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Abstract Purpose: Immune checkpoint blockade (ICB) has become a standard of care in the 
treatment of recurrent/metastatic head and neck squamous cell cancer (R/M HNSCC). 
However, only a subset of patients benefit from treatment. Quantification of plasma circu
lating tumour DNA (ctDNA) levels and on-treatment kinetics may permit real-time assess
ment of disease burden under selective pressures of treatment.
Patients and methods: R/M HNSCC patients treated with systemic therapy, platinum-based 
chemotherapy (CT) or ICB, underwent serial liquid biopsy sampling. Biomarkers tested in
cluded ctDNA measured by CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) 
and markers of host inflammation measured by neutrophil-to-lymphocyte ratio (NLR) and 
platelet-to-lymphocyte ratio (PLR).
Results: Among 53 eligible patients, 16 (30%) received CT, 30 (57%) ICB [anti-PD1/L1] 
monotherapy and 7 (13%) combination immunotherapy (IO). Median progression-free sur
vival (PFS) and overall survival (OS) were 2.8 months (95% CI, 1.3–4.3) and 8.2 months (95% 
CI, 5.6–10.8), respectively. Seven (13%) patients experienced a partial response and 21 (40%) 
derived clinical benefit. At baseline, median ctDNA variant allele frequency (VAF) was 4.3%. 
Baseline ctDNA abundance was not associated with OS (p = 0.56) nor PFS (p = 0.54). 
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However, a change in ctDNA VAF after one cycle of treatment (ΔVAF (T1–2)) was predictive 
of both PFS (p <  0.01) and OS (p <  0.01). Additionally, decrease in ΔVAF identified patients 
with longer OS despite early radiological progression, 8.2 vs 4.6 months, hazard ratio 0.44 
(95% CI, 0.19–0.87) p = 0.03. After incorporating NLR and PLR into multivariable Cox 
models, ctDNA ∆VAF retained an association with OS.
Conclusions: Early dynamic changes in ctDNA abundance, after one cycle of treatment, 
compared to baseline predicted both OS and PFS in R/M HNSCC patients on systemic 
therapy.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Immuno-oncology agents have become a standard-of- 
care in the treatment of recurrent/metastatic head and 
neck squamous cell cancer (R/M HNSCC), initially in 
the second-line setting in a programmed death ligand-1 
(PD-L1) unselected population [1,2] and subsequently in 
the first-line setting stratified by PD-L1 status, alone or 
in combination with chemotherapy (CT) [3]. However, 
only a subset of patients benefits from such treatment 
with a durable clinical response.

Currently, there are no validated biomarkers beyond 
that of PD-L1 status, which in itself has limitations, that 
aid in the prediction of response to immune checkpoint 
inhibitors in R/M HNSCC. Circulating tumour DNA 
(ctDNA) within peripheral blood plasma provides non- 
invasive access to cancer-specific somatic mutations [4]. 
Highly sensitive quantification of plasma ctDNA and its 
kinetics may permit real-time assessment of disease under 
selective pressures of treatment. Recent studies have de
monstrated feasibility for the detection of molecular re
sidual disease prior to clinical recurrence in locally 
advanced HNSCC; and broad clinical validity in the 
monitoring of response to anti-PD1 antibody in pan- 
cancer patients with recurrent/metastatic disease [5–7].

In addition to ctDNA, peripheral blood provides access 
to circulating markers of host inflammation, such as the 
neutrophil-to-lymphocyte ratio (NLR) and platelet-to- 
lymphocyte ratio (PLR), which have shown prognostic 
ability across cancer types and stages of disease [8–10]. 
These metrics are easily derived from standard pre-treat
ment blood tests and provide readily available information 
with the potential to aid clinical decision-making.

Here we present the results of a prospective observa
tional study characterising ctDNA dynamics under the 
treatment selection pressure of systemic therapy, corre
lating with clinical outcome in R/M HNSCC patients.

2. Patients and methods

2.1. Patients and study design

From 16 May 2018 to 05 December 2019, 55 patients 
with R/M HNSCC were enroled in Multi-omic 

Assessment of Squamous cell cancers receiving Systemic 
Therapy (MASST) (NCT03712566). The study was 
approved by the Research Ethics Board at Princess 
Margaret Cancer Centre, University Health Network; 
all patients provided written informed consent. 
Treatment was delivered at Princess Margaret Cancer 
Centre: patients received either (a) first line platinum- 
based CT, (b) immune checkpoint blockade (ICB) [anti- 
PD1/L1] monotherapy as per standard of care, second 
line in a PD-L1 unselected population, or (c) combina
tion IO, as part of a therapeutic clinical trial. Of note, at 
the time that this study was active, first-line ICB alone 
or in combination with CT was not available in Canada 
as a standard of care; therefore, PD-L1 status according 
to combined positive score was not routinely tested for 
these patients. The MASST study has completed en
rolment but remains open for continued follow-up of 
patients. The data collection cut-off date was 08 
September 2022.

