
Adaptive approximate computing in Edge AI and IoT applications: a
review

Damsgaard, H. J., Grenier, A., Katare, D., Taufique, Z., Shakibhamedan, S., Troccoli, T., Chatzitsompanis, G.,
Kanduri, A., Ometov, A., Ding, A. Y., Taherinejad, N., Karakonstantis, G., Woods, R., & Nurmi, J. (2024).
Adaptive approximate computing in Edge AI and IoT applications: a review. Journal of Systems Architecture,
150, Article 103114. https://doi.org/10.1016/j.sysarc.2024.103114

Published in:
Journal of Systems Architecture

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2024 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:10. Jul. 2024

https://doi.org/10.1016/j.sysarc.2024.103114
https://pure.qub.ac.uk/en/publications/0afc370b-f065-41a3-9654-55e001836083

Journal of Systems Architecture 150 (2024) 103114

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Adaptive approximate computing in edge AI and IoT applications: A review
Hans Jakob Damsgaard a,∗, Antoine Grenier a, Dewant Katare b, Zain Taufique c,
Salar Shakibhamedan d, Tiago Troccoli e, Georgios Chatzitsompanis f, Anil Kanduri c,
Aleksandr Ometov a, Aaron Yi Ding b, Nima Taherinejad g,d, Georgios Karakonstantis f,
Roger Woods f, Jari Nurmi a

a Electrical Engineering Unit, Tampere University, Tampere, 33720, Finland
b Information and Communication Technology Unit, TU Delft, Delft, 2628, Netherlands
c Department of Computing, University of Turku, Turku, 20500, Finland
d Institute of Computer Technology, TU Wien, Vienna, 1040, Austria
e Wirepas Ltd, Tampere, 33720, Finland
f Institute of Electronics, Communications & Information Technology, Queen’s University Belfast, Belfast, BT7 1NN, Northern Ireland, UK
g Institute for Computer Engineering, Heidelberg University, Heidelberg, 69120, Germany

A R T I C L E I N F O

Keywords:
Approximate computing
Autonomous driving
Edge computing
Positioning
Smart sensing

A B S T R A C T

Recent advancements in hardware and software systems have been driven by the deployment of emerging smart
health and mobility applications. These developments have modernized the traditional approaches by replacing
conventional computing systems with cyber–physical and intelligent systems combining the Internet of Things
(IoT) with Edge Artificial Intelligence. Despite the many advantages and opportunities of these systems within
various application domains, the scarcity of energy, extensive computing needs, and limited communication
must be considered when orchestrating their deployment. Inducing savings in these directions is central to
the Approximate Computing (AxC) paradigm, in which the accuracy of some operations is traded off with
energy, latency, and/or communication reductions. Unfortunately, the dynamics of the environments in which
AxC-equipped IoT systems operate have been paid little attention. We bridge this gap by surveying adaptive
AxC techniques applied to three emerging application domains, namely autonomous driving, smart sensing and
wearables, and positioning, paying special attention to hardware acceleration. We discuss the challenges of
such applications, how adaptive AxC can aid their deployment, and which savings it can bring based on traits
of the data and devices involved. Insights arising thereof may serve as inspiration to researchers, engineers,
and students active within the considered domains.
1. Introduction

Computing contributes significantly to the world’s rising energy
consumption. In 2018, data centers in the EU accounted for 76.8 TWh
or 2.7% of the total electricity demand, and this number is predicted to
increase to 98.5 TWh (a 28% increase) or 3.2% of the total demand by
2030 [1]; others predicting the total energy spent on computing will
exceed world energy production by 2040 [2], as illustrated in Fig. 1.
This increase is dictated by the rising number of data centers in the
Cloud (e.g., computing, storage), and it only adds fuel to the current
world energy crisis [3]. In particular, the growing number of Internet

∗ Corresponding author.
E-mail addresses: hans.damsgaard@tuni.fi (H.J. Damsgaard), antoine.grenier@tuni.fi (A. Grenier), d.katare@tudelft.nl (D. Katare), zatauf@utu.fi

(Z. Taufique), salar.shakibhamedan@tuwien.ac.at (S. Shakibhamedan), tiago.troccoli@wirepas.com (T. Troccoli), georgios.chatzitsompanis@qub.ac.uk
(G. Chatzitsompanis), spakan@utu.fi (A. Kanduri), aleksandr.ometov@tuni.fi (A. Ometov), aaron.ding@tudelft.nl (A.Y. Ding),
nima.taherinejad@ziti.uni-heidelberg.de (N. Taherinejad), g.karakonstantis@qub.ac.uk (G. Karakonstantis), r.woods@qub.ac.uk (R. Woods), jari.nurmi@tuni.fi
(J. Nurmi).

of Things (IoT) devices is predicted to exceed 30 billion by 2027,
challenging the scalability of Cloud computing [4], as these devices
rely on offloading data for processing, incurring communication latency
and energy consumption, thereby compounding the aforementioned
compute energy. Not only does this increase force the data centers
themselves to suddenly manage many more user requests, but it also
burdens the network backhaul that communicates data back and forth
between various processing elements [5].

The Edge and Fog computing paradigms were introduced to deal
with the increased network bandwidth [25], aiming at limiting the
vailable online 17 March 2024
383-7621/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.sysarc.2024.103114
Received 21 December 2023; Received in revised form 12 March 2024; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

3 March 2024

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:hans.damsgaard@tuni.fi
mailto:antoine.grenier@tuni.fi
mailto:d.katare@tudelft.nl
mailto:zatauf@utu.fi
mailto:salar.shakibhamedan@tuwien.ac.at
mailto:tiago.troccoli@wirepas.com
mailto:georgios.chatzitsompanis@qub.ac.uk
mailto:spakan@utu.fi
mailto:aleksandr.ometov@tuni.fi
mailto:aaron.ding@tudelft.nl
mailto:nima.taherinejad@ziti.uni-heidelberg.de
mailto:g.karakonstantis@qub.ac.uk
mailto:r.woods@qub.ac.uk
mailto:jari.nurmi@tuni.fi
https://doi.org/10.1016/j.sysarc.2024.103114
https://doi.org/10.1016/j.sysarc.2024.103114
http://creativecommons.org/licenses/by/4.0/

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

t

c
E
p
w
a
t
f
l
a
l
o
l
A
i
l

t

Table 1
Overview and comparison of related surveys.

Authors Reference Year Technologies Applications

AxC Edge ML/AI Comms. Auto. driving Smart sensing Positioning

Han et al. [7] 2013 ✓

Xu et al. [8] 2015 ✓

Mittal [9] 2016 ✓

Shi et al. [10] 2016 ✓ ✓

Betzel et al. [11] 2018 ✓ ✓

Ibrahim et al. [12] 2018 ✓ ✓

Yousefpour et al. [13] 2019 ✓

Ma et al. [14] 2019 ✓ ✓ ✓ ✓ ✓

Cococcioni et al. [15] 2020 ✓ ✓ ✓

Shi et al. [16] 2020 ✓ ✓ ✓

Pascacio et al. [17] 2021 ✓ ✓

Kiran et al. [18] 2021 ✓ ✓

Ometov et al. [19] 2021 ✓ ✓ ✓ ✓

Ding et al. [20] 2022 ✓ ✓ ✓

Damsgaard et al. [21] 2022 ✓ ✓

Badran et al. [22] 2023 ✓ ✓

Katare et al. [23] 2023 ✓ ✓ ✓ ✓

Grenier et al. [24] 2023 ✓ ✓

Our work — 2024 ✓ ✓ ✓ ✓ ✓ ✓
Fig. 1. Historic and predicted energy consumption of computing systems compared to
he world energy production (reproduced from [6]).

ommunicated data and increasing the data processing in the network
dge devices [26]. Recent technological advances, such as the increased
opularity of smartphones, have enabled this form of processing [13],
hich has been shown to potentially improve energy efficiency [27]
nd improve the overall communications quality balance [28]. While
he Edge and Fog domains differ in some details, as will be seen later,
or ease of explanation they are considered as one mid-tier computing
ayer that facilitates offloading with reduced overheads here. Executing
pplications closer to the user end devices can reduce communication
atency and backhaul contention, opening research avenues focusing
n the design of new intelligent applications that can be executed on
ow-power, but enhanced Edge devices, commonly referred to as Edge
rtificial Intelligence (AI) [10,16]. The intersection of IoT and Edge AI

s particularly interesting as it enables responsiveness and privacy at
ow power consumption [20].

Designing applications for low power consumption involves op-
imizations at different levels: (1) at the device level, as embedded

devices’ access to energy is often constrained; (2) at the communication
level, as the energy required to offload data needs to be compared
against onboard processing; and (3) at the Cloud level, with accelerators
tailored for specific applications to optimize efficiency. The emerg-
ing Approximate Computing (AxC) domain that has been increasingly
reviewed over the past decade spans all these levels and involves
trading off numerical accuracy or functional correctness for lower
energy consumption, communication latency, circuit area, etc. [8,9,21].
In contrast to conventional precision-oriented developments, it exploits
the observation that many applications are error-resilient and have
2

user requirements that can be satisfied with a lower-grade system
or imperfect models [21,29,30]. Such applications employ algorithms
that aggregate large (redundant) data sets, iteratively refine outputs
thereby attenuating errors, or produce ranges of outputs considered
to be equally acceptable [31]. These characteristics are present in,
among others, image and video processing, positioning, analytics, and
especially in Machine Learning (ML), for which even drastic approx-
imations (e.g., binarization) have limited quality implications on the
results [32].

1.1. Focus areas

In this paper, we focus on adaptive AxC as a technological enabler
of more energy-efficient, smarter applications at the intersection of
IoT and Edge AI. For this purpose, we consider adaptive AxC as a
collection of techniques for improving the performance and energy
efficiency of computing systems by optimizing their energy-latency-
accuracy trade-offs dynamically with respect to their instantaneous
quality constraints. We divide computing systems into two layers:
L1 comprising applications and algorithms and L2 comprising hard-
ware architectures and devices. Each layer possesses its requirements
and opportunities for making effective use of AxC: at L1, mathematical
models, and algorithmic understanding are needed to highlight areas
where approximations may be applied, and at L2, hardware should
implement arithmetic and logic circuitry to support preceding layer
extensions of software. Binding the two together requires support for
managing approximations according to error resilience characteristics
for performance enhancement, power and energy savings, reliability,
lifetime, or other parameters at run time with low overhead [21].

As this field of survey is large, we narrow down the scope to focus on
three IoT and Edge AI-related application domains in which we believe
AxC can make a difference: autonomous driving, smart sensing and
wearables, and positioning; and the adaptive AxC techniques relevant
to these. These domains are popular and have been subject to consid-
erable research effort for some years now; yet significant challenges
remain to satisfy their energy requirements, as we will see later. Fig. 2
highlights our appreciation of the landscape of these applications and
the hardware on which they are executed by mapping the L1 to the Ap-
plications and Algorithms in Software classes and L2 to the Algorithms in
Hardware and Hardware classes. Naturally, the separation of algorithms
and techniques across these classes is not trivial, and some exist at the
intersections; for example, edge detection algorithms may just as well
be executed purely in software as in hardware.

1.2. Contributions

There exist several surveys and reviews in the fields of AxC and

the three covered application domains. Two papers, for example, focus

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
Fig. 2. Overview of AxC techniques throughout layers and their application domains.
on circuit- and architecture-level AxC techniques [7,8]; another gives a
broader but mostly application-agnostic survey of AxC techniques [9];
and yet another considers only techniques for Edge computing hard-
ware, providing examples of applications that can benefit from AxC
but without covering their application-level approximations [21]. This
particular emphasis on use-case-agnostic techniques limits the existing
works’ articulation on exploiting application-specific characteristics.
Similarly, existing surveys on Edge computing or Edge AI do not
consider AxC in detail [10,13,16,20]. We summarize the differences
between the present survey and the existing literature in Table 1.

This survey bridges these gaps in the existing literature by consid-
ering the intersection of AxC with three emerging Edge AI and IoT-
related application domains. We describe application-, architecture-,
and circuit-level AxC techniques and survey and highlight recent pub-
lications on their use in the three domains. Our main contributions are
(1) a discussion of the challenges of applications within these emerging
domains; (2) a description of how AxC techniques can be applied to
these applications; and (3) an outline of the potential benefits that
arise from using AxC based on the properties of the processed data
and the devices involved in these application domains. With this, we
aim to showcase the vast amount of existing work on AxC in the three
domains and to highlight the importance of combining AxC techniques
across the system levels to maximize its benefits. Moreover, we hope to
instigate further research in three directions: (1) application of adaptive
AxC to new application domains, (2) development of new techniques
suitable for application-specific or generic use, and (3) implementation
of these techniques in software and hardware.

1.3. Methodology

As the topic of the present survey is rather broad, conducting a
comprehensive, systematic review of its related literature is infeasible.
Instead, we performed an integrative review [33] by collating papers
within each of the authors’ research domains and filtering them to
avoid multiple references to the same topic or use case. The resulting
set of publications was reviewed by the senior authors and adjusted as
needed to sufficiently cover the surveyed techniques and domains.

1.4. Paper structure

The paper is structured as follows. Section 2 provides a brief back-
ground of Edge computing and ML needed to follow the next sections.
Section 3 covers circuit-level AxC techniques and architectures at L2
and application- or algorithm-level techniques at L1 relevant in the
present context. Next, Section 4 presents the three application domains,
outlines relevant algorithms, and describes their approximation op-
portunities. We put little emphasis on techniques for binding L1 and
L2 together, considering them as mere communication links between
applications and hardware. Section 5 discusses observations made in
the paper and suggests directions for future work. Section 6 concludes
the survey.
3

Fig. 3. Overview of the main computing paradigms and their devices and
communication links relevant within the three application domains considered.

2. Background

Before surveying state-of-the-art publications related to the afore-
mentioned three considered application domains, we provide a brief
motivation and introduction to related general technologies and trends.
Specifically, we cover Edge computing and ML. We aim to maintain a
high abstraction level for better accessibility to a broader readership,
referring interested readers to consider the following sections for more
details.

2.1. Edge computing

The number of connected devices has exploded over several decades
[4,25]. These devices drastically increase network bandwidth require-
ments as more data are produced at the end devices but offloaded for
storage and processing in Cloud datacenters [13]. Moreover, growing
interest in the IoT indicates the continuation of this trend beyond
network requirements sustainable by existing infrastructure [13,25,27].

The Edge and Fog computing paradigms were introduced to address
these challenges. Both paradigms are centered around sinking Cloud
computing capabilities from the network core to the geographical
edges (e.g., base stations, routers, access points, smartphones, etc.),

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
Table 2
List of popular ML models by learning domain.

Type Model description

Supervised

Regression is a model trained to predict the value of some (continuous) variable given a number of (continuous or discrete) features [34].

Nearest Neighbor models are non-parametric and do not require training. Instead, at inference time, the model’s output is the value or the class of
the known example nearest to the input by some distance metric [34].

𝑘-Nearest Neighbors (k-NN) implements 𝑘 nearest neighbor models in ensemble, merging their outputs by majority voting or averaging. With large
training sets, k-NN models can achieve good capacity but do so at high computational costs [34].

Decision Trees are, like the name hints at, tree-like models that comprise decision nodes and classification labels. During training, the model assigns
features and thresholds to its decision nodes and labels to its leaf nodes. At inference time, the resulting class is identified by following decision
nodes from the root to a leaf [35]. Unconstrained decision trees may grow arbitrarily large and, thus, become unwieldy. This may be avoided with
special training algorithms [34].

Random Forests implement several decision trees in ensemble, merging their outputs by majority voting or averaging. Individual trees can be
trained either on different data subsets or only on poorly-classified data (i.e., boosting) to improve overall accuracy [35].

Support Vector Machines (SVMs) are trained to map input data to an 𝑛-dimensional hyperspace–𝑛 being the number of features–to maximize the
distance between disparate categories, essentially computing a distinguishing hyperplane. An input example is classified by which side of the
hyperplane it is at [34,36]. SVMs inherently perform binary classification but may be used in ensemble to form multi-class classifiers [37].

Bayesian Models are statistical models based on Bayes’ theorem. Given a prior distribution and an observation, the corresponding posterior
distribution can be computed [38].

Neural Networks mimic biological brains, implementing networks of artificial, non-linear neurons and weighted synapses. Typical models comprise
several layers of neurons: an input layer, a number of optional hidden layers, and an output layer. Non-linearity is introduced by passing the
accumulated values of each neuron through an activation function like sigmoid, softmax, or ReLU. NN architectures show great variety from DNNs
with multiple hidden layers, CNNs with neurons organized in convolutional filters, RNNs with integrated memory elements, to transformers with
attention modules that assign context-specific soft weights to their inputs [39]. During training, the synaptic weights are updated, while they remain
frozen during inference [34,40].

Unsupervised
Clustering algorithms group unlabeled data such that grouped data points are more similar to each other than to other groups according to some
metric [34,41].

Association Rules are frequently used in data analysis for understanding relations between features according to some metric of interest [41,42].

Dimension reduction techniques aim at reducing data dimensionality with minimal information loss, essentially implementing a lossy compression of
inputs [43–45]. Recently popular methods are based on autoencoders, i.e., models that comprise mirrored, but otherwise often identical, encoder and
decoder NNs to learn a low-dimensional intermediate representation from which they can reproduce input examples [34,46].

Reinforcement Markov Decision Processes are sequential decision-making models comprising a present state from which an action can be performed. The action’s
quality is evaluated based either on a model of the environment or on samples gathered from a physical/virtual environment directly. During
training, high quality actions are rewarded (reinforced) and low quality actions are penalized. This ensures the model converges towards an optimal
behavior within its environment [40].
performing computations closer to the end devices [32,47,48]. As
such, they are intermediate to traditional local and Cloud computing,
differing in where computation and storage are performed. CISCO
coined the Fog computing term, referring to a paradigm in which Fog
nodes–small-scale servers capable of managing tasks for many users
simultaneously–are distributed around the internet [49]. Edge com-
puting refers to a paradigm in which computational nodes are more
numerous, smaller, and further distributed close to the end users [10].
Both paradigms revert to Cloud computing when tasks cannot be per-
formed in their distributed devices. Owing to their similar distributed
nature, we consider the two paradigms as one and provide an overview
of them in Fig. 3.

Understanding the difference between the Cloud and Edge
paradigms is crucial. In the present survey, we focus on compute-
capable devices belonging to the bottom two categories – IoT and
Edge – and consider resource-constrained IoT devices with little-to-
no computational capabilities outside our scope. Our focus on Edge
AI necessitates this distinction as related ML algorithms tend to be
compute-heavy. Moreover, like prior work [21], we expect the benefits
of AxC to be more pronounced in the related devices – autonomous
cars, smart sensors and wearables, and positioning systems – than in
the upper network layers’ devices. Yet, despite vast amounts of Edge
systems research, only little work focuses on its practical implementa-
tion. Supporting frameworks must implement primitives for local data
collection and processing, wireless and secure data transmission, and
task offloading, as well as a flexible Edge–Cloud server backend to man-
age the processed data [50,51]. Everything needs to be interconnected
by well-defined Application Programming Interfaces (APIs) [52]. We
assume the existence of such a framework with minimal overheads.
Now, as a basic understanding of ML is necessary to follow the survey’s
4

technical sections, we briefly introduce it.
2.2. Machine learning for edge AI

The autonomous driving, smart sensing, and positioning systems
that we consider in this survey are expected to grow increasingly
intelligent, aggregating data from multiple sensors to navigate traffic,
detect seizures, or accurately locate a device [53]. This kind of AI is
commonly implemented using ML algorithms that can learn patterns –
probability distributions – from data or actions and later be used to infer
information from new data or act in new environments [34]. Despite
being widely known and applied, we find it suitable to provide a brief
introduction to the field’s components and refer readers interested in
details to more comprehensive texts [34,38,53].

