of the current ap-
proach by obtaining 2D momentum distributions of electrons
ejected from Ne due to a sequence of two ultrashort pulses in
the presence of a 780 nm laser pulse and finding very good
qualitative agreement with a simple semiclassical model. It
has also been shown in a separate study that ultrafast inner-
shell processes in multielectron atoms can be described using
the present method �22�. With the current scaling of experi-
mental techniques to higher photon energies, shorter x-ray
pulse durations and increasing stability �28�, along with pro-
posals for FEL-based attosecond sources �29�, an accurate
understanding of ultrafast inner-shell processes will become
of increasing importance, and as a result the method pre-
sented here represents a timely and significant development
for the realistic and accurate computation and understanding
of such ultrafast multielectron dynamics.
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APPENDIX: LONG-RANGE POTENTIALS

In this appendix we derive the explicit form of the long-
range potential coupling the channels in Eq. �35� in the
length gauge.

1. WE term

This term is given by

WE = �rN+1
−1 �̄p

��rN+1
−1 ���

j=1

N
1

�rN+1 − r j�
−

N

rN+1
�rN+1

−1 �̄p�
���rN+1

−1 �
 .

�A1�

We now expand

�
j=1

N
1

�rN+1 − r j�
= �

j=1

N

�
�=0

�
rj

�

rN+1
�+1 P��cos � j,N+1� , �A2�

where cos � j,N+1= r̂ j · r̂N+1 and we remember that in the exter-
nal region rj �rN+1 for j=1, . . . ,N. It follows that

WE = �
�=1

� aii�
��

r�+1����, �A3�
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FIG. 6. �Color online� Momentum distributions �k��k��2 in the
kxkz plane for the ejection of a 2p electron from Ne irradiated by
780 nm laser light and a sequence of two ultrashort pulses with
delays as shown in Fig. 4. Emission of m=0 is given on the right,
while emission of �m�=1 is given on the left. The distributions are
shown using a linear scale.
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where the coefficients aii�
�� are defined by

aii�
������ = �rN+1

−1 �̄p
��rN+1

−1 ���
j=1

N

rj
�P��cos � j,N+1��rN+1

−1 �̄p�
���rN+1

−1 �
 .

�A4�

These matrix elements are the same as those occurring in
electron-atom �or ion� collisions in the absence of a laser
field.

2. WD term

This term is given by

WD = �rN+1
−1 �̄p

��rN+1
−1 ��DN�rN+1

−1 �̄p�
���rN+1

−1 �
 . �A5�

The channel functions can be expanded in the form

�̄p
��XN; r̂N+1�N+1� = �

MLi
mli

�
MSi

mi

�LiMLi
limli

�LML�

��SiMSi

1

2
mi�SMS��i�XN�rN+1

−1

�Ylimi
��N+1,�N+1�
�1/2�mi

��N+1� ,

�A6�

where the quantities �LiMLi
limli

�LML� and �SiMSi

1
2mi �SMS�

are Clebsch-Gordan coefficients. Substituting Eq. �A6� into
Eq. �A5� yields after some algebra

WD = �− 1�Li+Li�+1�2L� + 1�1/2�10L�ML�LML�W�1Li�Lli,LiL��

���i�DN��i�
�SS��MSMS�
�SiSi�

�MSi
MSi

� �MLML�
�lili�

, �A7�

where W�1Li�Lli ,LiL�� are Racah coefficients. In writing
these and later equations we have adopted the phase conven-
tion of Fano and Racah for the spherical harmonics.

3. WP term

This term is given by

WP = �rN+1
−1 �̄p

��E�t��̂ · rN+1�rN+1
−1 �̄p�

��
 . �A8�

As before, we expand the channel functions using equation
Eq. �A6�. We also make use of the orthonormality relation
satisfied by the target states,

��i��i�
 = �ii�. �A9�

Then, taking the z axis along the polarization vector �̂ ·r, so
that

�̂ · r = z = r cos � , �A10�

we have

�Yl+10��̂ · r�Yl0
 = − i� l + 1

��2l + 1��2l + 3��1/2�r �A11�

and

�Yl−10��̂ · r�Yl0
 = i� l

��2l − 1��2l + 1��1/2�r , �A12�

where we have adopted the Fano-Racah phase convention
for the spherical harmonics. After some algebra, Eq. �A8�
reduces to

WP = iE�t��− 1�L+L���2li� + 1��2L + 1��1/2 �LML10�L�ML�
�li010�li�0�

�W�1li�LLi,liL��a�li��r�SS��MSMS�
�SiSi�

�MSi
MSi

� �LiLi�

��MLi
MLi

� �	i	i�
, �A13�

where

a�li�� = �
li�

��2li� − 1��2li� + 1��1/2 li = li� − 1

−
�li� + 1�

��2li� + 1��2li� + 3��1/2 li = li� + 1.�
�A14�
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