2.2. Blood collection and processing

Peripheral blood plasma was collected as part of an 
institutional liquid biopsy collection study, Liquid 
Biopsy Evaluation and Repository Development at 
Princess Margaret (LIBERATE) (NCT03702309). 
Samples were collected before cycles 1, 2 and 3 (each 
cycle is every 3 or 4 weeks depending on treatment 
regime), and at the time of disease progression, cor
responding to timepoints (T) 1–4. T1 was considered 
baseline, prior to treatment initiation. At each col
lection time point, 30 ml of peripheral blood was 
collected in Cell-Free DNA (cfDNA) BCT RUO tubes 
(Streck, La Vista, NE). Plasma was separated from 
the cell pellet within 2 h of collection and aliquoted 
for storage at −80 °C. cfDNA was purified from 
clarified plasma using the QIAamp Circulating 
Nucleic Acid Kit (Qiagen, Hilden, Germany). 
Peripheral blood leucocyte (PBL) genomic DNA was 
extracted using the AllPrep DNA/RNA/miRNA 
Universal Extraction Kit (Qiagen). All cfDNA sam
ples were collected and processed by the Translational 
Genomics Programme at the Ontario Institute for 
Cancer Research (Toronto, Canada).
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2.3. CAncer Personalized Profiling by deep Sequencing 
methods

2.3.1. Sequencing and data preprocessing
To detect and longitudinally monitor ctDNA at 
available time points, CAncer Personalized Profiling 
by deep Sequencing (CAPP-seq) was conducted on 
Illumina-compatible libraries using a hybrid capture 
panel optimised for squamous cell malignancies, as 
previously published [11,12]. Libraries were con
structed from 10 to 30 ng of cfDNA or sheared PBL 
genomic DNA. The 480 kb CAPP-seq panel of bio
tinylated bates (Integrated DNA Technologies 
(IDT), Coralville, IA) covers exons from 580 squa
mous cancer-related genes. To suppress sequencing 
errors, duplex sequencing was conducted using un
ique molecular identifiers that were built into the 
indexed adaptors. Reads were aligned to the human 
reference genome hg19 using Burrows-Wheeler 
Aligner (BWA) (v0.7.15), and base quality score re
calibration was conducted using the Genome Ana
lysis ToolKit (GATK) Base Quality Score 
Recalibration (BQSR) (v 3.8) according to GATK 
best practices [13]. The median sequencing depth for 
tumour and matched-normal samples were 6483x 
and 880x, respectively. The aligned reads were sorted 
and indexed on the genome positions using SAM
tools (v 1.9) [14]. ConsensusCruncher was used to 
generate consensus sequences on the aligned reads 
[15]. Duplex consensus sequences were used for the 
subsequent variant calling, and all unique molecule 
sequences were used for the evaluation of variant 
allele frequency (VAF).

2.3.2. Variation calling
Mutect2 was used to identify both somatic and small 
insertions/deletions (Indels) on a joint calling of multiple 
tumour samples and a matched normal sample for each 
patient [16]. Putative germline mutations with VAF >  

25% across all tumour samples were removed, and 
functional mutations were selected. To suppress false 
Indel calls, we took the intersection of those called by 
both Mutect2 and VarDict2 [17] and required at least 
five supporting reads. Somatic mutations called on 
baseline samples (i.e. T1) were used for the subsequent 
analyses, and the median VAFs of the selected muta
tions were summarised to represent the ctDNA abun
dance.

2.4. Peripheral blood parameters

NLR and PLR, circulating markers of host inflamma
tion, were obtained from standard-of-care bloodwork at 
baseline (T1) and following one cycle of treatment (T2); 
dichotomised by median values and correlated with 
clinic-pathological features and survival.