ML algorithms are typically used following a two-stage flow con-
sisting of an (offline) training phase, during which their weights are
updated according to training data, followed by an (online) deployment
phase, during which their weights are frozen and the models are used
only for inference [34]. Table 2 outlines and summarizes popular ML
techniques, of which especially variations of Neural Networks (NNs) are
popular in the literature, as we will see later. We relate these models to
their learning models: Supervised, Unsupervised, Semi-supervised, and
Reinforcement Learning (RL), described below. In addition to these, we
cover Federated Learning (FL), which is a distributed, online learning
model popularized by advances in Edge computing and the growing
need for adaptability [53].

Supervised Learning is an approach to train ML models with
labeled data to correctly detect, classify, or predict its labels. During
training, a model is adjusted to minimize a pre-determined loss func-
tion most often using some variant of gradient descent, for example,
backpropagation in NNs. Backpropagation works by estimating the
contribution of each neuron to the current loss and subsequently ad-
justing the weights according to the loss function’s gradient, gradually

approaching one of its minima [34,38].

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

t
s
t
a
I
a
p

d
r
u
b

n
w
i
a
a

d
p
s
f
t
e

t

t
d
a

o
c
f
i
o
m
T
m
p

3

d
a
p
c
c
m
p
i

Unsupervised Learning can be applied to synthesize new informa-
ion from unlabeled data, useful to discover patterns and groupings by
imilarity or difference in examples without needing human interven-
ion. Depending on the use case, models are adjusted during training
ccording to a pre-determined metric of similarity or interest [34,42].
n systems with high-dimensional inputs, unsupervised techniques like
utoencoding [44,45] can be used to pre-process data before they are
assed to a supervised model.

Viewing ML models as ways to learn probability distributions over a
ataset renders the lines between supervised and unsupervised learning
ather blurry [34]. The fact that some ML models, like NNs, may be
sed both for supervised and unsupervised tasks further adds to this
lur. The Semi-supervised Learning hybrid model also originates from

this. It is motivated by the time-consuming, cost-intensive need for ex-
pert supervision to maintain the labeling quality of datasets [40]. Semi-
supervised techniques combine characteristics from both supervised
and unsupervised techniques, even extending upon their functionality
enabling dynamic performance maintenance or adaptation to new data,
for example through pseudo-labeling [40,54].

Reinforcement Learning distinguishes itself from the above tech-
iques by being environment-driven rather than data-driven. An agent
ill attempt to learn the optimal behavior by being rewarded or penal-

zed based on actions performed to its environment, i.e., its beneficial
ctions will be reinforced. It is particularly useful in complex robotics
nd autonomous driving scenarios [40].
Federated Learning is a relatively new field in ML, specifically

esigned for collaborative or joint learning in the distributed computing
aradigms of today. Its related models are closely linked to those of
upervised and unsupervised learning, but its training algorithms are
ederated, and a centralized server aggregates model updates rather
han training data. This preserves system privacy but requires powerful
nd devices, e.g., autonomous cars and wearables [53].

Datasets used for ML tasks are often split (randomly) into two or
hree subsets: a training set, a test set, and optionally a validation set [34,

38]. A model is trained on the largest of these subsets: the training
set, and evaluated periodically during training on the validation set. Its
eventual performance, however, is measured on the test set, meaning
the model needs capacity not only to minimize its training error but
also the gap between its training and test errors [34]. Too low capacity
may lead a model to underfit and fail to minimize its training error,
while too high capacity can make it overfit and fail to generalize to the
est set [34]. Designing an ML algorithm, thus, means deciding on or
etermining an adequate capacity as well as a suitable set of hypotheses
bout the underlying statistical processes of the dataset [34].
AxC opportunities in ML are numerous. In addition to operating

n noisy input data, most of the models outlined in Table 2 rely on
ompute- and memory-heavy linear algebra and non-linear activation
unctions. In many cases, such models are designed with a larger capac-
ty than their targeted task requires [55,56]. The combination of these
perations and the over-provisioning of capacity, particularly in NNs,
akes models inherently resilient to small computational errors [57].
his trait can be exploited to reduce their demands, rendering them
ore suitable for execution at the Edge, as we will see later in the
aper.

. Approximate computing

In parallel with the development in the number of connected
evices, the applications they execute have also changed. The vast
mounts of produced data require massive computational efforts to
rocess and aggregate. Such recent applications are user-centric and
an provide results evaluated on their acceptability rather than their
orrectness [21]; illustrated in our context by, e.g., how well an ML
odel performs on the road, the data quality from a smart sensor, or the
recision of a positioning device. As a result, these applications show
nherent error resilience that can be exploited using approximation
5

Fig. 4. Percentage of execution time spent on resilient computations (i.e., candi-
dates for approximation) in some ML applications. Numerical values extracted for
visualization from [31].

Fig. 5. Highlighted AxC software and hardware techniques. Techniques extracted
from [9,21].

to achieve interesting trade-offs between energy, latency, and output
quality. Recent research has revealed that many applications spend
most of their execution time performing resilient computations that,
with care, can be approximated with little-to-no quality degradation,
as highlighted for some ML applications, in Fig. 4. Some of which may
be executed in a smart sensor.

In the AxC domain, approximations are used to reduce applica-
tions’ computational complexity, memory demands, or communication
bandwidth [30]. Techniques range from generic circuit-level ones to
application-specific algorithm- or software-level ones, the latter often
bringing greater benefits. Fig. 5 outlines some generic techniques. We
return to select hardware and software techniques later. At the soft-
ware level, a developer can either introduce approximations that are
hardware-agnostic (e.g., loop/code perforation, quantization, pruning)
or ones that require hardware support (e.g., branch misprediction roll-
back skipping) [9]. Similarly, a hardware designer can introduce static
application-agnostic (e.g., inexact arithmetic) or application-driven ap-
proximations (e.g., instruction set extensions) [8,9], or dynamic ap-
proximations to facilitate Voltage Over-Scaling (VOS) and avoid any
resultant timing or memory errors for more aggressive energy sav-
ings [58–60].

Managing approximations at run time is essential to satisfy quality
constraints. Blindly applying AxC is simple but may lead to under-
utilization or inadequate results [8,29]. Being too cautious leads to
the former and results in sub-optimal savings, while being too gen-
erous leads to the latter and results in too large quality degradation.
Striking a balance between the two is difficult and demands either
developer intervention or run-time quality control in hardware [61,62].
Alternatively, the error impact of certain techniques can be established

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

s
a
m
o
c
A

f
t
a

Table 3
Comparison of the papers on inexact arithmetic.

Type Architecture Adaptive? References

Adder
Non-segmented No [67–70]

Yes [71,72]

Segmented No [73–76]
Yes [77]

Multiplier

a Logarithmic No [78]

Tree No [79,80]

Array No [67,81–86]
Yes [87,88]

MAC No [89–91]
Yes [92]

a We exclude three works [93–95] that present libraries of multipliers rather than
individual designs.

with formal or probabilistic model checking tools preemptively [63].
Formal tools can be used to compute characteristics like worst-case
error [64], while probabilistic tools use randomized simulation to
infer with some degree of confidence the presence of some given
properties in a system [63,65,66]. Both these types of analyses are
relevant at design time when various approximate operating points
of a system must be determined. Our focus on adaptive AxC also
involves a particular interest in controlling approximations according
to changing application requirements [29] and varying operands during
execution [58]. We present some techniques for this later.

As a broad spectrum of techniques exists within the AxC paradigm,
we limit this introduction to the commonly applied ones relevant to our
surveyed application domains. We follow a bottom-up approach: first,
we consider circuit-level techniques; then, their integration into various
computing architectures; and last, some application- or algorithm-level
techniques.

3.1. Circuit-level techniques

We first focus on two prevalent categories of techniques: inex-
act arithmetic and circuit-level approximations. Depending on their
adaptability and the target application’s quality requirements, these
techniques are generally applicable. More details on them are avail-
able in other surveys [8,9,21]. We summarize the covered work in
Tables 3 and 4.

3.1.1. Inexact arithmetic
Functional approximation of arithmetic units is a particularly pop-

ular and active area of research. This branch mainly deals with the de-
sign of adders and multipliers at different abstraction levels, i.e., tran-
sistor, gate, or register-transfer level. Some notable approximate adders
include speculative adders, segmented adders, and approximate Full
Adders (FAs). Significant research effort has also been spent on ap-
proximating multipliers – the most power-hungry components in ML
accelerators. We focus on these two units and their combination: the
Multiply-Accumulate (MAC) unit that is essential for NN accelerators.

Adders play a crucial role in computing systems. Demands for high
peed and energy efficiency have promoted the design of approximate
dders that save area and power consumption and increase perfor-
ance at the expense of accuracy [69]. Adders calculate the sum

f two binary numbers and come in different layouts, the two most
ommon are the Ripple-Carry Adder (RCA) and the Carry-Lookahead
dder (CLA) [96,97]. Briefly, an 𝑛-bit RCA cascades 𝑛 FAs, propagating

the carry from each FA to the next, giving it a linear delay. A CLA
instead computes and propagates carries in slices of bits, operating
these modules in parallel to produce a sum, giving them logarithmic
delay yet a considerably greater area than an RCA.

Many approximate adders have been proposed. The simplest ones
6

employ approximate FAs in the Least-Significant Bits (LSBs) of an RCA o
Table 4
Comparison of the papers on circuit-level techniques.

Type Parameter Adaptive? References

Precision
scalinga

Truncation Yes [58,98–100]
Voltage Yes [100,101]
Refresh Rate Yes [59]

Strategy Level

Approximate
synthesisb

Pruning HLS [102–104]
Gate [105,106]

Inexact arithmetic HLS [107]
RTL [108,109]

a We exclude two papers [60,110] that survey and study precision scaling in general
terms.
b Circuits generated through approximate synthesis are by default not adaptive, so we
use a different third column to categorize the associated work.

Fig. 6. Boolean equations and Karnaugh maps. Red digits indicate errors. Outputs are
in order of significance.

to reduce the carry chain’s length and area [7,67,68]. Examples of
such include substituting FAs with simple OR-gates [67] and various
logically inexact FAs [73] or so-called mirror adders [69], illustrated
by the Karnaugh map in Fig. 6(a). Alternatively, an adder can be
segmented into several smaller adders that operate in parallel. Exact
Carry-Select Adders and CLAs already integrate this technique, and
their approximate counterparts cut their carry chains [74]. Speculative
adders generalize this segmentation to predict each sum bit from its
𝑘 < 𝑛 less significant bits [73,75]. The majority of these adders
are designed for Application-Specific Integrated Circuit implementation
and integrating them on Field-Programmable Gate Array (FPGA) does
not necessarily bring comparable savings [111]. There are, however,
also FPGA-specific designs [70,76]. These adders reduce latency by
cutting their carry chains and later reducing the arising errors by
feeding Look-Up Tables (LUTs) with duplicated inputs.

Within our scope of adaptive AxC, some authors have explored
complementing the aforementioned adders with extra logic to select
the degree of approximation. This concept may be integrated into an
RCA by inserting multiplexers at each carry, enabling fine-grained qual-
ity control at the expense of high overheads [71]. Reduced-overhead
alternatives to this design include the RCA of [72], which dynamically
selects the number of bits used in carry prediction, and the CLA of [77],
which approximates every fourth carry through power gating.

Multipliers are another crucial component in computing systems. As
or adders, several different approximate designs exist, including ones
hat apply the speculative adders described above [75]. However, using
dders directly to implement multipliers may be inefficient in trading

ff accuracy for area and energy savings. Instead, multiplication is often

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
implemented by a cascaded array of adders that reduce partial products
into the final results. Approximations often target reducing the critical
path of this array by truncating some number of LSBs [67,81], by
approximating the adders [95], or by reducing the number of partial
products through (hybrid) high-radix encodings [82]. Some authors
have also explored using genetic algorithms to generate libraries of
inexact multipliers [93].

Other designs implement combinations of the above techniques.
One work notices that rounding operands to their nearest power-
of-two means multiplication turns into simple shift operations [78],
while another performs multiplication recursively based on simple
inexact 2 × 2 multipliers [79], whose logical behavior is given in
Fig. 6(b). Some designs integrate error compensation [67,81] or input
pre-processing [83] to reduce output errors, while others aggressively
approximate both partial product generation and reduction to reduce
energy consumption further [84,85]. Again, implementing these mul-
tipliers on FPGA does not guarantee any savings [94]. In recognition
of this, some work constructs partial product reduction with approxi-
mate compressors [86], while others utilize inexact 4 × 4 multipliers
or partial product generation circuits that map well to the fabric’s
primitives [80,94]. The latter is even collected in a library similar to
that of [93].

In addition to the above, there also exist run-time configurable
inexact multipliers. Two such designs are proposed in [87] and [88].
The multiplier of [87] can perform either one wide multiplication
or two narrow multiplications, both of whose results are inexactly
compressed, while that of [88] combines inexact compression with
dynamic input truncation to enable greater control of output quality.

MACs are usually constructed by a multiplier and an adder fused
to maintain precision. Therefore, integer designs can be approximated
both in their adders and multipliers using units like the above, while
floating-point ones require being conservative, particularly concerning
the exponent logic. Four publications explore integer MACs: one that
approximates accumulation by early termination [112], one focused on
customizability in FPGAs [89], one using sign prediction and a special
input encoding [90], and another that supports integer operations by
dynamically disabling the exponent logic of a floating-point MAC [92].
Another paper simplifies a floating-point MAC by removing its overflow
and underflow circuits and approximating its mantissa multiplier [91].
Most papers in this category target CNN acceleration.

3.1.2. Circuit-level approximations
For some applications, static precision scaling, like quantization, has

already been applied in commercial hardware such as [113]. Though
the benefits of this are clear, one must be conservative to guarantee
output quality when applying static techniques. This has brought at-
tention to adaptive dynamic precision scaling techniques that can tailor
computational precision to the temporal changes in an application’s
error resilience [98,114]. As outlined above, this style of adaptability
is possible to implement in inexact arithmetic, e.g., with selective error
compensation [67,73,81], disabled carry propagation [71,72,77], or
early-terminated accumulation [112]. However, these techniques fail
to exploit the benefits of low-level circuit characteristics: voltage and
frequency.

The voltage and frequency knobs are commonly adjusted in Dy-
namic Voltage and Frequency Scaling to maximize energy efficiency
when the computational load is low and performance when it is
high [115,116]. Still, they may analogously be used for approximation
to adjust circuit precision [98]. Over-scaling the voltage or frequency
will significantly increase the risk of timing failures in a circuit – some
of which other approximations can counter – while potentially leading
to vast energy savings [58,60,117].

Several papers explore VOS. Their proofs-of-concept are mainly
floating-point arithmetic units compared with statically truncated ones
to highlight potential benefits [58,98]. The approach appears to be
7

mostly used for NN acceleration, for which it involves keeping track
Fig. 7. Abstract illustration of a heterogeneous SoC with two processor cores, two
accelerator cores, a distributed last-level cache, a memory controller, and a peripheral
controller; interconnected by a mesh-style NoC.

of good-enough precision and adjusting the word length of weights and
activations [99,100]. In some instances, the approach is taken to the
extreme near-threshold case at which significant reductions in static
and dynamic power can be achieved at the cost of longer computation
time [101,117]. Unlike inexact arithmetic, voltage over-scaling can be
applied to FPGAs, though its effects may be difficult to predict and vary
greatly across a chip. Errors may be mitigated by mapping sensitive
logic to the most fault-resilient parts of the FPGA [110]; a strategy
similar to that, which is often applied to reduced refresh-rate Dynamic
RAM (DRAM) [59].

Earlier we described how, e.g., inexact arithmetic units can de-
crease the area and power consumption of a system. However, in some
cases, it is unnecessary to limit the Design Space Exploration (DSE)
only to these units. Instead, to broaden their scope and avoid costly
iterative simulation and synthesis runs, a large pool of work considers
introducing approximations during synthesis [107]. Some authors pro-
pose integrating approximate circuits characterized at design time into
High-Level Synthesis (HLS) flows [102–104], while others introduce
approximations at the Register-Transfer Level [108,109] and even at
the gate level [105,106]. While a more fine-grained granularity can
lead to greater savings, it has synthesis time overheads [106].

3.2. Architectures

Having introduced circuit-level AxC techniques, we turn our atten-
tion to compute architectures. We distinguish between general-purpose
and application-specific architectures, though the techniques described
in Section 3.1 are often equally applicable in either [21]. The applica-
tion domains we consider often demand a high energy efficiency that
can be only achieved with bespoke accelerators. This is particularly
true in ML and image and video processing, which are crucial in
autonomous driving and smart sensing, and in Digital Signal Processing
(DSP) tasks, which are the cornerstone of positioning. Therefore, we
focus mainly on architectures relevant to these domains. We again
summarize our findings in Tables 5 and 6.

3.2.1. General-purpose architectures
As described in Section 2.1, extremely constrained Edge devices may

not permit the implementation of several different application-specific
accelerators [13]. Instead, they implement only the absolute essentials:
a highly optimized General-Purpose Processor (GPP) flanked by a few
accelerators [118]. Such systems are often collected as a System on
Chip (SoC) and interconnected by a Network on Chip (NoC), see Fig. 7.
AxC may be applied to all these parts, as we will now detail.

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

a
o
i
b
a
e
c
l
t
o
i

i
h
A
d
o
t
O
c
t
o
a

(
b
o
a
l
l
b
a
o
a
s

3

s
t
e
a

a
a
c
e

Table 5
Comparison of the papers on general-purpose architectures.

Type Target Technique References

Processors

Arithmetic Truncation [119]

Cache Cache line overlapping [121]

Core
Speculation [124]
Memoization [120]
Neural approximation [122,123]

Generic accelerators PE Inexact arithmetic [126,127]
Voltage over-scaling [29]

Networks-on-chip Router Voltage over-scaling [128]
Dropping, compression [129]

Network interface Dropping, compression, etc. [130]

GPPs generally require some form of instruction set changes to
support AxC. Yet with such changes implemented, developers can uti-
lize inexact arithmetic units and approximate loads/stores, as explored
by Ndour et al. [119]. Other work proposes using memoization and
pproximate caches [120,121]. A memoization module may keep track
f inputs and outputs of blocks of instructions to skip their execution
f similar inputs re-appear, while the cache may exploit the similarity
etween cache lines to effectively increase cache size. Others suggest
pproximating compute-heavy kernels by small NNs in custom accel-
rators [122,123]. Lastly, it is possible to approximate the processor’s
ontrol flow by, e.g., selectively disabling roll-back on a branch or
oad-value misprediction in out-of-order cores [124]. The common no-
ion is that approximations should target several instructions, memory
perations, or control flow to be effective; in line with observations
n [125].
Generic accelerators may also integrate approximations while focus-

ng on striking a good balance between reconfigurability and its over-
eads. Most surveyed designs resemble Coarse-Grained Reconfigurable
rrays (CGRAs) suitable for accelerating compute-heavy kernels. Yet,
espite many similarities, they vary in how approximations are applied:
ne applies effort scaling by combining VOS and clock gating-based
runcation [29], and another applies dynamic operand truncation [58].
thers integrate inexact arithmetic units and either adjust the error
orrection applied to one or select between multiple units at run
ime [126,127]. Both techniques can induce great energy savings and
ffer a wide range of options for run-time adaptation to be established
t design time.
NoCs interconnect processors, accelerators, and various controllers

see Fig. 7), carrying packets of data or synchronization messages
etween pairs of nodes. Being either wired or wireless, they also offer
pportunities for approximation, including selective VOS of links [128],
daptive packet truncation or dropping [129], approximate locks or
ock coarsening, and skipping low-impact updates to shared memory
ocations [130]. This not only reduces network traffic (and contention),
ut it can also significantly speed up particularly parallel applications
t the expense of reduced synchronization with varying degrees of
utput error [130]. Similar strategies can be applied to networks on
larger scale, though we do not cover such techniques in the present

urvey [11].

.2.2. Application-specific architectures
Accelerator architectures are often costly in area and power con-

umption, meaning a certain level of utilization is demanded to justify
heir integration. However, if well-utilized, they offer much higher en-
rgy efficiency and exploit approximation opportunities in their target
pplications better than general-purpose architectures [21].
ML is, by far, the most popular application for which approximate

rchitectures are implemented. This is highlighted by work such as [20]
nd its relevance to both autonomous driving (e.g., in Simultaneous Lo-
alization and Mapping (SLAM) [131]) and smart sensing [132] (e.g., in
motion detection [133]). Due to its computational demands, most ML
8

Table 6
Comparison of the papers on application-specific architectures.

Sub-domain Application Technique References

Machine learninga

NNsb Truncation [57]

CNNsb

Inexact arithmetic [136]
Voltage over-scaling [100]
Dot product encoding [137]
Early termination [138]

Hyperdimensional computing Approximate similarity [139,140]
SVMs Inexact arithmetic [141]
k-NN Partitioning [142]

Multimedia

DCT Inexact arithmetic [143]
Voltage over-scaling [144,145]

HEVC Inexact arithmetic [146]
Early termination [147]

Edge detection Inexact arithmetic [148]

Signal processing General Voltage over-scaling [118]
WT Distributed arithmetic [149]

a Four works on k-NN and decision tree accelerators do not explicitly apply any AxC
techniques but are included in the survey for completeness [150–153].
b All works on NN and CNN accelerators utilize quantization.

research is done using floating-point arithmetic on GPP or Graphics
Processing Unit architectures but quantized and implemented with,
e.g., 8-bit integer operations in resource-constrained devices [134,135].

NNs are the main focus of many papers. For example, one work
[136] proposes a highly efficient keyword spotting accelerator employ-
ing binary-weighted NNs and custom delay-based analog multipliers.
Another [57] describes the entirety of IBM’s research and develop-
ment of a general DNN accelerator (like [29]) with corresponding
tool flows, which enable both software- and hardware-level approx-
imations. Another three papers propose accelerator architectures for
CNNs, exploiting kernel size reductions and inexact arithmetic [138],
a custom bit-level dot product implementation [137], and layer-wise
quantization combined with VOS [100]. The latter motivates its design
by targeting resource-constrained Edge devices.

Despite their prominence in related work, NNs are not the main
focus of all papers: some instead implement SVMs or hyperdimen-
sional computing with inexact arithmetic units or in-memory architec-
tures [139–141]. To minimize accuracy degradation arising from ap-
proximations, some propose re-training networks with approximation
awareness [57,137].

When ultra-low power operation is required, NNs and even SVMs
may be too complex. Therefore, another set of papers focuses on
low-complexity implementations of k-NN and decision tree models on
FPGA. In [150], the authors propose two highly parallel k-NN accel-
erator cores, targeting models with many narrow example vectors and
ones with few wide vectors, respectively. The former of these designs
is made dynamically reconfigurable in [151], while the accelerator
of [142] integrates search optimizations specific to a Light Detection
and Ranging (LiDAR) localization application. The accelerator of [152]
stores many parallel per-class decision trees in block RAM internal
to designated cores and iterates over them before outputting final
inference results. The authors of [153] instead optimize the decision
trees themselves to be shallow and store them in distributed RAM
within the FPGA’s LUTs.

Image and video processing and other multimedia applications are
frequently found in autonomous driving and smart sensing systems [95,
132,154] and are often approximated in custom hardware. Example
designs include high-efficiency Discrete Cosine Transform implemen-
tations for which Almurib et al. [143] describe three design steps: (1)
selecting a low-complexity algorithm, (2) filtering out high-frequency
components, and (3) employing approximations in, e.g., arithmetic.
Others employ significance-driven approximations, showing that it is
possible to facilitate VOS with minor quality loss but ensuring that
significant operations are executed correctly, while the rest are ap-

proximated [60,144,145]. Others implement various edge detection

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
Fig. 8. Overview of the four ML-focused AxC techniques: (a) weight quantization to 3-bit signed integer with real-valued scaling factor (only positive numbers shown), (b) pruning
the 50% smallest absolute value weights, (c) knowledge distillation from a teacher to a student model, and (d) low-rank approximation using SVD. The illustrations are simplified
and do not take retraining into account.
algorithms with reduced-complexity filters [148]. For video process-
ing, most publications explore architectures for approximating encod-
ing and decoding steps to and from the HEVC (or H.265) format,
particularly using inexact arithmetic units [146,147].

DSP tasks, as we have seen, are relevant both in wearables and in
positioning. Keeping our focus on bio-related applications, examples
of such architectures include a SoC-style design that incorporates a
CGRA for vector operations with an array of small GPP cores [118] and
different implementations of the discrete Wavelet Transform (WT) with
error compensation [149]. At the time of writing, we are not aware of
any architectures for positioning that exploit AxC techniques, yet we
expect many hardware techniques to be portable to these algorithms
too.

3.3. Application- and algorithm-level techniques

Though the hardware AxC techniques of Sections 3.1 and 3.2 can
bring significant benefits, the greatest gains may often be achieved by
applying high-level approximations tailored to a particular application.
With the prevalence of NN models in both autonomous driving and
smart sensing, as we will see later, we focus on techniques relevant
to these algorithms here, while we cover algorithmic approximations
specific to particular applications in the following sections.

As we will see later, NNs suffer from scaling issues that may prevent
their efficient implementation and execution in resource-constrained
Edge devices. Motivated by this, we consider model compression or
sparsification techniques that can reduce model size [155]. Four fre-
quent examples are quantization, pruning, knowledge distillation, and
low-rank approximation. We illustrate their functionality in simplified
form in Fig. 8 and briefly introduce them below. We summarize our
findings in Tables 7, 8, 9, and 10.

3.3.1. Quantization
Quantization is likely the most commonly applied AxC technique for

NNs. It involves reducing the bit-width of weights and/or activations
9

Table 7
Comparison of the papers on quantization.

Type Components Precisiona References

Uniform

Weights only 2-bit [156,157]
1-bit [158]

Weights and activations
8-bit [159]
4-bit [160,161]
2-bit [45,55]

Non-uniform

Weights only 4-bit [162]
1-bit [163,164]

Weights and activations
4-bit [165–168]
2-bit [169,170]
1-bit [171]

a We report the minimal permissible precision for non-zero model components in the
surveyed works.

and transforming floating-point operations to fixed-point equivalents in
NNs. First shown to be a viable strategy in [159], subsequent work has
demonstrated reductions of weights and/or activations to 8-bit [165],
4-bit [165], 2-bit [156,157], and even binary [158] widths. Differ-
ent strategies either uniformly assign the same number format to all
network components of the same type (e.g., weights) [45,160] or non-
uniformly select optimal formats for different components [169,170].
Alternative strategies apply different quantization levels to individual
layers in DNNs [171], individual channels in CNNs [166,167], or
groups of network components [162–164].

Fig. 8(a) illustrates weights-only quantization to 3-bit signed in-
tegers. First, the real-valued weight matrix is scaled by a factor 𝑠
to bring its elements within the target format’s range. Second, the
scaled elements are rounded, or quantized, to the precision of the
target format. This process can be applied after training – post-training
quantization – but doing so may degrade model performance greatly
as errors accumulate in the forward pass [161]. Instead, the quanti-
zation effects can be modeled [55,161] or even trained [168] during
quantization-aware training. Models generally retain a higher accuracy

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

h
J
c
s

3

f
1
a
t
a
m
l
m

t
t
𝓁
o
d
t
a
a

3

t
t
(
D
l
m

t

Table 8
Comparison of the papers on pruning.

Type Model type Target References

Structured CNNs
Filters [56,172,173]
Filter weights [32]
Neurons [174]

Unstructured CNNs Weights [174]
Transformers Weight rows [39]

when quantization is applied in a non-uniform, fine-grained style, but
identifying such optimal configurations is computationally demanding,
albeit performed only once during training [163].

3.3.2. Pruning
Pruning is a common technique applied in DNNs and CNNs involv-

ing the removal of low-significance or redundant model components,
i.e., either weights [39] or neurons [56,172,173], known as unstruc-
tured and structured pruning [32,174]. Fig. 8(b) exemplifies unstruc-
tured pruning of the 50% least significant weights of a fully-connected
layer. We use the absolute value as our metric of significance and show
the effects of pruning in a histogram. The degree of approximation
correlates well with how aggressively these components are removed.

Fully exploiting the benefits of pruning may require dedicated
hardware support for sparse matrix operations. In the first category,
Yang et al. [56] propose a method for CNNs in which filters are pruned
softly thus enabling them to be updated until the model converges on
some filters being consistently near-zero. Their scheme achieves greater
reductions in computations incurring lower accuracy loss than compet-
ing schemes, including that in [172]. The work of Xiao et al. [174] is
in the second category and the authors propose an automatic scheme
for pruning neurons based on auxiliary variables, or indicators, that
elp select the most appropriate network structure during training like
in et al. [168] do for quantization. This allows them to achieve high
ompression ratios and fewer computations than other state-of-the-art
chemes.

.3.3. Knowledge distillation
The core idea of knowledge distillation is to transfer knowledge

rom one model (the teacher) to a smaller model (the student) [162,
75]. The approach is orthogonal to reducing a model’s size by cutting
way redundant information through quantization or pruning. It is a
wo-step process: first, training a large model over a complete dataset;
nd second, training a small model over a subset of the data while
inimizing some metric of difference in knowledge between pairs of

ayers in the two models. This metric may be the correlation [176] or
utual information [175].

Fig. 8(c) shows an abstract representation of this concept applied
o a pair of CNNs of which the student is significantly smaller than
he teacher. In practical scenarios, there may be a metric of difference

per layer or even channel [176], but for simplicity, we show only
ne between the networks’ outputs. Extreme versions of knowledge
istillation aim to directly transfer soft probabilities from one model
o another, reducing the time required to retrain the small model to
chieve satisfactory accuracy. Such schemes, however, have yet to
chieve similar compression ratios as the above techniques [177].

.3.4. Low-rank approximation
The large matrices that constitute NNs can also be reduced in size

hrough factorization [178] and decomposition [179,180]. In prac-
ice, this may be implemented through Singular-Value Decomposition
SVD) [179,180], Tucker decomposition [181], and Canonical Polyadic
ecomposition [43], suitable for reducing matrix size by removing

ow-significance sub-matrices not only in NNs. Without diving into
10

athematics, Fig. 8(d) illustrates this technique using the SVD on a t
Table 9
Comparison of the papers on knowledge distillation.

Optimization References

Maximum mutual information in activations [175]
Minimum Frobenius norm on quantized weights [162]
Minimum squared norm on international correlation [176]

We exclude one work [177] that presents a comparison of knowledge distillation
strategies.

Table 10
Comparison of the papers on low-rank approximation.

Strategy References

Truncated singular value decomposition [178]
Depthwise convolution decomposition [179]
Learned sparse ‘‘sketches’’ [180]
Tucker decomposition [181]
Canonical polyadic decomposition [43]

weight matrix. Guo et al. [179] focus on CNNs and propose an algo-
rithm that transforms models with regular convolutions to equivalents
with simpler, depth-wise convolutions that need no re-training. The
resulting models incur some accuracy loss but require much fewer
computations. Part of this accuracy loss can be restored or prevented
through sparse regularization during training [182].

Applying these techniques statically may bring some benefits but
might also lead to insufficient model accuracy. This can be mitigated
to some extent through approximation-aware training [161] or simple
iterative re-training after approximation [183]. State-of-the-art schemes
combine several of the above techniques; e.g., pruning, quantization,
and compressive coding in Han et al.’s Deep Compression [48].

As can be seen from the above, there are vast opportunities for
applying different AxC techniques across the system stack. Moreover,
these techniques can be utilized in ways that enable adaptivity with
relatively limited overheads through, e.g., error compensation in in-
exact adders [68,72,77], dynamic run time truncation in inexact mul-
tipliers [87,88], or run time tuning in various architectures [29,126]
or applications [164,184]. In the following discussion, we will refer
back to these sections when relevant. In tables, we will also only
report the nine most commonly applied AxC techniques: quantiza-
tion, pruning, knowledge distillation, low-rank approximation, lossy
compression,1 various algorithmic approximations, inexact arithmetic,
voltage over-scaling, and approximate synthesis.

4. Applications and algorithms

With the fundamentals of AxC in place, we now turn our attention
to the three selected, emerging application domains: autonomous driv-
ing, smart sensing and wearables, and positioning. All three domains
comprise algorithms whose energy efficiency may be improved through
approximation. Contrary to other work [21], we do not consider AI
or ML as standalone application domains but rather as enablers of,
especially, autonomous driving and smart sensing and wearables. De-
spite apparent overlaps between the three domains, we cover them
separately in this section. For each domain, we describe relations to
our overall focus on IoT and Edge AI, outline underlying algorithms,
and survey papers that apply AxC to them. When relevant, we provide
references to background (Section 2) and AxC techniques (Section 3).

1 Though we do not explicitly introduce lossy compression as an AxC
echnique, we find that it is frequently applied in combination with other
echniques.

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

w
h
V
i
i
b
a
i
d
i
c
t
s
A

Table 11
AxC techniques applied in the included papers that explicitly list autonomous driving as a use case. References sorted by publication year.

AxC Tech. Quantization Pruning Knowledge
Distillation

Low-rank
Approx.

Compression Algorithmic
Approx.

Inexact
Arithmetic

Voltage
Over-Scaling

Approx.
Synthesis

[48] ✓ ✓ ✓

[179] ✓ ✓

[174] ✓

[76] ✓

[16] ✓ ✓ ✓ ✓

[142] ✓

[131] ✓

[176] ✓

[177] ✓

[20] ✓

[88] ✓

Un
ex

pl
or

ed

Un
ex

pl
or

ed
t
T
s
M
m
m
w
f
m
e
k
s
w
a
c
m

4.1. Autonomous driving

As vehicles are extended with several simple or complex services
to assist drivers and easier mobility, they gradually become more like
other IoT devices [185], requiring either local or low-latency offloaded
data processing. Services such as braking assistance, lane departure
warning, adaptive cruise control, and Global Navigation Satellite Sys-
tems (GNSS)-based navigation have seen wide adoption by automotive
manufacturers [186], some are even already instances of Edge AI,
relying on ML techniques [154]. Other services, such as High-definition
Map and onboard internet-supported audio and video streaming appli-
cations (e.g., Spotify and BMW’s iDrive), are still undergoing develop-
ment [187]. Combining these services and extending them further is
expected to enable fully autonomous driving. We start by reviewing the
levels of autonomy laid out by the Society of Automotive Engineers:

L1 No Automation: The driver performs all driving tasks.
L2 Driver Assistance: Driving tasks are performed by the driver

with little input from vehicle sensors and driving assistance
features.

L3 Partial Automation: An in-vehicle compute unit can perform
some driving tasks – adaptive cruise control, emergency braking,
etc. – based on environment sensing, but the driver is required
to maintain control and monitor vehicle surroundings.

L4 Conditional Automation: An in-vehicle compute unit can per-
form all driving tasks, but the driver must be able to take control
of the vehicle on demand.

L5 High Automation: An in-vehicle compute unit can perform all
driving tasks and negotiate with other vehicles and infrastruc-
ture under certain conditions. The driver can take control of the
vehicle.

L6 Full Automation: An in-vehicle compute unit can perform all
driving tasks and negotiate with other vehicles and infrastruc-
ture under all conditions. The driver can, potentially, take control
of the vehicle.

As expected, the computation and networking requirements grow
ith increasing autonomy. At present, Level 3 autonomy exists and
as been regularly tested by manufacturers such as Tesla, Volvo, and
olkswagen [186]. The progression of these manufacturers’ systems

s towards the integration of real-time sensing with statistical learn-
ng algorithms to replicate or imitate the driving process carried out
y humans, aiming either to assist human drivers or replace them
ltogether [186,187]. Commonly, the systems rely on sensor data orig-
nating from cameras, LiDARs, radars, GNSS receivers, and networking
evices, which must be processed to enable intelligent decision-making,
llustrated in [23, Fig. 13]. As shown, the autonomous vehicle data-flow
onsists of three modules: a SENSE module comprising the aforemen-
ioned sensors, a THINK module implementing the algorithms neces-
ary to process sensor data to enable intelligent decisions on which the
CT module can base its actuation [188,189].
11
According to several reports, the sensor data required for au-
onomous driving will constitute 30 to 40 terabytes per day [190].
his mere volume puts great pressure on onboard data management
ervices. It also implies a need for powerful processing pipelines.
oreover, connected vehicles are projected to rely on frequent com-
unication to share data with other vehicles. The driving services
ight also incur competition over computing and networking resources
ith advanced, connected multimedia services [191]. In general, in-

otainment systems have evolved from simple radios to Cloud-driven
ultimedia platforms that allow for audio and video streaming. This

volution is likely to continue as vehicles become more autonomous,
eeping their drivers less occupied. Maintaining a low energy con-
umption of these systems is crucial for maximizing the primary goal
hen designing electric cars: driving range. Maximizing the range
lso ensures minimal carbon emissions and energy costs. However,
urrent predictions point in another direction: energy consumption
ay increase from 750 Wh to 2000 Wh per 100 km driven in the

minimal, efficient networking scenario that assumes short-range com-
munication and prioritizes essential services over onboard multimedia
processing [191].

4.1.1. Driving services at the edge
Naturally, the increasing amounts of data and computations re-

quired for autonomous driving raise the question of whether processing
is more efficiently done in the vehicle or offloaded to external servers.
This avenue enables interesting trade-offs between available computing
resources, communication demands, and achievable latency. While the
Cloud provides vast resources, it is infeasible to execute sensitive
services within it due to its bandwidth and latency constraints [192,
193]. Executing these services at the Edge appears as a reasonable
compromise retaining the benefits of offloading while providing fewer
computational resources. This concept is explored by Zhou et al. [53]
who list its many benefits, e.g., low latency, privacy preservation,
and energy efficiency. Computations can be distributed between all
participating devices, including other vehicles that have under-utilized
resources [194,195].