2.5. Statistical analysis

Descriptive statistics were used to summarise patient 
and clinical characteristics, with median and range for 
continuous variables and frequency and percentage for 
categorical variables. Survival was performed using the 
Kaplan-Meier method and the log-rank test by the 
lifelines library [18]. The Cox proportional hazards 
model was used to relate variables with survival [18]. 
Overall survival (OS) was defined as time from first 
treatment to the date of death or the last date of follow 
up. Progression-free survival (PFS) was defined as time 
from first treatment to the date of progression, death or 
last follow-up, whichever occurred first. Progression 
date was defined as the date of disease progression based 
on physicians’ assessment by Response Evaluation 
Criteria in Solid Tumours, version 1.1 (RECIST v1.1) 
[19] or the date of clinical progression if the patient 
discontinued treatment due to clinical deterioration.

3. Results

Among the 55 patients enroled, 53 (96%) were included 
in the analysis having received one or more cycles of 
treatment. Patients received either (a) first line (1L) 
platinum-based CT (n = 16) as per standard of care, (b) 
second line (2L) ICB [anti-PD1/L1] monotherapy 
(n = 30) in a PD-L1 unselected population, as per 
standard of care, or (c) combination IO with two agents 
(n = 7) as part of a therapeutic clinical trial, in second 

Table 1 
Patient characteristics. 

Treated pts  
N = 53 (%)

Median Age – years (range) 62 (20–82)
Gender Male 

Female
40 (75) 
13 (25)

ECOG PS 0 
1

4 (8) 
49 (92)

Smoking History Current/Previous  > 15 
PYH 
Previous  < 15 PYH 
Never

36 (67) 
4 (8) 
13 (25)

Primary Site Oral Cavity 
Oropharynx 
Larynx 
Hypopharynx 
Nasal Cavity

13 (25) 
26 (49) 
8 (15) 
5 (9) 
1 (2)

human papilloma 
virus (HPV) 
status

Positive 
Negative 
Unknown

15 (28) 
37 (70) 
1 (2)

No. of metastatic 
sites

1–2 
3+

42 (79) 
11 (21)

Treatment Chemotherapy 
ICB Monotherapy 
Combination IO

16 (30) 
30 (57) 
7 (13)

ECOG PS, Eastern Cooperative Oncology Group Performance 
Status; PYH, Pack year history; pts, Patients; ICB, Immune check
point blockade; IO, Immunotherapy treatment.
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line or beyond (2L+) settings. Patients had a median age 
of 62, most were male (75%) and were current or former 
smokers (75%), patient characteristics are summarised 
in Table 1.

Prior to study enrolment, patients received a median 
of one previous systemic anti-cancer treatment for their 
R/M HNSCC (range 0–3). The median number of cycles 
of current treatment was four (range 1–13), and median 
follow-up duration was 8.2 months (range 1.8–38.2). 
Median progression-free survival (PFS) and OS were 2.8 
months (95% confidence interval (CI), 1.3–4.3) and 8.2 
months (95% CI, 5.6–10.8), respectively. Seven [5 on 2L 
single-agent ICB and 2 on 1 L CT] patients experienced 
a partial response (PR), with an objective response rate 

(ORR: complete or PR) of 13%; and 21 [8 on 2L single- 
agent ICB and 6 on 1L CT] patients derived clinical 
benefit (defined as complete response, PR or stable 
disease (SD) for ≥4 cycles), with a clinical benefit rate 
of 40%.

3.1. ctDNA levels in R/M HNSCC patients were 
measured by CAPP-seq

CAPP-seq was applied at each available timepoint, and 
VAF was calculated and correlated with PFS and OS 
(Fig. 1). ctDNA was detected in 50/53 (94.3%) patients 
at baseline, with median VAF of 4.3% (range 
0.3–21.8%), Supplementary Fig. 1.

Fig. 1. The change in ctDNA levels from baseline (T1), time to progression of disease and survival status. Fifty-three patients sequenced 
by CAPP-Seq. Left, patients are ordered according to ctDNA change from T1 to T2 based. The red and blue colours represent ctDNA 
levels that increased and decreased at T2, respectively. Right, swimmer plot shows clinical outcomes; duration of response, ctDNA 
detectability and level of change relative to T1 at the other assayed time points, T2–4. Blue represents ICB treated patients and purple 
chemotherapy treated.
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Fig. 2. Association of ctDNA levels at baseline and ctDNA change from T1 to T2 with PFS and OS. (A) Association of ctDNA levels at 
T1 with PFS and OS. Patients were stratified into groupings according to ctDNA detectability and by the median VAF level (4.3%). 
Undetectable (UD). Association of changes in ctDNA levels from T1 to T2 with PFS and OS among (B) all patients (n = 49) and (C) IO 
treated patients (n = 35). Only patients with detectable ctDNA at T1 are included. Increase/decrease is determined from a cut-off of ∆ 
VAF = 0.