Regardless of the platform targeted, offloading introduces some
requirements on the systems involved. Firstly, the vehicle needs to
implement wireless networking devices with suitable protocols, as high-
lighted by Shi et al. [16]. Secondly, the distributed nature of au-
tonomous vehicles demands an equally distributed, i.e., decentralized
control structure. Several frameworks already implement this based
on function virtualization: Feng et al.’s AVE [196] and Tang et al.’s
𝜋-Edge [197] are initial examples of such, implementing real-time
task scheduling and resource allocation algorithms. More recently,
Tang et al. proposed LoPECS [198] that extends the communication
functionalities of 𝜋-Edge. Santa et al. describe another two frameworks
that virtualize available computing resources, including other vehi-
cles, and consider them in a multi-access Edge computing layer [194,
195]. They report improved device access latency and overall system
speedup. Ibn-Khedher et al. [199] consider a similar scenario but

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
Fig. 9. Illustration of (left) a generic smart sensor’s internals, some transducers, and potential built-in actuator, and (right) an example of how adaptive AxC enables trading off
output quality for energy savings.
offload non-critical services to the Cloud, using reinforcement learning
for offloading decision-making, as described in Section 2.2. As energy
consumption constraints remain tight, some services may benefit from
AxC; we consider this direction later.

4.1.2. Enabling autonomy
In addition to SLAM algorithms for environment modeling [154],

the SENSE-THINK-ACT model indicates that modern autonomous driv-
ing mostly relies on AI, particularly models from ML and deep learn-
ing. Several such models have been proposed as replacements for the
traditionally used algorithms for vision-based detection [167], for-
ward collision warning [200], and path planning and control [201].
Various types of NNs – including DNNs [200], CNNs [41,167], and
RNNs [201] – are most frequently used in the reviewed literature and
are already implemented in existing Level 3-autonomous vehicles, such
as Tesla’s [201]. These models are expected to be key to achieving
full autonomy, but their computational requirements pose a significant
challenge if they are to be performed at the Edge [167].

Depending on the ML models used and available computing and
energy resources, the autonomous driving models may be trained in-
vehicle in a federated style. Enabling such features requires a deep
understanding of, e.g., driving patterns such that model training does
not take away from the vehicle’s main purpose: driving. Adaptive
approximation could be an interesting strategy to achieve a good
balance in this aspect, for example, by allocating fewer resources to
driving tasks in simple scenarios, such as highway driving in sunny
weather. Moreover, an FL system is complex not only because its mod-
els may vary across vendors or vehicle models with different sensors
and compute resources available, but also because of unpredictable net-
working conditions for communicating models [191,202]. Nonetheless,
the concept of dynamic model adaptation is appealing.

Given the prevalence of NN models and anticipating the possibil-
ity of in-vehicle training of such, the model compression techniques
described in Section 3.3 are highly relevant for autonomous driving
applications. This observation resonates well with the literature, as
shown in Table 11, which highlights the techniques that have been
applied explicitly to autonomous driving-related applications in the in-
cluded publications. The columns list the nine AxC techniques selected
in Section 3.

Quantization and pruning are the most popular techniques. This
is likely due to them being well-established in both research and
production environments (even Google’s TPU and Tesla’s FSD chip
execute quantized NNs [113,134,203]) as they are known for bringing
very high savings with relatively little impact on model accuracy, as
we will see later. This latter point may be particularly important for
12
autonomous driving systems whose decision-making may be fatal for
human beings.

Safety is of utmost importance in autonomous driving systems [204],
as laid out in international standards [205], and cannot be com-
promised with any sort of approximation, adaptive or not. Yet, the
applications outlined above have vastly different impacts on driving
safety: SLAM is crucial for the vehicle’s environmental understanding,
while automatic windshield wipers represent more of a convenience
to the driver and passengers. Hence, it may be difficult to convince
manufacturers to integrate potentially non-deterministic techniques
like VOS and approximate synthesis (see Section 3.1), despite initial
academic efforts showing good results [88,106,108]. On the other
hand, some established techniques have been shown to improve system
reliability [22], but using these would in any case require vast testing
to ensure the intended, safe functionality in all scenarios.

Moreover, despite not yet being explicitly covered in the surveyed
literature, we envision that compression techniques as well as AxC-
equipped architectures for audio and video processing (see Section 3.2)
may also prove useful in reducing the energy consumption of info-
tainment systems. There are also several non-critical services in cars
whose processing of noisy sensor data can be more aggressively approx-
imated for greater energy savings. Examples of such include automatic
windshield wipers and high-beam headlight control.

4.2. Smart sensing and wearables

Having reviewed publications relevant to autonomous driving –
a domain that has some energy headroom owing to the mere size
of its platforms – we shift our attention to smart sensing and wear-
ables for which energy is even more scarce. Smart sensors are ubiqui-
tous, energy-constrained, often mobile devices that implement sensors
and low-power computing and networking hardware [206,207]. Wear-
ables are instances of such devices. We focus particularly on biomed-
ical wearables that are the fundamental building blocks of modern
health technologies, characterized by energy and memory constraints
yet expected to perform compute-heavy detection and classification
tasks [208,209]. As a result, the focus is on developing ultra-low-power
solutions that efficiently execute these tasks, providing sufficiently
timely and accurate results despite their limited computing resources.

Fig. 9 illustrates the functionality of a smart sensor that inte-
grates adaptive AxC. An incoming signal is first sensed and converted
to an analog, electrical signal that is conditioned, or pre-processed,
before it is converted to digital. Next, a signal processing unit, typ-
ically comprising standard processor cores, memory, and potentially
some accelerators [118,210], performs the desired detection and clas-
sification tasks on the signal. Finally, the results are serialized to a

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
Table 12
AxC techniques applied in the included papers that explicitly list smart sensing as a use case. References sorted by publication year.

AxC Tech. Quantization Pruning Knowledge
distillation

Low-rank
approx.

Compression Algorithmic
approx.

Inexact
arithmetic

Voltage
Over-Scaling

Approx.
synthesis

[215] ✓ ✓

[216] ✓

[209] ✓

[217] ✓

[218] ✓

[219] ✓

[172] ✓

[108] ✓

[118] ✓

[136] ✓ ✓ ✓ ✓

[127] ✓

[220] ✓ ✓

[221] ✓

[222] ✓ ✓ ✓

[101] ✓

[212] ✓

[208] ✓

[214] ✓

[20] ✓

[223] ✓

Un
ex

pl
or

ed

Un
ex

pl
or

ed
c
r
f

local store or offloaded [206,211]. As shown in the figure, an AxC-
equipped smart sensor extends upon this functionality by applying
and managing adaptive AxC techniques itself [212], for example, by
monitoring computational load, battery level, or network latency and
selecting (approximate) operating points thereupon. We show the con-
cept’s energy-saving effects for a system with four modes resulting in
different output qualities, visualized with images of reduced quality.

The achievable performance of a smart sensor is mainly limited
by its power constraints, affecting the signal processing step’s perfor-
mance [213], and the complexity and dynamics of its environment,
affecting the algorithms that it is to execute [214]. Attaining satisfac-
tory energy consumption, and thus lifetime, means balancing these. The
sensor’s signal processing step dominates the power consumption when
the sensor is operating as a standalone device, i.e., performing tasks
without communicating with external devices. Reducing this step’s
power consumption may be achieved in mostly the same ways as
described in the previous section, i.e., by maximally utilizing available
computing resources and lower-level (cache) memories, minimizing
power consumption from idle hardware and operations reaching costly
higher-level storage that consumes two-three orders of magnitude more
power per operation than arithmetic [125].

4.2.1. Smart sensing at the edge
Motivated by many of the same reasons as for autonomous driving,

when signals require too much processing to be carried out locally, a
smart sensor can instead choose to offload all or parts of the processing
to an external device. Yet, while networking poses a challenge for
autonomous vehicles due mostly to its latency, reducing its power
consumption is more challenging for low-power, embedded devices
such as smart sensors and wearables [220], especially if long range is
required. Balancing these effects is difficult but can be rewarding for
the device’s lifetime [224].

Contrary to autonomous driving, traditional smart sensing appli-
cations, such as biomedical wearables, have little risk of impacting
their surroundings and, thus, a lower criticality in terms of latency.
Until now, this has motivated offloading of processing in the Cloud
whose drawbacks we have already outlined in Section 2.1. Thus, Edge
processing once again represents an interesting alternative for meeting
the privacy and reliability demands of smart sensing applications [132].
In this domain, a sensor is considered smart when it is capable of ac-
quiring, processing, and interpreting data to perform decision-making
without relying on Cloud offloading [210].
13
The adaptive AxC techniques described above represent one way of
decreasing reliance on the Cloud. Related methods have already been
used to reduce the effects of network latency variations [225], and
approximate aggregation of data from many distributed sources [226,
227], but they are equally applicable to healthcare monitoring [228]
and seizure detection [212]. For both these applications, approximation
can reduce the amounts of data needing to be transferred to the Cloud
and thereby extend battery life.

4.2.2. Effective processing of sensor data
Two components of a smart sensor or wearable alter the input

signals: a conditioner may apply filters and amplification, doing so
directly in hardware with minimal overhead, and a signal processor
can perform more complex algorithms on the signals [211]. Due to the
complex, dynamic environments in which these devices operate, ML
algorithms are particularly popular in this domain [132]. As described
earlier, ML algorithms are inherently insensitive to noisy input data
(and approximations), rendering them suitable for systems with analog
sensors and digital processing engines [229].

While autonomous driving relies on DNNs, the energy and latency
constraints of smart sensors and wearables prohibit the use of such
large models. Therefore, although DNNs remain relevant [132], this
motivates the use of alternative, lower-complexity ML models such
as k-NN or SVM [229], as introduced in Section 2.2. Regardless of
the model applied, using ML imposes some requirements on the pre-
processing, or extraction, steps required to bring sensor data into a
format suitable for digital processing [229]. For biomedical applica-
tions, some example extraction techniques are Electroencephalogram
(EEG), Electrocardiogram (ECG), Somatosensory Evoked Potential, and
Visual Evoked Potentials.

Once pre-processed, the data undergoes a feature extraction pro-
ess to extract statistics relevant to a particular application and to
educe their size. Examples of such extraction techniques include the
ollowing:

• Principal Component Analysis extracts principal components –
linearly uncorrelated vectors – by orthogonal transformation of
correlated vectors in an observation set [34]. For EEG enhance-
ment and seizure detection, it is useful for extracting frequency
features [216,230].

• Independent Component Analysis is an artifact removal strat-
egy that decomposes signals to separate data and noise [231]. It
is also useful for EEG processing [216], yet, despite being effec-
tive, its computational complexity renders low-power realizations
difficult.

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

m
i
e
p
c
i
U
a
t

t
l
t
o
m
s
a
c
l
w

o
a
t
c
m
p
r

w
d
m
v
t
i
f
a
V
w

s
d
m
e
r
a
s
a
l
p

• Fast Fourier Transform (FFT) is likely the most well-known
algorithm for converting time-domain signals to the frequency
domain. It is useful for example in Chronic Neurological Disor-
der (CND) [218]. The FFT cannot be applied directly to non-
stationary signals like EEG, but assuming that the signal is locally
stationary, the windowed Short-Time Fourier Transform [212] or
derived, FFT-based methods [221] may be applied instead.

• Wavelet Transform applies variably sized windows generated by
a wavelet to a signal to extract both time- and frequency-domain
features. The windowing feature makes it suitable for applications
with non-stationary signals like EEG [215,219] and ECG [217].

While we avert further descriptions of the aforementioned ML
odels, we find it relevant to exemplify their applicability. Demand-

ng ultra-low complexity, k-NN is frequently applied in this domain,
.g., for CND detection [232], despite suffering from inaccuracy when
rocessing redundant data. SVMs perform well in Electrocardiogram
lassification [229], being especially good at handling multi-dimens-
onal inputs when a clear boundary exists between distinct classes.
nfortunately, SVMs scale poorly with dataset size [37]. Various NNs
re often used for Keyword Spotting or general speech recognition,
ypically being implemented in custom hardware accelerators [136].

For biomedical smart sensing applications, it is often infeasible
o compute fully exact models in real-time when the battery level is
ow and safety considerations permit so. In such cases, adaptive AxC
echniques can relieve the system of some of its demands at the expense
f some errors [217,223], for example, by switching to an approximate
ode when the battery level is low [212,228], as shown in Fig. 9. The

afety requirements of the particular application targeted by the wear-
ble play a significant role in determining how far such approximations
an be applied: simple fitness monitoring tasks may, for example, be of
esser importance than cardiac arrhythmia detection [229] or various
orkplace safety tasks [233].

To maximize their energy efficiency, wearables and smart sensors
ften implement application-specific accelerator hardware. This en-
bles them to, for example, benefit fully from the model compression
echniques described in Section 3.3 when executing NN-based appli-
ations. As was outlined in Section 3.2.2, such architectures may also
ake more broad use of circuit-level AxC techniques than general-
urpose ones; again, assuming compliance with the applications’ safety
equirements.

We highlight the AxC techniques applied to smart sensing and
earable use cases in Table 12. As for autonomous driving, NN-based
esigns frequently make use of either quantization or pruning to reduce
odule size [136,222], while they have yet to explore the more ad-

anced techniques of knowledge distillation and low-rank approxima-
ion. Regardless, algorithmic approximations are vastly more popular
n this domain. These approximations target the pre-processing and
eature extraction stages, whose hardware implementations may also be
pproximated [149,222]. We see that, contrary to autonomous driving,
OS and approximate synthesis have been applied to smart sensing and
earable applications, albeit only to a limited extent thus far.

For adaptability, other work has also proposed letting the smart
ensor or wearable execute light-weight models of its hardware to
ynamically select between (inexact) arithmetic units (or entire ML
odels [234]) at run-time as per the application requirements; an

xample being low-complexity decision trees [95]. In dynamic envi-
onments, such systems may even implement RL techniques to better
dapt to changes in input data [132]. This is explored in two general
chemes by Maity et al. [235] for managing approximate memory
rchitectures and by Lin et al. [184] for dynamically pruning convo-
utional filters. Both techniques achieve significant improvements in
ower consumption and execution time.
14
Fig. 10. Processing chain inside a GNSS receiver. Notice the similarity with the generic
smart sensor shown in Fig. 9.

4.3. Positioning

An application relevant to both previously surveyed domains is po-
sitioning. For autonomous vehicles, navigation requires both precision
and reliability, achieved today by the fusion of many sensors [236]. Ad-
ditionally, though indoor and outdoor positioning sensors also fall into
the scope of smart sensing, we detail them as standalone applications.
Miniaturization of electronics has led to new use cases in position-
ing, e.g., navigation in consumer products (e.g., smartphones) using
satellite-based positioning systems. Yet, receivers for such systems, as
illustrated in Fig. 10, are known to be energy-hungry [237] and, thus,
challenging to integrate into energy-constrained devices (e.g., IoT).
Additionally, they do not offer positioning in certain environments such
as indoors. As a result, we focus on two main scenarios: satellite-based
outdoor positioning and mesh network-based indoor positioning.

4.3.1. Outdoor positioning
Outdoor positioning can include a multitude of positioning sensors

and techniques. The most widely used technique today is satellite-based
positioning, as it offers global coverage with no additional infrastruc-
ture required while providing accurate absolute positioning. Satellite
positioning systems are also referred to as Global Navigation Satel-
lite Systems (GNSS), specifically one or more global constellations:
GPS (USA), GLONASS (Russia), Galileo (EU), and BeiDou (China),
or regional constellations: IRNSS (India) and QZSS (Japan). GPS and
GLONASS may be considered legacy systems, the others having been
developed to gain independence in satellite positioning, as such systems
were originally designed for military purposes. All these systems, while
different in their implementations, are built around the same principle:
a very precise clock orbiting the Earth, continuously transmitting its
current time over a radio signal. A receiver located on Earth receiving
this signal will decode its time of transmission and compare it to its
time of reception to obtain pseudoranges. By receiving pseudoranges
from at least four satellites and using the principles of trilateration, the
receiver can compute its position [238].

Since their launches, the legacy systems and their new global or
regional counterparts have been equipped with modernized signals
designed to increase performance in challenging environments and an-
swer the current challenges of satellite-based positioning. These signals
enable higher resistance to intentional and unintentional interference,
Safety-of-Life services, positioning in complex signal environments,
and increased positioning accuracy and precision [238]. Yet, decoding
them comes with a computational cost, expected due to their higher
complexity. Significant research efforts over the last decade have been
spent on mitigating these costs, yet they remain more energy-intensive
than legacy GPS signals [239]. The integration of GNSS receivers in
even more energy-constrained devices necessitates exploring new ways
of processing the signals with less energy. As we will review later, AxC
could be a suitable approach to answer such problems.

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

4

d
b
I
t
p
Y
i
c
i
i

s
a
(
t
s
R
A
e
A
a
c
o

n
a
a
i
p
C
a

Table 13
AxC techniques applied in the included papers that explicitly list positioning as a use case. References sorted by publication year.

AxC Tech. Quantization Pruning Knowledge
distillation

Low-rank
approx.

Compression Algorithmic
approx.

Inexact
arithmetic

Voltage
Over-Scaling

Approx.
synthesis

[242] ✓

[243] ✓

[244] ✓

[245] ✓

[246] ✓

[247] ✓

[236] ✓

[248] ✓

[249] ✓

[250] ✓

[251] ✓

[252]

Un
ex

pl
or

ed

Un
ex

pl
or

ed

Un
ex

pl
or

ed

Un
ex

pl
or

ed

✓

Un
ex

pl
or

ed

Un
ex

pl
or

ed

Un
ex

pl
or

ed
4

c
s
l
o
e
a
g
a
e
r
t
p
t
s
a

v
s
d
a
i
a
s
s
(
o
u
c
l

4

p
p
t
t
p
i
t
t
s

a
t
o
C
t

Fig. 11. IoT mesh network for indoor positioning.

.3.2. Indoor positioning
Where GNSS-based solutions cannot provide sufficient accuracy,

ue to their limited reception power or difficult environment (e.g., ur-
an canyoning, inside buildings, etc.), other techniques are needed.
ndoors is one of the most tedious environments to navigate due
o its complex geometry [17]. As such, many techniques have been
roposed to provide a reliable and precise positioning solution [240].
et, contrary to outdoor systems that are well-developed and integrated

nto many existing devices, indoor systems have yet to see broad appli-
ation. Nonetheless, the number of applications is tremendous – includ-
ng, e.g., efficient warehouse maintenance – which explains research
nterest in it [241].

As indoor systems operate on much shorter distances than their
atellite-based counterparts, they also apply other techniques, for ex-
mple, Received Signal Strength Indicator (RSSI) and Angle-of-Arrival
AOA) that estimate the position of (battery-powered) tags relative
o known positions of (mains-connected) anchors [17]. As transmitted
ignals are attenuated by the air and obstacles they pass, measuring
SSI allows for a receiver to estimate its distance to the transmitter.
OA-based localization systems instead employ arrays of antennas that
nable them to estimate the angle of arrival of an incoming signal.
OA techniques have gained popularity in the IoT industry since 2019
s devices supporting Bluetooth Low-Energy were shown to achieve
entimeter-level precision [253]. Such results are a great improvement
ver RSSI-based solutions [254].

Recently, AOA methods have also found application in IoT (mesh)
etworks, illustrated in Fig. 11. Such networks function as described
bove, but may need to rely on multi-hop links to pass a packet from
n anchor to the network gateway due to low transmission range of
ndividual nodes [255]. In such networks, AOA techniques can be
rohibitively expensive, especially if they are executed outside the
loud, i.e., in the anchors [252]. For this case, numerical algorithms
nd AxC may be combined to reduce the algorithmic complexity [251].
15
.3.3. Positioning at the edge
While outdoor and indoor positioning applications face different

hallenges for signal processing, the devices involved closely resemble
mart sensors (see Fig. 9) and the energy available on-board is similarly
imited. This leads to common solutions like offloading the processing
perations at the Edge. Thus, understanding the factors that increase
nergy consumption is paramount to designing solutions adapted to
pplication needs and constraints. Even though GNSS receivers are
enerally implemented in battery-powered, embedded platforms, many
pplications (e.g., surveying and construction) do not prioritize en-
rgy consumption reductions. While these applications cannot afford
educed precision, they constitute a decreasing part of a market set
o be dominated by low-power IoT devices [249]. Consequently, low-
ower GNSS is increasingly being used in low-cost applications, where
he quality of positioning constraints can be relaxed: meter-level po-
itioning is sufficient, e.g., for smartphones. The algorithms should be
dapted to answer this goal to the accuracy level required [24].

Offloaded processing has been considered in both applications with
arying degrees of acceptance. For indoor positioning, transferring raw
ignal measurements to, e.g., the Cloud for processing would rapidly
rain the mesh nodes’ batteries and delay measurements unaccept-
bly [252]. Therefore, the preferred solution is to perform processing
n the anchor nodes, further reducing energy consumption by dis-
bling the otherwise periodic transmissions from stationary tags. A
imilar possibility exists in GNSS-based systems that require a high
ampling rate to capture signal bandwidth. This means that near-sensor
or Edge) processing often is cheaper than re-transmission, making
ffloading suitable only for applications that need infrequent position
pdates [256]. We note that the energy consumption effects of the
hannel used, the distance from the remote server, and interference
inked to the environment are yet to be evaluated.

.3.4. Efficient signal processing
Regardless of the point of computation, both indoor and outdoor

ositioning applications rely on DSP algorithms. Specifically, GNSS
rocessing involves the steps outlined in Fig. 10. The acquisition and
racking steps require the most computations. A GNSS receiver ex-
racts the aforementioned pseudoranges from tracked signals to com-
ute a position. Most often, this processing is implemented in a ded-
cated hardware accelerator whose real energy impact is caused by
he required tracking time. Many studies have looked into reducing
he acquisition and tracking complexity, specifically for modernized
ignals [250,257].

Some work also considers offloading for GNSS, though naïvely
pplying such an architecture would require large amounts of data
ransfers for uploading raw Radio Frequency signals. As the data rate
f GNSS signals is quite low (e.g., 50 bps for GPS L1 Coarse/Acquisition
ode [238]), several seconds are usually required to successfully extract
he transmission time, and since these signals must be sampled at the

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
order of 𝑀𝐻𝑧 to be successfully tracked, this constitutes too large an
amount of data to be efficiently uploaded by an IoT device [246].

Instead, offloaded GNSS only partially integrates the steps in Fig. 10
onboard. Reducing the data transfers can be done in two ways: Coarse-
Time Navigation (CTN) and Compressive Sensing (CS). CTN as in-
troduced by [243] requires only a few milliseconds of data to pro-
duce a position at much degraded precision. This is explored by
Ramos et al. [258] who offload the results of acquisition and tracking,
and by Liu et al. [245] who offload the raw data. Unfortunately,
neither study considers the energy consumption of transmitting the
data. CS, which is not related specifically to GNSS, aggressively sub-
samples a signal well below the Nyquist rate before reconstructing it
using well-defined mathematics. Misra et al. [246] combine this with
CTN after signal reconstruction, successfully computing a position with
minimal data transfers required. However, details on the experiment’s
parameters are missing, so an exhaustive analysis of this technique
cannot be undertaken.

Whilst several acquisition and tracking algorithms exist for GNSS,
there are also many AOA methods suitable for indoor positioning use
cases. Examples include SAGE [259], MVDR [260], ESPRIT [261], and
MUSIC [262], of which we focus on the latter two. These methods
rely on In-Phase and Quadrature samples from Uniform Linear Arrays
and are known to attain great accuracy [263], outperforming even
beamforming alternatives such as MVDR [244].

Roy and Kailath’s ESPRIT and Schmidt’s MUSIC require computa-
tion of Eigenvectors of the measured signals’ covariance [261,262], a
mathematically complex and computationally heavy task that should
be carried out only when necessary. Thus, while it is possible to
extend these algorithms to a dynamic case, i.e., for tracking moving
objects rather than localizing static ones, naïve repeated application
rarely leads to good results. Instead, most proposed implementations
complement skipping executions by so-called subspace tracking that
involves an unbounded optimization problem [242].

When an application’s accuracy requirements permit, AxC tech-
niques may be employed to reduce the energy consumption of both
outdoor and indoor positioning systems. Unlike autonomous driving
and smart sensing applications, the positioning systems we have sur-
veyed do not currently employ ML techniques. This is reflected in
the AxC techniques applied to positioning use cases, highlighted in
Table 13. We see that, apart from compression (including CS), only al-
gorithmic approximations are applied in the current literature. Notably,
however, we only cover positioning algorithms and, therefore, may
have overseen studies on advancements in wireless communication sys-
tems and relevant hardware enabled by AxC. Nevertheless, comparing
Table 13 to Tables 11 and 12 shows a clear lack of research in applying
AxC to positioning systems.

Examples of such techniques are plenty. For GNSS-based systems,
these include [247,256]: adapting measurement frequency and quality
to just meet application needs [247]; reducing acquisition/tracking
algorithm complexity, even in the context of modernized signals [250,
257]; implementing duty cycling, for example, in the tracking step
[247]; and reducing the sampling rate to the Nyquist rate (or below)
based on band-pass theory [248], though modernized signals have a
wider frequency spread, requiring higher sampling rates for successful
tracking. All these strategies naturally lend themselves to adaptation
dependent on, for example, momentary signal conditions.

While some of these may be adapted to indoor positioning al-
gorithms, other relevant techniques are more involved and closely
linked to the aforementioned algorithms, ESPRIT and MUSIC. As these
are based on linear algebra, reducing matrix size [244], converting
complex matrices to real ones with unitary transforms [264], and
substituting the Singular-Value Decomposition of one matrix with the
cheaper Eigendecomposition of another are examples of such. For MU-
SIC in particular, approximations target its compute-heavy peak finding
step by using more coarse-grained angle intervals or by replacing the
16

step with polynomial root finding [265].
5. Discussion and open directions

We have now surveyed a wide range of papers in Sections 3.1,
3.2, and 3.3 and outlined the use of AxC within the three application
domains in Sections 4.1, 4.2, and 4.3. While non-comprehensive, this
survey has led us to observe several directions for future work, which
we highlight here. We consider open directions in each of the three
application domains individually and refer to AxC techniques when ap-
plicable. Finally, we suggest research into cross-layer approximations.
We summarize our findings in Table 14.

Before diving into the application domains, however, we highlight
the potential gains of applying the surveyed AxC techniques. These
savings are highly dependent on the application or algorithm the AxC
techniques are applied to, its error tolerance, and even its imple-
mentation. We notice that relatively few papers state clear energy
and area savings over an exact baseline, reporting instead reductions
in model size (in ML-focused papers) or algorithmic complexity (in
positioning-related papers). We combine these two metrics in the com-
pound computational cost metric. Moreover, as many of the surveyed
papers are application-agnostic by nature, their reported savings may
not translate 1-to-1 into our considered domains.

Despite the substantial number of papers surveyed herein, only
relatively few report savings in terms of the same, or similar, metrics.
For example, just three covered papers that use low-rank approxi-
mation alone describe computational cost savings [43,178,181], and
a mere four papers that use inexact arithmetic alone detail energy
savings [69,78,79,212]. This limited number of experiments instills
little confidence in estimates of the effectiveness of each technique
in general as well as within any particular application domain, and
it renders a comprehensive quantitative comparison of the results
reported in the surveyed papers statistically infeasible. Therefore, we
restrain this discussion to a qualitative comparison in Table 15. We
notice that relatively few papers state clear energy and area savings
over an exact baseline, reporting instead reductions in model size (in
ML-focused papers) or algorithmic complexity (in positioning-related
papers). Table 15 illustrates a point highlighted throughout our survey:
ML algorithms common to both autonomous driving and smart sensing
are highly tolerant even to aggressive approximations. As mentioned
earlier, the negative effects thereof on accuracy can often be mitigated
through re-training [155].

5.1. Autonomous driving

5.1.1. Insights
Despite autonomous vehicles having come a long way over the last

decade and several car manufacturers offering Level 3 autonomy [186],
the underlying technologies need further improvements to mature and
allow for safe operation at Level 4 and, eventually, Level 5 [41].
This development will likely involve – if not require – intelligent
connectivity (so-called vehicle-to-X or V2X) and external computing,
for example in infrastructure, to satisfy rising compute demands [187],
e.g., in ML and SLAM applications [185,236]. Such a system will need
new networking and computing architectures [199], new intelligent au-
tomobile frameworks [154,197,198], in addition to new algorithms for
scheduling and resource allocation [196]. Additionally, as new devices
are connected, the system heterogeneity grows and new algorithms
are needed to constrain the inevitable overheads of such to sustain
real-time operation [187].

5.1.2. Future directions
We forecast autonomous driving to increasingly rely on Edge AI

and expect its underlying ML algorithms to remain popular and, thus,
obvious targets of AxC. There is plenty of potential for future work in
this direction: quantization algorithms can be taken to the extreme,
binarized case [156] or applied to smaller network elements than

layers [171] with more modeling and experiments to follow [162,169].

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
Table 14
Summarized directions of future work extracted from surveyed works.

Applications and algorithms Architectures and circuits

Domain References Challenges Domain References Challenges

Autonomous
Driving

[154,185,187,
196–199,236]

New networking and computing architectures,
automobile frameworks, and scheduling and
resource allocation algorithms to support
intelligent (V2X) connectivity.

Architectures [8,21,65,119,
121,124,128]

Better sensitivity analysis and probabilistic
model checking tools to enable easier AxC
integration into GPPs and other architectures
with guaranteed effects.

[32,43,56,156,
171,175,178,
180]

Novel quantization, pruning, knowledge
distillation, and low-rank approximation
techniques and their combination with AxC.

[126,127] Greater architectural reconfigurability to enable
energy-efficient acceleration of various
applications with low overheads, for example
in FPGAs or CGRAs.

Smart
Sensing and
Wearables

[211,234] Offloading-enabled approximations in data
transmission and Edge execution of multiple
sensing models in parallel.

Circuits
[21,71,79,141] Development of inexact arithmetic units,

including the use of under-design and
accuracy-configurability.

[218,220] Generalization of ML models and supporting
hardware for AI-capable IoT across different
applications.

[59,60,115,117] Understanding and mitigating negative effects
of voltage over-scaling, or exploiting its
combination with non-volatile memories for
efficient parallel computing.

[118,212] Low-power signal processing with intrinsic
approximate effects or reconfigurability.

[102,103,105,
106,108,109,
266]

Scalable inexact (high-level) synthesis
algorithms, for example using genetic mutation
or heuristics.

Positioning

[244,247] Porting of AxC techniques used in smart
sensing applications and their combination with
reduced sampling rate, algorithmic
approximations, etc.

Cross-layer
[21,30,57,60–62,
144,145]

Cross-layer AxC and low-overhead quality
management techniques to support efficient
runtime adaptation with quality guaranteed.

[17,241,267,
268]

Development and sharing of common,
heterogeneous datasets, testing environments,
and performance metrics, for example as
simulations or SDRs.

[10,13,16,50,53,
192]

Secure hardware technologies, resource
management algorithms, programming and
software platforms, and real-world frameworks
for Edge computing management for scalable
Edge AI and IoT.

[246,252,268] Design space exploration in
combining different algorithms,
signals, processing platforms, and
AxC techniques for low-power
operation, for example with SDRs.

[20,53,57] Further development of Edge-suitable AI
models and their synergies with AxC.

Our work Comprehensive and systematic establishment of
the impact of different AxC techniques on the
power consumption, performance, safety, and
reliability of various applications.
Similarly, pruning and knowledge distillation algorithms can be altered
to better utilize the information of network elements [32,175] and
allow for a theoretical understanding of their effects [56] prior to
experiments [173]. And despite quantization and pruning leading to
some reduction in model size, further research into compression by
low-rank approximation is needed [43,178,180]. Lastly, it is relevant
to quantify the effects of combining these techniques [56].

This broad dependence on large-scale ML algorithms will require
further research into application-specific accelerators like the ones
described in Section 3.2.2. These accelerators must take AxC tech-
niques that are well-established in the field, i.e., the ones marked in
Table 11, into account. However, even the unmarked techniques are
relevant so long as their use complies with the restrictions set out
in Section 4.1.2. The autonomous driving use case allows for some
headroom in terms of circuit area, meaning the accelerators may not
need but can benefit from various circuit-level techniques beyond
inexact arithmetic. There are plenty of open research directions for such
techniques [9,21,31], including adapting existing under-design and
accuracy-configurability techniques applied in adders and multipliers
to other arithmetic units [71,79]. With the safety constraints of the
application in mind, AxC techniques can also be used to reduce the
overheads of modular redundancy used to ensure proper functionality
even under (partial) system failure [21,269,270].

5.2. Smart sensing and wearables

5.2.1. Insights
We have described how smart sensors and wearables are rapidly

evolving and gaining traction in the public. As a result, they have
received significant research attention and must be expected to keep
receiving such. The range of applications these types of devices are
expected to execute is very broad and includes DSP and ML tasks within
17
the health information domain [212,228]. To match the energy and
latency constraints of these tasks, the devices must increasingly rely on
Edge offloading [132,220].

5.2.2. Future directions
In addition to the AxC techniques pertinent to ML models outlined

above, offloading enables new trade-offs in data transmissions [211]
and in executing multiple models in parallel in Edge hardware [234]
that need further exploration. This may be necessary to satisfy scala-
bility and latency constraints [132], which also require further analy-
sis [223]. Adoption of AI-capable IoT will require a generalization of
devices and algorithms, e.g., using common ML models in similar hard-
ware for different applications, be it EEG classification [218] or neuro-
logical disease detection [220]. Such devices can benefit from mixed-
signal implementations that naturally operate approximately [212]
or architectural reconfigurability [118]. The algorithms, on the other
hand, may benefit from currently unmarked techniques in Table 12,
knowledge distillation and low-rank approximation, especially in com-
bination with quantization and pruning.

Smart sensors’ sizes prohibit the implementation of several appli-
cation-specific accelerators. This implies a need for general-purpose
programmability or hardware reconfigurability. Programmability is a
common trait of traditional general-purpose processors, possibly mod-
ified to support approximate instructions like those described in Sec-
tion 3.2.1. Future research in this direction may explore approximating
other instruction classes than arithmetic and load/store [119], better
index functions and replacement policies for approximate caches [121],
and in general easier integration of AxC into GPP architectures [8,
21]. Several authors highlight a need for better sensitivity analysis
tools for understanding the effects of and selection of approximations
with guaranteed impact [124,128]. Reconfigurability can, as we have
seen, be provided using CGRAs [126,127], but the functionality is
also available in FPGAs [70,94,131,153]. Identifying the sweet spot of

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

t
a
b
o
a
v
i
a

5

5

u
t
c
D
v

a
f
d
i
t
(
I
o

5

w
p
n
s
d
n
b
s
r
p

Table 15
Qualitative savings arising from using the surveyed AxC techniques on their own.

AxC Tech. Quantizationa Pruninga Knowledge
Distillationa

Low-rank
Approx.a

Compressionb Algorithmic
Approx.

Inexact
Arithmeticc

Voltage
Over-Scalingc

Approx.
Synthesisc

Comp. cost
savings

— — — —

Energy
savings

— — —

Area
savings

— — — — — — —

Error

References [156–158,160,
163,165–167,

170,171]

[39,56,125,
172–174,184]

[175] [43,178,181] [220,246] [221,245,247–
249,252,257]

[69,78,79,95,
212]

[118,217,235] [103–105,108,
109]

Legend Low Medium High Very high

a AxC techniques, like quantization, pruning, knowledge distillation, and low-rank approximation, rarely directly affect the hardware area but rather permit fitting more computation
into the budgeted resources.
b Compression is often complementary to computational offloading [246]; it can decrease data transmissions at the expense of increased local computation.
c Inexact arithmetic, VOS, and approximate hardware synthesis techniques do not directly affect run-time computational costs.
reconfigurability and its related overheads while exploiting AxC is an
interesting research avenue.

In the above, we have seen how VOS has already been applied
o several smart sensing systems [101,118,217]. While it may find
pplication in general-purpose processors [8], its benefits are likely
etter exploited in application-specific circuits. There are plenty of
pportunities for future research in this direction [8,59,60], including
need for a better understanding of system-wide effects, especially of

olatile memories, e.g., caches [115]. This has led some to suggest us-
ng non-volatile, emerging technology-based memories both for storage
nd parallel computing [117], thus inherently integrating AxC.

.3. Positioning

.3.1. Insights
We have already highlighted the close similarity between devices

sed for positioning and those used for generic smart sensing applica-
ions. With this in mind, many AxC techniques relevant in this domain
an be carried over to positioning as well, especially the ones used in
SP algorithms, e.g., reduced sampling rate, inexact arithmetic, and
arious algorithmic alterations [244,247].

Despite the domain split between indoor and outdoor positioning
lgorithms as described in Section 4.3, papers on both outline a need
or more standardized experiments to ensure comparability and repro-
ucibility. Such schemes involve the creation and sharing of repos-
tories of heterogeneous datasets [17], the development of common
esting environments as simulations [241] or Software-Defined Radios
SDRs) [267,268], and the selection of common performance metrics.
n practice, this implies sharing code and simulation environments in
pen source [268].

.3.2. Future directions
As outlined in Section 4.3.4 and shown in Table 13, there is little

ork applying AxC to positioning applications. Moreover, despite low-
ower operation being a goal for next-generation Galileo-capable chips,
o approximation is mentioned as a potential direction for future re-
earch [249]. Similarly, publications on indoor positioning suggest only
eveloping new algorithms [241,252]. We argue that some AxC tech-
iques can help improve energy efficiency in positioning applications,
ut that using them involves identifying the elements of positioning
ystems that consume the most energy – an aspect that SDRs and more
eal-world experiments can help solve [246,252,268]. The interesting
oints in this direction include algorithms, signal selection, processing
18
platform (onboard or offloaded), and AxC techniques; combinations of
which are bound to have interesting trade-offs. We find that techniques
related particularly to the ML domain are irrelevant to positioning
applications so long as they do not rely on such algorithms. Conversely,
circuit-level techniques can be highly relevant, especially in hardened
DSP algorithms.

Considering the lifetime requirements of positioning systems, focus-
ing solely on inexact arithmetic and VOS when pursuing the aforemen-
tioned direction may unnecessarily narrow the scope of approximations
and give rise to unsatisfactory savings. Instead, AxC may be considered
in a broader scope and applied to general hardware designs through
inexact (high-level) synthesis [266]. Existing work introduces and com-
bines various AxC techniques algorithmically, showing promising re-
sults but also describing many directions for future work. These include
new genetic mutation algorithms and heuristics for optimization during
DSE [103,108,109] and the inclusion of new AxC techniques into
existing flows [102,109]. The general notion in these papers is that
existing algorithms suffer from poor scalability and must be adapted
to fit common design toolchains [105,106]. The latter is a particularly
relevant research direction [266] as a well-integrated inexact synthesis
flow may find application also when designing smart sensors or even
accelerators for autonomous driving.