K. Taylor et al. / European Journal of Cancer 188 (2023) 29–38 33



3.2. Baseline ctDNA abundance did not correlate with 
either OS or PFS

Three patients had undetectable ctDNA at baseline. 
Using the median VAF as a cut off, 4.3%, neither high 
nor low ctDNA abundance correlated with PFS 
(p = 0.54) or OS (p = 0.56), Fig. 2A.

3.3. Change in ctDNA from baseline (T1) to T2, after 
one cycle of treatment, are predictive of PFS and OS

Early dynamic reductions in ctDNA levels on treatment 
were predictive of improvement in PFS (p  <  0.01) and 
OS (p  <  0.01) (n = 49) (Fig. 2B). This association was 
preserved among the subset of patients treated with IO 
(n = 35) (Fig. 2C).

3.4. Decrease in ctDNA Δ VAF (T1-2) identified 
patients with longer OS despite early radiological 
progression

When considering the change in VAF (Δ VAF) in the 
context of clinical outcomes, those with a decrease in 
ctDNA between T1 and T2 demonstrated a longer 
median OS despite radiological response of progressive 
disease or SD less than 4 cycles, compared to patients 
with an increase in ctDNA, 8.2 vs 4.6 months, hazard 
ratio (HR) 0.44 (95% CI, 0.19–0.87, p = 0.03) (Table 2). 
This remained consistent for IO-treated patients, 7.0 vs 
4.1 months, HR 0.34 (95% CI, 0.12–0.92, p = 0.03) 
(Supplementary Table 1).

3.5. Baseline peripheral blood NLR and PLR are 
prognostic of PFS and OS in R/M HNSCC patients 
receiving systemic therapy

Using median values for NLR and PLR as a cut-off, 
7.43 and 450, respectively, baseline NLR and PLR va
lues below median correlated with longer PFS and OS 
for all patients, Fig. 3. When included in a multivariable 
Cox model adjusted for age, gender, smoking history 

and HPV status, a high pre-treatment baseline NLR was 
a significant predictor of shorter PFS but not OS 
(Supplementary Table 2). The HR for PFS was 2.9 (95% 
CI, 1.2–6.8 p = 0.01) and HR for OS was 1.7 (95% CI, 
0.7–4.0, p = 0.3), using the median value of 7.43 to di
chotomise patients into two groups. Following one cycle 
of treatment, a change (T1–2) in NLR or PLR from 
baseline was not predictive of either PFS or OS.

3.6. Change in ctDNA from baseline (T1) to T2, after 
one cycle of treatment, remained predictive of OS when 
incorporated in multivariable analysis

Considering the 49 patients with ctDNA VAF change 
(T1–2), when included in a multivariable Cox model 
adjusted for age, gender, smoking history, HPV status, 
NLR and PLR, a decrease in ΔVAF remained an in
dependent significant predictor of OS, with a HR for OS 
of 0.4 (95% CI, 0.2–0.9, p = 0.02) (Supplementary 
Table 3).

4. Discussion

This study prospectively evaluated the longitudinal as
sessment of ctDNA dynamics under the treatment se
lection pressure of systemic therapy in R/M HNSCC 
patients. We utilised a fixed-panel CAPP-seq assay that 
was optimised for squamous cell cancers [11] to analyse 
serial plasma samples. Previous studies have shown that 
ctDNA could be measured in the blood of approxi
mately 70% of patients with metastatic HNSCC as
sessed by either BEAMing (beads, emulsion, 
amplification and magnetics) or Safe-Seq (safe-sequen
cing system) [20–23]; and high levels of ctDNA de
monstrated a poor prognostic value and correlated with 
stage of disease and reduced OS [5].

We found that early dynamic changes in ctDNA, 
after one cycle of treatment, compared to ctDNA 
abundance at baseline, were superior to baseline ctDNA 
values alone as predictors of both PFS and OS. 
Furthermore, when considering these dynamic changes 

Table 2 
Decrease in Δ VAF (T1–2) identified patients with longer OS despite early radiological progression. 