5.4. Cross-layer research

5.4.1. Insights
With the many open challenges within the application domains

in mind, it is worth mentioning that combining AxC techniques can
lead to even greater gains than they can individually. Implementing
optimizations or approximations across layers from software to circuits
can drastically improve overall system performance [30,57]. This is
especially interesting when accounting for the distributed nature of the
three application domains, we consider. As they rely on offloading, new
approximation opportunities arise both in the data-producing devices,
the data-processing devices, as well as their communication. Neverthe-
less, existing work only combines relatively few AxC techniques, as
illustrated in Table 16. As noted before, ML applications are particu-
larly tolerant and most frequently approximated with more than one
technique, e.g., using quantization, pruning, compression, and inexact
arithmetic [136]. Positioning algorithms, on the other hand, have so
far only been approximated algorithmically.

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
Table 16
Cross-product of the surveyed AxC techniques. Tick marks indicate
which techniques have been applied concurrently.

AxC tech. Q P KD LA C AA IA VOS AS

Q ✓ ✓ ✓ ✓ ✓ ✓ ✓

P ✓ ✓ ✓

KD
LA ✓

C ✓ ✓

AA ✓

IA ✓ ✓

VOS ✓

AS

Abbreviations: Quantization, Pruning, Knowledge Distillation, Low-Rank
Approximation, Compression, Algorithmic Aapproximation, Inexact
Arithmetic, Voltage Over-Scaling, and Approximate Synthesis.

5.4.2. Future directions
Introducing and managing approximations across system layers

requires the development of hardware/software co-design tools and
frameworks for DSE [21], for example with HLS as described above.
Unfortunately, such tools are not enough; to safely apply approx-
imations within an application requires intimate knowledge of its
tolerance or resilience to errors. This metric varies across domains
just as much as between individual applications within a domain.
While sensitivity analysis may help in estimating numerical tolerances,
establishing higher-level, domain-specific constraints may require the
involvement of legal and ethical considerations: what classification
accuracy is sufficient for an automatic emergency braking system in a
car, for example? How precise should a heart rate monitor wearable
be? And what positioning precision should a smartphone provide?
Unfortunately, such safety constraints are not well-established in the
literature, yet we find them to be crucial for the broader adoption of
AxC and, in fact, even for the use of AxC within a particular application.

Returning to numerical constraints, it is especially challenging to
ensure output quality under environmental variations. We have tried
to highlight adaptive AxC as a potential solution to this throughout
the paper. Unfortunately, its adoption thus far is limited by existing
sensitivity analysis tools [29,31,124,128] and overheads from run-time
adaptation [61,62], implementations of which mostly fail to provide
quality guarantees [21].

In parallel with the development of new adaptive AxC solutions,
researchers must focus on maturing the Edge computing domain fur-
ther. Scalable Edge AI and IoT demand new hardware technologies [13,
16], novel algorithms for resource management to minimize energy
and task execution time [53,192], and programming and software
platforms for managing them [10,16,53], continuously maintaining
security, privacy, and reliability [10,53]. More progress is needed in
Edge computing framework development [50] as well as in resource-
friendly, Edge-suitable AI models [20,53] and their synergies with
(adaptive) AxC [57]. The wide range of functionalities to be offered
by an Edge computing framework means plenty of opportunities for
adaptive approximation with interesting trade-offs to follow but implies
a need for practical experimentation. Once all these elements are
well-established, they will enable much easier integration of future
connected applications.

6. Conclusion

The number of connected IoT devices and the computational de-
mands needed to intelligently process the data they produce are rising
exponentially. This trend renders traditional Cloud offloading and ex-
isting communication technologies insufficient as they fail to meet the
devices’ and applications’ latency constraints. The solution is to perform
more processing at the Edge of the Internet, where energy and compute
power are sparse and must be optimally utilized. This is highly relevant
19

in the three application domains of autonomous driving, smart sensing
and wearables, and positioning. In these domains, it is necessary to
exploit the applications’ inherent error resilience through adaptive AxC
to save energy and efficiently perform processing at the Edge.

In this paper, we have presented a survey of literature spanning
these three application domains and AxC techniques relevant to them.
We have covered these topics bottom-up, first describing AxC tech-
niques from the circuit level to the application level, and later de-
scribing their applicability in each domain. Our discussion has focused
on nine different AxC techniques: quantization, pruning, knowledge
distillation, low-rank approximation, lossy compression, various algo-
rithmic approximations, inexact arithmetic, voltage over-scaling, and
approximate synthesis.

Our key findings are that all three application domains offer op-
portunities for exploiting AxC, particularly the ML-based applications
in autonomous driving and smart sensing, but also the DSP-based
tasks in positioning; that not every surveyed AxC technique has been
applied in all the application domains or in combination with other
techniques, and that the reasons therefore not always are clear; that
each application domain’s sensitivity to approximations is not well es-
tablished, rendering the evaluation of proposed AxC techniques difficult
or impossible to carry out; and that adaptive AxC can be a powerful
tool for improving energy efficiency, but that it faces several chal-
lenges concerning low-overhead quality management and sensitivity
analysis.

Achieving scalable Edge AI and IoT means many challenges must
be solved and existing techniques must be improved. We expect adap-
tive AxC to be crucial in this development. To spark further initia-
tive in this direction, we have highlighted many open challenges,
including novel algorithms and application-level AxC techniques for
autonomous driving; low-power signal processing and ML algorithms
for offloading-capable IoT devices; adaptation and experimentation
with various AxC techniques in positioning algorithms; further exper-
imentation with combinations of AxC techniques in all three covered
application domains; and greater reconfigurability and low-overhead
quality management of architecture- and circuit-level AxC techniques.
Additionally, we wish to emphasize the importance of establishing
the quality or safety constraints within the three application domains.
Without such, one may blindly approximate critical elements of such
systems, causing unnecessary and avoidable harm.

Acronyms

AI Artificial Intelligence
AOA Angle-of-Arrival
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
AxC Approximate Computing
BLE Bluetooth Low-Energy
C/A Coarse/Acquisition Code
CNN Convolutional Neural Network
CGRA Coarse-Grained Reconfigurable Array
CLA Carry-Lookahead Adder
CND Chronic Neurological Disorder
CPD Canonical Polyadic Decomposition
CS Compressive Sensing
CSA Carry-Select Adder
CTN Coarse-Time Navigation
DNN Deep Neural Network
DRAM Dynamic RAM
DCT Discrete Cosine Transform
DSE Design Space Exploration
DSP Digital Signal Processing
DVFS Dynamic Voltage and Frequency Scaling
ECG Electrocardiogram

EEG Electroencephalogram

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.

C

D
i

e
N
F

D

l
e
b
S

D

A

U
M
/

R

ESPRIT Estimation of Signal Parameters via Rotational Invariant
Techniques

EVD Eigendecomposition
FA Full Adder
FFT Fast Fourier Transform
FL Federated Learning
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
GLONASS Global Navigation Satellite System
GNSS Global Navigation Satellite Systems
GPP General-Purpose Processor
GPS Global Positioning System
HD Map High-definition Map
HEVC High-Efficiency Video Coding
HLS High-Level Synthesis
IC Integrated Circuit
ICA Independent Component Analysis
IoT Internet of Things
IQ In-Phase and Quadrature
IRNSS Indian Regional Navigation Satellite System
k-NN 𝑘-Nearest Neighbors
KWS Keyword Spotting
LiDAR Light Detection and Ranging
LSB Least-Significant Bit
LUT Look-Up Table
MAC Multiply-Accumulate
ML Machine Learning
MUSIC Multiple Signal Classification
MVDR Minimum Variance Distortion-less Response
NN Neural Network
NoC Network on Chip
PCA Principal Component Analysis
PE Processing Element
PU Processing Unit
QZSS Quasi-Zenith Satellite System
RNN Recurrent Neural Network
RAM Random Access Memory
RCA Ripple-Carry Adder
ReLU Rectified Linear Unit
RF Radio Frequency
RL Reinforcement Learning
RSSI Received Signal Strength Indicator
RTL Register-Transfer Level
SAE Society of Automotive Engineers
SAGE Space Alternating Generalized Expectation-Maximization
SDR Software-Defined Radio
SEP Somatosensory Evoked Potential
SLAM Simultaneous Localization and Mapping
SoC System on Chip
STFT Short-Time Fourier Transform
SVD Singular-Value Decomposition
SVM Support Vector Machine
TPU Tensor Processing Unit
ULA Uniform Linear Array
VEP Visual Evoked Potentials
VOS Voltage Over-Scaling
WT Wavelet Transform

RediT authorship contribution statement

Hans Jakob Damsgaard: Writing – original draft, Visualization,
ata curation, Conceptualization. Antoine Grenier: Writing – orig-

nal draft, Data curation. Dewant Katare: Writing – original draft,
20

Data curation. Zain Taufique: Writing – original draft, Data curation.
Salar Shakibhamedan: Writing – original draft, Data curation. Tiago
Troccoli: Writing – original draft, Data curation. Georgios Chatz-
itsompanis: Writing – original draft, Data curation. Anil Kanduri:
Writing – review & editing, Methodology. Aleksandr Ometov: Writing
– review & editing, Supervision, Methodology. Aaron Yi Ding: Writing
– review & editing, Methodology. Nima Taherinejad: Writing – review
& editing, Methodology. Georgios Karakonstantis: Writing – review &
diting, Methodology. Roger Woods: Writing – review & editing. Jari
urmi:Writing – review & editing, Supervision, Project administration,
unding acquisition, Conceptualization.

eclaration of competing interest

The authors declare the following financial interests/personal re-
ationships which may be considered as potential competing inter-
sts: Hans Jakob Damsgaard reports financial support was provided
y EU Framework Programme for Research and Innovation Marie
kłodowska-Curie Actions.

ata availability

No data was used for the research described in the article.

cknowledgments

The authors gratefully acknowledge funding from the European
nion’s Horizon 2020 Research and Innovation Programme under the
arie Skłodowska Curie grant agreement No. 956090 (APROPOS, http:

/www.apropos-itn.eu/).

eferences

[1] F. Montevecchi, T. Stickler, R. Hintemann, S. Hinterholzer, Energy-efficient
Cloud Computing Technologies and Policies for an Eco-friendly Cloud
Market, Tech. Rep. KK-03-20-210-EN-N, European Commission, 2020,
URL https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-
computing-technologies-and-policies-eco-friendly-cloud-market.

[2] Semiconductor Industry Association and/or its affiliates, Rebooting the IT Rev-
olution: A Call to Action, Tech. Rep., Semiconductor Industry Association and
Semiconductor Research Corporation, 2015, URL https://www.semiconductors.
org/wp-content/uploads/2018/06/RITR-WEB-version-FINAL.pdf.

[3] P.F. Borowski, Mitigating climate change and the development of green energy
versus a return to fossil fuels due to the energy crisis in 2022, Energies 15 (24)
(2022) 9289.

[4] P. Cerwal, et al., Ericsson Mobility Report, Tech. Rep. EAB-22:010742, Ericsson,
2021, URL https://www.ericsson.com/en/reports-and-papers/mobility-report/
reports/november-2022.

[5] H. Feng, S. Guo, L. Yang, Y. Yang, Collaborative data caching and computation
offloading for multi-service mobile edge computing, IEEE Trans. Veh. Technol.
70 (9) (2021) 9408–9422.

[6] A. Ometov, J. Nurmi, Towards approximate computing for achieving energy
vs. Accuracy trade-offs, in: Design, Automation & Test in Europe Conference &
Exhibition, IEEE, 2022, pp. 632–635.

[7] J. Han, M. Orshansky, Approximate computing: An emerging paradigm for
energy-efficient design, in: 18th IEEE European Test Symposium, IEEE, 2013,
pp. 1–6.

[8] Q. Xu, T. Mytkowicz, N.S. Kim, Approximate computing: A survey, IEEE Des.
Test 33 (1) (2015) 8–22.

[9] S. Mittal, A survey of techniques for approximate computing, ACM Comput.
Surv. 48 (4) (2016) 1–33.

[10] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet Things J. 3 (5) (2016) 637–646.

[11] F. Betzel, K. Khatamifard, H. Suresh, D.J. Lilja, J. Sartori, U. Karpuzcu, Approx-
imate communication: Techniques for reducing communication bottlenecks in
large-scale parallel systems, ACM Comput. Surv. 51 (1) (2018) 1–32.

[12] A. Ibrahim, M. Osta, M. Alameh, M. Saleh, H. Chible, M. Valle, Approximate
computing methods for embedded machine learning, in: 25th IEEE International
Conference on Electronics, Circuits and Systems, IEEE, 2018, pp. 845–848.

[13] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J.
Kong, J. Jue, All one needs to know about fog computing and related edge
computing paradigms: A complete survey, J. Syst. Archit. 98 (2019) 289–330.

[14] D. Ma, G. Lan, M. Hassan, W. Hu, S.K. Das, Sensing, computing, and commu-
nications for energy harvesting IoTs: A survey, IEEE Commun. Surv. Tutor. 22
(2) (2019) 1222–1250.

http://www.apropos-itn.eu/
http://www.apropos-itn.eu/
http://www.apropos-itn.eu/
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://www.semiconductors.org/wp-content/uploads/2018/06/RITR-WEB-version-FINAL.pdf
https://www.semiconductors.org/wp-content/uploads/2018/06/RITR-WEB-version-FINAL.pdf
https://www.semiconductors.org/wp-content/uploads/2018/06/RITR-WEB-version-FINAL.pdf
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb3
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb3
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb3
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb3
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb3
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2022
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2022
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2022
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb5
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb5
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb5
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb5
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb5
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb6
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb6
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb6
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb6
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb6
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb7
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb7
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb7
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb7
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb7
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb8
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb8
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb8
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb9
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb9
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb9
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb10
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb10
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb10
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb11
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb11
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb11
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb11
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb11
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb12
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb12
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb12
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb12
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb12
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb13
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb13
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb13
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb13
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb13
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb14
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb14
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb14
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb14
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb14

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
[15] M. Cococcioni, F. Rossi, E. Ruffaldi, S. Saponara, B.D. de Dinechin, Novel
arithmetics in deep neural networks signal processing for autonomous driving:
Challenges and opportunities, IEEE Signal Process. Mag. 38 (1) (2020) 97–110.

[16] Y. Shi, K. Yang, T. Jiang, J. Zhang, K.B. Letaief, Communication-efficient
edge AI: Algorithms and systems, IEEE Commun. Surv. Tutor. 22 (4) (2020)
2167–2191.

[17] P. Pascacio, S. Casteleyn, J. Torres-Sospedra, E.S. Lohan, J. Nurmi, Collaborative
indoor positioning systems: A systematic review, Sensors 21 (3) (2021) 1002.

[18] B.R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A.A. Al Sallab, S. Yogamani, P.
Pérez, Deep reinforcement learning for autonomous driving: A survey, IEEE
Trans. Intell. Transp. Syst. 23 (6) (2021) 4909–4926.

[19] A. Ometov, V. Shubina, L. Klus, J. Skibińska, S. Saafi, P. Pascacio, L. Flueratoru,
D.Q. Gaibor, N. Chukhno, O. Chukhno, et al., A survey on wearable technology:
History, state-of-the-art and current challenges, Comput. Netw. 193 (2021)
108074.

[20] A.Y. Ding, E. Peltonen, T. Meuser, A. Aral, C. Becker, S. Dustdar, T. Hiessl,
D. Kranzlmüller, M. Liyanage, S. Maghsudi, et al., Roadmap for edge AI: A
dagstuhl perspective, ACM SIGCOMM Comput. Commun. Rev. 52 (1) (2022)
28–33.

[21] H.J. Damsgaard, A. Ometov, J. Nurmi, Approximation opportunities in edge
computing hardware: A systematic literature review, ACM Comput. Surv. 55
(12) (2022) 1–49.

[22] A. Badran, S. Sadeghi-Kohan, J.D. Reimer, S. Hellebrand, Approximate commu-
nication: Balancing performance, power, reliability, and safety, in: 28th IEEE
European Test Symposium, IEEE, 2023, pp. 1–6.

[23] D. Katare, D. Perino, J. Nurmi, M. Warnier, M. Janssen, A.Y. Ding, A survey
on approximate edge AI for energy efficient autonomous driving services, IEEE
Commun. Surv. Tutor. (2023).

[24] A. Grenier, E.S. Lohan, A. Ometov, J. Nurmi, A survey on low-power GNSS,
IEEE Commun. Surv. Tutor. (2023).

[25] G. Karakonstantis, C.J. Gillan, Computing at the EDGE: New Challenges for
Service Provision, Springer Nature, 2022.

[26] N. Mäkitalo, T. Aaltonen, M. Raatikainen, A. Ometov, S. Andreev, Y.
Koucheryavy, T. Mikkonen, Action-oriented programming model: Collective
executions and interactions in the fog, J. Syst. Softw. 157 (2019) 110391.

[27] P. Nikolaou, Y. Sazeides, A. Lampropulos, D. Guilhot, A. Bartoli, G. Papadim-
itriou, A. Chatzidimitriou, D. Gizopoulos, K. Tovletoglou, L. Mukhanov, et
al., On the evaluation of the total-cost-of-ownership trade-offs in edge vs
cloud deployments: A wireless-denial-of-service case study, IEEE Trans. Sustain.
Comput. 7 (2) (2019) 334–345.

[28] H.J. Damsgaard, A. Ometov, M.M. Mowla, A. Flizikowski, J. Nurmi, Approxi-
mate computing in B5G and 6G wireless systems: A survey and future outlook,
Comput. Netw. (2023) 109872.

[29] V.K. Chippa, S. Venkataramani, S.T. Chakradhar, K. Roy, A. Raghunathan,
Approximate computing: An integrated hardware approach, in: Asilomar
Conference on Signals, Systems and Computers, IEEE, 2013, pp. 111–117.

[30] S. Venkataramani, S.T. Chakradhar, K. Roy, A. Raghunathan, Approximate
computing and the quest for computing efficiency, in: 52nd Annual Design
Automation Conference, ACM, 2015, pp. 1–6.

[31] V.K. Chippa, S.T. Chakradhar, K. Roy, A. Raghunathan, Analysis and character-
ization of inherent application resilience for approximate computing, in: 50th
Annual Design Automation Conference, ACM, 2013, pp. 1–9.

[32] S. Anwar, K. Hwang, W. Sung, Structured pruning of deep convolutional neural
networks, ACM J. Emerg. Technol. Comput. Syst. 13 (3) (2017) 1–18.

[33] H. Snyder, Literature review as a research methodology: An overview and
guidelines, J. Bus. Res. 104 (2019) 333–339.

[34] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[35] T.M. Hehn, J.F. Kooij, F.A. Hamprecht, End-to-end learning of decision trees

and forests, Int. J. Comput. Vis. 128 (4) (2020) 997–1011.
[36] V. Blanco, A. Japón, J. Puerto, Optimal arrangements of hyperplanes for

SVM-based multiclass classification, Adv. Data Anal. Classif. 14 (1) (2020)
175–199.

[37] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, A. Lopez, A comprehen-
sive survey on support vector machine classification: Applications, challenges
and trends, Neurocomputing 408 (2020) 189–215.