Decrease T1-2 Increase T1-2 Survival type: HR (95% CI, 
p-value)

CAncer Personalized 
Profiling by deep 
Sequencing

PR/SD≥ 4cycles 11 [9 IO] 
(mPFS = 8.6 mo, 
mOS = 14.5 mo)

1 [1 IO] 
(mPFS = 5.4 mo, 
mOS = 13.7 mo)

PFS: 0.22 (0.02, 2.22, p = 0.19) 
OS: 0.61 (0.07, 5.25, p = 0.65)

PD/SD <  4cycles 21 [12 IO] 
(mPFS = 2.8 mo, mOS = 
8.2 mo)

15 [12 IO] 
(mPFS= 2.1 mo, mOS = 
4.6 mo)

PFS: 0.45 (0.20, 0.84, p = 0.03) 
OS: 0.44 (0.19, 0.87, p = 0.03)

mPFS, Median PFS; mOS, median OS; PR, partial response; SD, stable disease; PD, progressive disease.
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in a clinical context, a decrease in ΔVAF (T1–2) iden
tified patients with longer OS despite radiological pro
gression at first response imaging. Patients treated with 
ICB who have radiologically progressed early on in their 
course of treatment represent a challenging clinical 

scenario, as a small proportion who are clinically stable 
and who continue treatment will later derive benefit and 
extend their survival. In the Checkmate-141 study, of 
the 60 evaluable patients treated beyond their first 
RECIST-defined progression, 18 (30%) had a 

Fig. 3. Association of T1 NLR and PLR with PFS and OS. Patients were dichotomised using the median values for NLR and PLR (7.43 
and 450, respectively). NLR, Neutrophil to Lymphocyte Ratio; PLR, Platelet to Lymphocyte Ratio.
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subsequent reduction in target lesion size, with median 
OS 12.7 months, compared to 7.7 months in the overall 
intention-to-treat population [24]. As such, ctDNA in 
combination with response imaging may play a mean
ingful role in treatment decision-making for IO- 
treated HNSCC patients [5].

We used state-of-the-art methods for ctDNA detec
tion and quantification by error-corrected targeted se
quencing. The fixed-panel CAPP-seq assay utilised for 
cDNA detection was tailored to squamous malignancies 
and includes portion of a large number of genes 
(n = 580). While in principle this may provide an ad
vantage in advanced disease monitoring by capturing 
more contemporary alterations and mutations of 
emerging resistance, the small size of the panel com
pared with whole exome or genome sequencing may 
cause certain alterations to be missed. Analysis of tu
mour tissue or deeper sequencing could also have re
sulted in refinement of mutation calls [25,26]. Additional 
pitfalls include the small sample size of this cohort, and 
although a homogeneous population, there are a 
number of different therapeutic regimens given at dif
ferent stages of patients’ disease course. Larger studies 
are needed in R/M HNSCC to determine if and how 
best ctDNA can be incorporated into the treatment 
decision paradigm.

Although the changes in longitudinal ctDNA mon
itoring during treatment could aid in clinical decision- 
making, liquid biopsies are not yet readily available as 
routine standard tests in most disease settings. NLR and 
PLR are simple, inexpensive circulating markers of host 
inflammation that can be easily interpreted from pre- 
treatment routine bloodwork. Low NLR and PLR le
vels at baseline were associated with longer PFS and OS 
for both CT and ICB-treated patients in our study. 
Although these blood-based parameters have been stu
died extensively, there is no definite consensus on the 
best cut-off to be used [8,27,28]. However, both NLR 
and PLR are tests that could be easily incorporated into 
clinical decision-making for prognostication, in addition 
to current patient fitness parameters such Eastern Co
operative Oncology Group performance status. These 
blood-based laboratory parameters appear to be most 
relevant at the baseline pre-treatment time point, sug
gesting that they most likely denote prognostic bio
markers, in contrast to the predictive value of on- 
treatment ctDNA dynamics demonstrated in the current 
MASST study.

Substantial efforts are being made across cancer 
types to address the challenge of improving the predic
tion of response to immuno-oncology agents. Currently, 
no validated predictive biomarkers beyond that of PD- 
L1 expression have been incorporated into routine 
practice in R/M HNSCC. Here, we have shown that a 
change in ctDNA kinetics between baseline and end of 
the first treatment cycle better predicted both PFS and 
OS compared to ctDNA abundance at baseline alone. 

Future studies should seek to integrate ctDNA kinetics 
with other clinicopathological and radiological para
meters. Such multimodal data integration is an im
portant direction for precision oncology and may 
enhance our ability to identify early predictors of re
sponse and resistance to ICB [29,30].
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