[38] S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective,
Academic Press, 2015.

[39] J. Mao, H. Yang, A. Li, H. Li, Y. Chen, TPrune: Efficient transformer pruning
for mobile devices, ACM Trans. Cyber-Phys. Syst. 5 (3) (2021) 1–22.

[40] I.H. Sarker, Machine learning: Algorithms, real-world applications and research
directions, SN Comput. Sci. 2 (3) (2021) 1–21.

[41] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L.D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., End to end learning for
self-driving cars, 2016, p. 9, arXiv preprint arXiv:1604.07316.

[42] M. Injadat, A. Moubayed, A.B. Nassif, A. Shami, Machine learning towards
intelligent systems: Applications, challenges, and opportunities, Artif. Intell.
Rev. 54 (5) (2021) 3299–3348.

[43] M. Astrid, S.-I. Lee, CP-decomposition with tensor power method for convolu-
tional neural networks compression, in: IEEE International Conference on Big
Data and Smart Computing, IEEE, 2017, pp. 115–118.
21
[44] J. Tee, D.P. Taylor, A quantized representation of probability in the brain, IEEE
Trans. Mol. Biol. Multi-Scale Commun. 5 (1) (2019) 19–29.

[45] L. Fangxin, Z. Wenbo, W. Yanzhi, D. Changzhi, J. Li, AUSN: Approximately
uniform quantization by adaptively superimposing non-uniform distribution for
deep neural networks, 2020, p. 17, arXiv preprint arXiv:2007.03903.

[46] M. Tschannen, O. Bachem, M. Lucic, Recent advances in autoencoder-based
representation learning, 2018, arXiv preprint arXiv:1812.05069.

[47] A. Marchisio, M.A. Hanif, M. Martina, M. Shafique, PruNet: Class-blind pruning
method for deep neural networks, in: International Joint Conference on Neural
Networks, IEEE, 2018, pp. 1–8.

[48] S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and Huffman coding, 2015, p. 14,
arXiv preprint arXiv:1510.00149.

[49] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the
Internet of Things, in: 1st Edition of the MCC Workshop on Mobile Cloud
Computing, ACM, 2012, pp. 13–16.

[50] R. Berta, F. Bellotti, A. De Gloria, L. Lazzaroni, Assessing versatility of a generic
end-to-end platform for IoT ecosystem applications, Sensors 22 (3) (2022) 713.

[51] M.A. Rahman, M.S. Hossain, G. Loukas, E. Hassanain, S.S. Rahman, M.F.
Alhamid, M. Guizani, Blockchain-based mobile edge computing framework for
secure therapy applications, IEEE Access 6 (2018) 72469–72478.

[52] T. Subramanya, L. Goratti, S.N. Khan, E. Kafetzakis, I. Giannoulakis, R. Riggio,
A practical architecture for mobile edge computing, in: IEEE Conference on
Network Function Virtualization and Software Defined Networks, IEEE, 2017,
pp. 1–4.

[53] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence: Paving
the last mile of artificial intelligence with edge computing, Proc. IEEE 107 (8)
(2019) 1738–1762.

[54] X. Yang, Z. Song, I. King, Z. Xu, A survey on deep semi-supervised learning,
IEEE Trans. Knowl. Data Eng. (2022).

[55] Q. Jin, L. Yang, Z. Liao, Towards efficient training for neural network
quantization, 2019, arXiv preprint arXiv:1912.10207.

[56] Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, Y. Yang, Asymptotic soft filter pruning
for deep convolutional neural networks, IEEE Trans. Cybern. 50 (8) (2019)
3594–3604.

[57] S. Venkataramani, X. Sun, N. Wang, C.-Y. Chen, J. Choi, M. Kang, A. Agarwal,
J. Oh, S. Jain, T. Babinsky, et al., Efficient AI system design with cross-layer
approximate computing, Proc. IEEE 108 (12) (2020) 2232–2250.

[58] I. Tsiokanos, L. Mukhanov, G. Karakonstantis, Low-power variation-aware cores
based on dynamic data-dependent bitwidth truncation, in: Design, Automation
& Test in Europe Conference & Exhibition, IEEE, 2019, pp. 698–703.

[59] K. Tovletoglou, L. Mukhanov, D.S. Nikolopoulos, G. Karakonstantis, HaRMony:
Heterogeneous-reliability memory and QoS-aware energy management on vir-
tualized servers, in: 25th International Conference on Architectural Support for
Programming Languages and Operating Systems, ACM, 2020, pp. 575–590.

[60] G. Karakonstantis, A. Chatterjee, K. Roy, Containing the nanometer ‘‘Pandora-
Box’’: Cross-layer design techniques for variation aware low power systems,
IEEE J. Emerg. Sel. Top. Circuits Syst. 1 (1) (2011) 19–29.

[61] D.S. Khudia, B. Zamirai, M. Samadi, S. Mahlke, RUMBA: An online quality man-
agement system for approximate computing, in: 42nd International Symposium
on Computer Architecture, ACM, 2015, pp. 554–566.

[62] T. Kemp, Y. Yao, Y. Kim, MIPAC: Dynamic input-aware accuracy control for
dynamic auto-tuning of iterative approximate computing, in: 26th Asia and
South Pacific Design Automation Conference, IEEE, 2021, pp. 248–253.

[63] J. Strnadel, Statistical model checking of approximate circuits: Challenges and
opportunities, in: Design, Automation & Test in Europe Conference & Exhibition,
IEEE, 2020, pp. 1574–1577.

[64] R. Venkatesan, A. Agarwal, K. Roy, A. Raghunathan, MACACO: Modeling
and analysis of circuits for approximate computing, in: 30th International
Conference on Computer-Aided Design, IEEE, 2011, pp. 667–673.

[65] A.K. Mishra, R. Barik, S. Paul, iACT: A software-hardware framework for under-
standing the scope of approximate computing, in: Workshop on Approximate
Computing Across the System Stack, vol. 52, 2014.

[66] S.K. Lahiri, A. Haran, S. He, Z. Rakamaric, Automated Differential
Program Verification for Approximate Computing, Tech. Rep., Microsoft
Research, 2015, URL https://citeseerx.ist.psu.edu/document?doi=
1be736d0e01199a8c759467491875cb88a32d3e6.

[67] H.R. Mahdiani, A. Ahmadi, S.M. Fakhraie, C. Lucas, Bio-inspired imprecise
computational blocks for efficient VLSI implementation of soft-computing
applications, IEEE Trans. Circuits Syst. I. Regul. Pap. 57 (4) (2009) 850–862.

[68] B. Liu, Y. Li, L. Huang, H. Cai, W. Zhu, S. Guo, Y. Gong, Z. Wang, A
background noise self-adaptive VAD using SNR prediction based precision
dynamic reconfigurable approximate computing, in: Great Lakes Symposium
on VLSI, ACM, 2020, pp. 271–275.

[69] V. Gupta, D. Mohapatra, A. Raghunathan, K. Roy, Low-power digital signal
processing using approximate adders, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 32 (1) (2012) 124–137.

[70] J. Echavarria, S. Wildermann, A. Becher, J. Teich, D. Ziener, FAU: Fast and
error-optimized approximate adder units on LUT-based FPGAs, in: International
Conference on Field-Programmable Technology, IEEE, 2016, pp. 213–216.

http://refhub.elsevier.com/S1383-7621(24)00051-1/sb15
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb15
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb15
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb15
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb15
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb16
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb16
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb16
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb16
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb16
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb17
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb17
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb17
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb18
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb18
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb18
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb18
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb18
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb19
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb19
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb19
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb19
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb19
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb19
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb19
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb20
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb20
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb20
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb20
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb20
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb20
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb20
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb21
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb21
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb21
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb21
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb21
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb22
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb22
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb22
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb22
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb22
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb23
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb23
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb23
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb23
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb23
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb24
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb24
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb24
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb25
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb25
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb25
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb26
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb26
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb26
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb26
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb26
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb27
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb27
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb27
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb27
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb27
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb27
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb27
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb27
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb27
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb28
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb28
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb28
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb28
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb28
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb29
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb29
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb29
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb29
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb29
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb30
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb30
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb30
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb30
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb30
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb31
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb31
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb31
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb31
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb31
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb32
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb32
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb32
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb33
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb33
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb33
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb34
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb35
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb35
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb35
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb36
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb36
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb36
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb36
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb36
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb37
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb37
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb37
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb37
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb37
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb38
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb38
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb38
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb39
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb39
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb39
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb40
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb40
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb40
http://arxiv.org/abs/1604.07316
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb42
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb42
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb42
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb42
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb42
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb43
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb43
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb43
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb43
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb43
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb44
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb44
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb44
http://arxiv.org/abs/2007.03903
http://arxiv.org/abs/1812.05069
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb47
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb47
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb47
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb47
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb47
http://arxiv.org/abs/1510.00149
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb49
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb49
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb49
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb49
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb49
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb50
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb50
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb50
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb51
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb51
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb51
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb51
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb51
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb52
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb52
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb52
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb52
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb52
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb52
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb52
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb53
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb53
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb53
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb53
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb53
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb54
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb54
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb54
http://arxiv.org/abs/1912.10207
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb56
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb56
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb56
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb56
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb56
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb57
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb57
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb57
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb57
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb57
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb58
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb58
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb58
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb58
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb58
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb59
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb59
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb59
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb59
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb59
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb59
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb59
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb60
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb60
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb60
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb60
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb60
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb61
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb61
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb61
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb61
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb61
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb62
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb62
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb62
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb62
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb62
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb63
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb63
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb63
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb63
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb63
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb64
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb64
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb64
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb64
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb64
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb65
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb65
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb65
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb65
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb65
https://citeseerx.ist.psu.edu/document?doi=1be736d0e01199a8c759467491875cb88a32d3e6
https://citeseerx.ist.psu.edu/document?doi=1be736d0e01199a8c759467491875cb88a32d3e6
https://citeseerx.ist.psu.edu/document?doi=1be736d0e01199a8c759467491875cb88a32d3e6
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb67
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb67
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb67
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb67
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb67
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb68
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb68
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb68
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb68
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb68
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb68
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb68
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb69
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb69
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb69
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb69
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb69
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb70
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb70
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb70
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb70
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb70

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
[71] A.B. Kahng, S. Kang, Accuracy-configurable adder for approximate arithmetic
designs, in: 49th Annual Design Automation Conference, IEEE, 2012, pp.
820–825.

[72] R. Ye, T. Wang, F. Yuan, R. Kumar, Q. Xu, On reconfiguration-oriented
approximate adder design and its application, in: 32nd International Conference
on Computer-Aided Design, IEEE, 2013, pp. 48–54.

[73] A.K. Verma, P. Brisk, P. Ienne, Variable latency speculative addition: A new
paradigm for arithmetic circuit design, in: Design, Automation & Test in Europe
Conference & Exhibition, IEEE, 2008, pp. 1250–1255.

[74] M. Shafique, W. Ahmad, R. Hafiz, J. Henkel, A low latency generic accuracy
configurable adder, in: 52nd Annual Design Automation Conference, IEEE,
2015, pp. 1–6.

[75] S.-L. Lu, Speeding up processing with approximation circuits, IEEE Comput. 37
(3) (2004) 67–73.

[76] T. Nomani, M. Mohsin, Z. Pervaiz, M. Shafique, xUAVs: Towards efficient
approximate computing for UAVs—Low power approximate adders with single
LUT delay for FPGA-based aerial imaging optimization, IEEE Access 8 (2020)
102982–102996.

[77] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, RAP-CLA: A reconfigurable
approximate carry look-ahead adder, IEEE Trans. Circuits Syst. II 65 (8) (2016)
1089–1093.

[78] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, M. Pedram, Roba
multiplier: A rounding-based approximate multiplier for high-speed yet energy-
efficient digital signal processing, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 25 (2) (2016) 393–401.

[79] P. Kulkarni, P. Gupta, M. Ercegovac, Trading accuracy for power with an
underdesigned multiplier architecture, in: 24th Internatioal Conference on VLSI
Design, IEEE, 2011, pp. 346–351.

[80] S. Ullah, S. Rehman, B.S. Prabakaran, F. Kriebel, M.A. Hanif, M. Shafique,
A. Kumar, Area-optimized low-latency approximate multipliers for FPGA-based
hardware accelerators, in: 55th Annual Design Automation Conference, IEEE,
2018, pp. 1–6.

[81] K.Y. Kyaw, W.L. Goh, K.S. Yeo, Low-power high-speed multiplier for error-
tolerant application, in: IEEE International Conference of Electron Devices and
Solid-State Circuits, IEEE, 2010, pp. 1–4.

[82] V. Leon, G. Zervakis, D. Soudris, K. Pekmestzi, Approximate hybrid high radix
encoding for energy-efficient inexact multipliers, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 26 (3) (2017) 421–430.

[83] T. Yang, T. Ukezono, T. Sato, Design of a low-power and small-area approximate
multiplier using first the approximate and then the accurate compression
method, in: Great Lakes Symposium on VLSI, ACM, 2019, pp. 39–44.

[84] H. Jiang, J. Han, F. Qiao, F. Lombardi, Approximate radix-8 booth multipliers
for low-power and high-performance operation, IEEE Trans. Comput. 65 (8)
(2015) 2638–2644.

[85] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, F. Lombardi, Design of approximate
radix-4 booth multipliers for error-tolerant computing, IEEE Trans. Comput. 66
(8) (2017) 1435–1441.

[86] S. Boroumand, P. Brisk, Approximate adder tree synthesis for FPGAs, in:
International Conference on ReConFigurable Computing and FPGAs, IEEE, 2019,
pp. 1–8.

[87] C. Guo, L. Zhang, X. Zhou, W. Qian, C. Zhuo, A reconfigurable approximate
multiplier for quantized CNN applications, in: 25th Asia and South Pacific
Design Automation Conference, IEEE, 2020, pp. 235–240.

[88] F.-Y. Gu, C. Lin, J.-W. Lin, A low-power and high-accuracy approximate
multiplier with reconfigurable truncation, IEEE Access 10 (2022) 60447–60458.

[89] H.O. Ahmed, M. Ghoneima, M. Dessouky, Concurrent MAC unit design using
VHDL for deep learning networks on FPGA, in: IEEE Symposium on Computer
Applications & Industrial Electronics, IEEE, 2018, pp. 31–36.

[90] J. Chang, Y. Choi, T. Lee, J. Cho, Reducing MAC operation in convolutional neu-
ral network with sign prediction, in: International Conference on Information
and Communication Technology Convergence, IEEE, 2018, pp. 177–182.

[91] H.J. Lee, C.H. Kim, S.W. Kim, Design of floating-point MAC unit for com-
puting DNN applications in PIM, in: International Conference on Electronics,
Information, and Communication, IEEE, 2020, pp. 1–7.

[92] H. Zhang, D. Chen, S.-B. Ko, New flexible multiple-precision multiply-
accumulate unit for deep neural network training and inference, IEEE Trans.
Comput. 69 (1) (2019) 26–38.

[93] V. Mrazek, L. Sekanina, Z. Vasicek, Libraries of approximate circuits: Automated
design and application in CNN accelerators, IEEE J. Emerg. Sel. Top. Circuits
Syst. 10 (4) (2020) 406–418.

[94] S. Ullah, S.S. Murthy, A. Kumar, SmApproxLib: Library of FPGA-based approx-
imate multipliers, in: 55th Annual Design Automation Conference, IEEE, 2018,
pp. 1–6.

[95] M. Masadeh, O. Hasan, S. Tahar, Machine-learning-based self-tunable design of
approximate computing, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 29
(4) (2021) 800–813.

[96] I. Koren, Computer Arithmetic Algorithms, AK Peters/CRC Press, 2001.
[97] B. Parhami, Computer Arithmetic: Algorithms and Hardware Design, Oxford

University Press, 2010.
22
[98] S. Yesil, I. Akturk, U.R. Karpuzcu, Toward dynamic precision scaling, IEEE
Micro 38 (04) (2018) 30–39.

[99] T. Na, S. Mukhopadhyay, Speeding up convolutional neural network training
with dynamic precision scaling and flexible multiplier-accumulator, in: Inter-
national Symposium on Low Power Electronics and Design, ACM, 2016, pp.
58–63.

[100] B. Moons, M. Verhelst, An energy-efficient precision-scalable ConvNet processor
in 40-nm CMOS, IEEE J. Solid-state Circuits 52 (4) (2016) 903–914.

[101] J. Nunez-Yanez, N. Howard, Energy-efficient neural networks with near-
threshold processors and hardware accelerators, J. Syst. Archit. 116 (2021)
102062.

[102] S. Lee, L.K. John, A. Gerstlauer, High-level synthesis of approximate hardware
under joint precision and voltage scaling, in: Design, Automation & Test in
Europe Conference & Exhibition, IEEE, 2017, pp. 187–192.

[103] M.T. Leipnitz, G.L. Nazar, High-level synthesis of approximate designs under
real-time constraints, ACM Trans. Embedded Comput. Syst. 18 (5) (2019) 1–21.

[104] Y. Dou, C. Wang, R. Woods, W. Liu, ENAP: An efficient number-aware pruning
framework for design space exploration of approximate configurations, IEEE
Trans. Circuits Syst. I. Regul. Pap. (2023) 1–12.

[105] R. Hrbacek, V. Mrazek, Z. Vasicek, Automatic design of approximate circuits by
means of multi-objective evolutionary algorithms, in: International Conference
on Design and Technology of Integrated Systems in Nanoscale Era, IEEE, 2016,
pp. 1–6.

[106] I. Scarabottolo, G. Ansaloni, L. Pozzi, Circuit carving: A methodology for the
design of approximate hardware, in: Design, Automation & Test in Europe
Conference & Exhibition, IEEE, 2018, pp. 545–550.

[107] J. Castro-Godínez, J. Mateus-Vargas, M. Shafique, J. Henkel, AxHLS: Design
space exploration and high-level synthesis of approximate accelerators using
approximate functional units and analytical models, in: IEEE/ACM International
Conference on Computer Aided Design, IEEE, 2020, pp. 1–9.

[108] M. Awais, H.G. Mohammadi, M. Platzner, An MCTS-based framework for
synthesis of approximate circuits, in: IFIP/IEEE International Conference on
Very Large Scale Integration, IEEE, 2018, pp. 219–224.

[109] K. Nepal, Y. Li, R.I. Bahar, S. Reda, ABACUS: A technique for automated
behavioral synthesis of approximate computing circuits, in: Design, Automation
& Test in Europe Conference & Exhibition, IEEE, 2014, pp. 1–6.

[110] B. Salami, O.S. Unsal, A.C. Kestelman, Comprehensive evaluation of supply volt-
age underscaling in FPGA on-chip memories, in: 51st International Symposium
on Microarchitecture, IEEE, 2018, pp. 724–736.

[111] J. Echavarria, K. Schütz, A. Becher, S. Wildermann, J. Teich, Can approximate
computing reduce power consumption on FPGAs? in: 25th IEEE International
Conference on Electronics, Circuits and Systems, IEEE, 2018, pp. 841–844.

[112] Y.-H. Seo, D.-W. Kim, A new VLSI architecture of parallel multiplier–
accumulator based on radix-2 modified booth algorithm, IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 18 (2) (2009) 201–208.

[113] N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al., In-datacenter performance analysis of a
tensor processing unit, in: 44th Annual International Symposium on Computer
Architecture, IEEE, 2017, pp. 1–12.

[114] S. Venkataramani, V.K. Chippa, S.T. Chakradhar, K. Roy, A. Raghunathan,
Quality programmable vector processors for approximate computing, in: 46th
International Symposium on Microarchitecture, IEEE, 2013, pp. 1–12.

[115] K.D. Vogeleer, G. Memmi, P. Jouvelot, F. Coelho, The energy/frequency
convexity rule: Modeling and experimental validation on mobile devices, in:
International Conference on Parallel Processing and Applied Mathematics,
Springer, 2013, pp. 793–803.

[116] A. Weissel, F. Bellosa, Process cruise control: Event-driven clock scaling
for dynamic power management, in: International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, ACM, 2002, pp. 238–246.

[117] S. Amanollahi, M. Kamal, A. Afzali-Kusha, M. Pedram, Circuit-level techniques
for logic and memory blocks in approximate computing systemsx, Proc. IEEE
108 (12) (2020) 2150–2177.

[118] S. Basu, L. Duch, M. Peón-Quirós, D. Atienza, G. Ansaloni, L. Pozzi, Heteroge-
neous and inexact: Maximizing power efficiency of edge computing sensors for
health monitoring applications, in: IEEE International Symposium on Circuits
and Systems, IEEE, 2018, pp. 1–5.

[119] G. Ndour, T.T. Jost, A. Molnos, Y. Durand, A. Tisserand, Evaluation of variable
bit-width units in a RISC-V processor for approximate computing, in: 16th
International Conference on Computing Frontiers, ACM, 2019, pp. 344–349.

[120] X. He, S. Jiang, W. Lu, G. Yan, Y. Han, X. Li, Exploiting the potential of
computation reuse through approximate computing, IEEE Trans. Multi-Scale
Comput. Syst. 3 (3) (2016) 152–165.

[121] J.S. Miguel, J. Albericio, A. Moshovos, N.E. Jerger, Doppelgänger: A
cache for approximate computing, in: 48th International Symposium on
Microarchitecture, ACM, 2015, pp. 50–61.

[122] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, M. Oskin,
SNNAP: Approximate computing on programmable SoCs via neural acceleration,
in: International Symposium on High Performance Computer Architecture, IEEE,
2015, pp. 603–614.

http://refhub.elsevier.com/S1383-7621(24)00051-1/sb71
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb71
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb71
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb71
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb71
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb72
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb72
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb72
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb72
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb72
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb73
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb73
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb73
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb73
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb73
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb74
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb74
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb74
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb74
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb74
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb75
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb75
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb75
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb76
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb76
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb76
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb76
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb76
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb76
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb76
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb77
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb77
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb77
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb77
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb77
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb78
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb78
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb78
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb78
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb78
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb78
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb78
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb79
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb79
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb79
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb79
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb79
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb80
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb80
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb80
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb80
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb80
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb80
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb80
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb81
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb81
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb81
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb81
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb81
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb82
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb82
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb82
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb82
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb82
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb83
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb83
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb83
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb83
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb83
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb84
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb84
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb84
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb84
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb84
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb85
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb85
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb85
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb85
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb85
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb86
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb86
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb86
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb86
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb86
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb87
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb87
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb87
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb87
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb87
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb88
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb88
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb88
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb89
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb89
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb89
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb89
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb89
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb90
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb90
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb90
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb90
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb90
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb91
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb91
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb91
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb91
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb91
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb92
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb92
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb92
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb92
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb92
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb93
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb93
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb93
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb93
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb93
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb94
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb94
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb94
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb94
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb94
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb95
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb95
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb95
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb95
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb95
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb96
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb97
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb97
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb97
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb98
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb98
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb98
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb99
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb99
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb99
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb99
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb99
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb99
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb99
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb100
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb100
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb100
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb101
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb101
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb101
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb101
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb101
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb102
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb102
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb102
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb102
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb102
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb103
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb103
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb103
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb104
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb104
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb104
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb104
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb104
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb105
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb105
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb105
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb105
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb105
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb105
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb105
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb106
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb106
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb106
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb106
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb106
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb107
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb107
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb107
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb107
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb107
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb107
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb107
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb108
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb108
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb108
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb108
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb108
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb109
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb109
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb109
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb109
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb109
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb110
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb110
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb110
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb110
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb110
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb111
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb111
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb111
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb111
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb111
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb112
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb112
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb112
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb112
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb112
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb113
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb113
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb113
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb113
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb113
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb113
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb113
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb114
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb114
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb114
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb114
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb114
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb115
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb115
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb115
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb115
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb115
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb115
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb115
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb116
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb116
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb116
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb116
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb116
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb117
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb117
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb117
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb117
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb117
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb118
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb118
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb118
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb118
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb118
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb118
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb118
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb119
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb119
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb119
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb119
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb119
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb120
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb120
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb120
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb120
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb120
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb121
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb121
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb121
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb121
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb121
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb122
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb122
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb122
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb122
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb122
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb122
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb122

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
[123] H. Song, C. Xu, Q. Xu, Z. Song, N. Jing, X. Liang, L. Jiang, Invocation-
driven neural approximate computing with a multiclass-classifier and multiple
approximators, in: 37th International Conference on Computer-Aided Design,
ACM, 2018, pp. 1–8.

[124] B. Nongpoh, R. Ray, M. Das, A. Banerjee, Enhancing speculative execution with
selective approximate computing, ACM Trans. Des. Autom. Electron. Syst. 24
(2) (2019) 1–29.

[125] S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and connections for
efficient neural network, Adv. Neural Inf. Process. Syst. 28 (2015).

[126] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, M. Shafique, X-CGRA: An
energy-efficient approximate coarse-grained reconfigurable architecture, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 39 (10) (2019) 2558–2571.

[127] J. Dickerson, I. Galanis, Z.-G. Tasoulas, L. Kinley, I. Anagnostopoulos, Adaptive
approximate computing on hardware accelerators targeting Internet-of-Things,
in: 6th World Forum on Internet of Things, IEEE, 2020, pp. 1–6.

[128] G. Ascia, V. Catania, S. Monteleone, M. Palesi, D. Patti, J. Jose, V.M. Salerno,
Exploiting data resilience in wireless network-on-chip architectures, ACM J.
Emerg. Technol. Comput. Syst. 16 (2) (2020) 1–27.

[129] S. Xiao, X. Wang, M. Palesi, A.K. Singh, L. Wang, T. Mak, On performance
optimization and quality control for approximate-communication-enabled
networks-on-chip, IEEE Trans. Comput. 70 (11) (2020) 1817–1830.

[130] V. Fernando, A. Franques, S. Abadal, S. Misailovic, J. Torrellas, Replica: A
wireless manycore for communication-intensive and approximate data, in: 24th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ACM, 2019, pp. 849–863.

[131] M.R. Gkeka, A. Patras, C. Antonopoulos, S. Lalis, N. Bellas, FPGA architectures
for approximate dense SLAM computing, in: Design, Automation & Test in
Europe Conference & Exhibition, IEEE, 2021, pp. 828–833.

[132] S.C. Mukhopadhyay, S.K.S. Tyagi, N.K. Suryadevara, V. Piuri, F. Scotti,
S. Zeadally, Artificial intelligence-based sensors for next generation IoT
applications: A review, IEEE Sens. J. 21 (22) (2021) 24920–24932.

[133] A.R. Aslam, T. Iqbal, M. Aftab, W. Saadeh, M.A.B. Altaf, A 10.13𝜇𝐽/classification
2-channel deep neural network-based SoC for emotion detection of autistic
children, in: IEEE Custom Integrated Circuits Conference, IEEE, 2020, pp. 1–4.

[134] Google and/or its affiliates, Edge TPU, 2019, https://cloud.google.com/edge-
tpu.

[135] Xilinx and/or its affiliates, DPU for convolutional neural network, 2021, https:
//www.xilinx.com/products/intellectual-property/dpu.html.

[136] B. Liu, H. Qin, Y. Gong, W. Ge, M. Xia, L. Shi, EERA-ASR: An energy-efficient
reconfigurable architecture for automatic speech recognition with hybrid DNN
and approximate computing, IEEE Access 6 (2018) 52227–52237.

[137] L. Klemmer, S. Froehlich, R. Drechsler, D. Große, XbNN: Enabling CNNs on edge
devices by approximate on-chip dot product encoding, in: IEEE International
Symposium on Circuits and Systems, IEEE, 2021, pp. 1–5.

[138] Y. Gong, B. Liu, W. Ge, L. Shi, ARA: Cross-layer approximate computing
framework based reconfigurable architecture for CNNs, Microelectron. J. 87
(2019) 33–44.

[139] M. Imani, A. Rahimi, D. Kong, T. Rosing, J. Rabaey, Exploring hyperdimensional
associative memory, in: 23rd International Symposium on High Performance
Computer Architecture, IEEE, 2017, pp. 445–456.

[140] B. Khaleghi, S. Salamat, A. Thomas, F. Asgarinejad, Y. Kim, T. Rosing, SHEAR
er: Highly-efficient hyperdimensional computing by software-hardware enabled
multifold approximation, in: International Symposium on Low Power Electronics
and Design, ACM, 2020, pp. 241–246.

[141] Y. Zhou, J. Lin, Z. Wang, Energy efficient SVM classifier using approxi-
mate computing, in: 12th International Conference on ASIC, IEEE, 2017, pp.
1045–1048.

[142] H. Sun, X. Liu, Q. Deng, W. Jiang, S. Luo, Y. Ha, Efficient FPGA implementation
of K-nearest-neighbor search algorithm for 3D LIDAR localization and mapping
in smart vehicles, IEEE Trans. Circuits Syst. II 67 (9) (2020) 1644–1648.

[143] H. Almurib, T.N. Kumar, F. Lombardi, Approximate DCT image compression
using inexact computing, IEEE Trans. Comput. 67 (2) (2017) 149–159.

[144] G. Karakonstantis, N. Banerjee, K. Roy, Process-variation resilient and voltage-
scalable DCT architecture for robust low-power computing, IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 18 (10) (2009) 1461–1470.

[145] G. Karakonstantis, D. Mohapatra, K. Roy, Logic and memory design based on
unequal error protection for voltage-scalable, robust and adaptive DSP systems,
J. Signal Process. Syst. 68 (2012) 415–431.

[146] W. El-Harouni, S. Rehman, B.S. Prabakaran, A. Kumar, R. Hafiz, M. Shafique,
Embracing approximate computing for energy-efficient motion estimation in
high efficiency video coding, in: Design, Automation & Test in Europe
Conference & Exhibition, IEEE, 2017, pp. 1384–1389.

[147] C. Sau, F. Palumbo, M. Pelcat, J. Heulot, E. Nogues, D. Menard, P. Meloni,
L. Raffo, Challenging the best HEVC fractional pixel FPGA interpolators with
reconfigurable and multifrequency approximate computing, IEEE Embedded
Syst. Lett. 9 (3) (2017) 65–68.

[148] L.B. Soares, J. Oliveira, E.A.C. da Costa, S. Bampi, An energy-efficient and
approximate accelerator design for real-time canny edge detection, Circuits
Systems Signal Process. 39 (2020) 6098–6120.
23
[149] M. Martina, G. Masera, M.R. Roch, G. Piccinini, Result-biased distributed-
arithmetic-based filter architectures for approximately computing the DWT,
IEEE Trans. Circuits Syst. I. Regul. Pap. 62 (8) (2015) 2103–2113.

[150] E.S. Manolakos, I. Stamoulias, IP-cores design for the kNN classifier, in: IEEE
International Symposium on Circuits and Systems, IEEE, 2010, pp. 4133–4136.

[151] H.M. Hussain, K. Benkrid, H. Seker, An adaptive implementation of a dynam-
ically reconfigurable K-Nearest neighbour classifier on FPGA, in: NASA/ESA
Conference on Adaptive Hardware and Systems, IEEE, 2012, pp. 205–212.

[152] D. Tong, Y.R. Qu, V.K. Prasanna, Accelerating decision tree based traffic
classification on FPGA and multicore platforms, IEEE Trans. Parallel Distrib.
Syst. 28 (11) (2017) 3046–3059.

[153] A. Alcolea, J. Resano, FPGA accelerator for gradient boosting decision trees,
Electronics 10 (3) (2021) 314.

[154] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, A.
Monrroy, T. Ando, Y. Fujii, T. Azumi, Autoware on board: Enabling autonomous
vehicles with embedded systems, in: ACM/IEEE 9th International Conference on
Cyber-Physical Systems, IEEE, 2018, pp. 287–296.

[155] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, A. Peste, Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural
networks, J. Mach. Learn. Res. 22 (1) (2021) 10882–11005.

[156] Z. Lin, M. Courbariaux, R. Memisevic, Y. Bengio, Neural networks with few
multiplications, 2015, p. 9, arXiv preprint arXiv:1510.03009.

[157] G. Venkatesh, E. Nurvitadhi, D. Marr, Accelerating deep convolutional networks
using low-precision and sparsity, in: IEEE International Conference on Acoustics,
Speech and Signal Processing, IEEE, 2017, pp. 2861–2865.

[158] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, XNOR-Net: ImageNet classi-
fication using binary convolutional neural networks, in: European Conference
on Computer Vision, Springer, 2016, pp. 525–542.

[159] V. Vanhoucke, A. Senior, M.Z. Mao, Improving the speed of neural networks on
CPUs, in: Deep Learning and Unsupervised Feature Learning Workshop, 2011.

[160] J. Choi, Z. Wang, S. Venkataramani, P.I.-J. Chuang, V. Srinivasan, K. Gopalakr-
ishnan, PACT: Parameterized clipping activation for quantized neural networks,
2018, p. 15, arXiv preprint arXiv:1805.06085.

[161] A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jegou, A. Joulin,
Training with quantization noise for extreme model compression, 2020, p. 20,
arXiv preprint arXiv:2004.07320.

[162] Y. Yuan, C. Chen, X. Hu, S. Peng, Towards low-bit quantization of deep
neural networks with limited data, in: 25th International Conference on Pattern
Recognition, IEEE, 2021, pp. 4377–4384.

[163] Y. Yuan, C. Chen, X. Hu, S. Peng, EvoQ: Mixed precision quantization of DNNs
via sensitivity guided evolutionary search, in: International Joint Conference on
Neural Networks, IEEE, 2020, pp. 1–8.

[164] H.-T. Kung, B. McDanel, S.Q. Zhang, Term quantization: Furthering quantization
at run time, in: International Conference for High Performance Computing,
Networking, Storage and Analysis, IEEE, 2020, pp. 1–16.

[165] D.D. Lin, S.S. Talathi, V.S. Annapureddy, Fixed point quantization of deep
convolutional networks, 2015, p. 10, arXiv preprint arXiv:1511.06393.

[166] R. Li, Y. Wang, F. Liang, H. Qin, J. Yan, R. Fan, Fully quantized network
for object detection, in: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, 2019, pp. 2810–2819.

[167] Q. Huang, D. Wang, Z. Dong, Y. Gao, Y. Cai, T. Li, B. Wu, K. Keutzer,
J. Wawrzynek, Codenet: Efficient deployment of input-adaptive object de-
tection on embedded FPGAs, in: ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ACM, 2021, pp. 206–216.

[168] Q. Jin, L. Yang, Z. Liao, Adabits: Neural network quantization with adaptive bit-
widths, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 2146–2156.

[169] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S.J. Hwang, C. Choi, Learning
to quantize deep networks by optimizing quantization intervals with task loss,
in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE,
2019, pp. 4350–4359.

[170] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, X.-s. Hua,
Quantization networks, in: IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE, 2019, pp. 7308–7316.

[171] X. Zhu, W. Zhou, H. Li, Adaptive layerwise quantization for deep neural
network compression, in: IEEE International Conference on Multimedia and
Expo, IEEE, 2018, pp. 1–6.

[172] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning filters for efficient
convnets, 2016, p. 13, arXiv preprint arXiv:1608.08710.

[173] J.-H. Luo, J. Wu, W. Lin, ThiNet: A filter level pruning method for deep neural
network compression, in: IEEE International Conference on Computer Vision,
IEEE, 2017, pp. 5068–5076.

[174] X. Xiao, Z. Wang, S. Rajasekaran, AutoPrune: Automatic network pruning by
regularizing auxiliary parameters, Adv. Neural Inf. Process. Syst. 32 (2019).

[175] S. Ahn, S.X. Hu, A. Damianou, N.D. Lawrence, Z. Dai, Variational information
distillation for knowledge transfer, in: IEEE/CVF Conference on Computer
Vision and Pattern Recognition, IEEE, 2019, pp. 9163–9171.

[176] L. Liu, Q. Huang, S. Lin, H. Xie, B. Wang, X. Chang, X. Liang, Exploring inter-
channel correlation for diversity-preserved knowledge distillation, in: IEEE/CVF
Conference on Computer Vision and Pattern Recognition, IEEE, 2021, pp.
8271–8280.

http://refhub.elsevier.com/S1383-7621(24)00051-1/sb123
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb123
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb123
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb123
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb123
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb123
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb123
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb124
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb124
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb124
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb124
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb124
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb125
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb125
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb125
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb126
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb126
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb126
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb126
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb126
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb127
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb127
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb127
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb127
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb127
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb128
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb128
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb128
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb128
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb128
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb129
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb129
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb129
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb129
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb129
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb130
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb130
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb130
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb130
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb130
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb130
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb130
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb131
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb131
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb131
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb131
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb131
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb132
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb132
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb132
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb132
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb132
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb133
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb133
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb133
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb133
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb133
https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu
https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb136
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb136
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb136
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb136
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb136
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb137
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb137
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb137
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb137
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb137
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb138
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb138
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb138
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb138
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb138
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb139
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb139
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb139
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb139
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb139
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb140
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb140
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb140
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb140
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb140
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb140
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb140
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb141
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb141
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb141
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb141
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb141
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb142
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb142
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb142
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb142
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb142
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb143
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb143
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb143
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb144
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb144
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb144
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb144
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb144
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb145
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb145
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb145
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb145
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb145
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb146
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb146
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb146
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb146
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb146
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb146
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb146
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb147
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb147
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb147
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb147
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb147
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb147
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb147
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb148
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb148
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb148
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb148
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb148
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb149
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb149
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb149
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb149
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb149
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb150
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb150
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb150
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb151
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb151
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb151
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb151
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb151
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb152
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb152
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb152
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb152
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb152
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb153
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb153
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb153
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb154
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb154
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb154
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb154
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb154
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb154
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb154
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb155
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb155
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb155
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb155
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb155
http://arxiv.org/abs/1510.03009
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb157
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb157
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb157
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb157
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb157
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb158
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb158
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb158
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb158
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb158
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb159
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb159
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb159
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/2004.07320
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb162
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb162
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb162
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb162
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb162
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb163
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb163
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb163
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb163
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb163
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb164
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb164
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb164
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb164
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb164
http://arxiv.org/abs/1511.06393
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb166
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb166
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb166
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb166
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb166
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb167
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb167
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb167
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb167
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb167
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb167
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb167
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb168
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb168
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb168
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb168
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb168
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb169
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb169
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb169
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb169
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb169
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb169
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb169
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb170
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb170
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb170
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb170
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb170
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb171
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb171
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb171
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb171
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb171
http://arxiv.org/abs/1608.08710
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb173
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb173
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb173
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb173
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb173
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb174
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb174
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb174
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb175
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb175
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb175
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb175
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb175
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb176
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb176
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb176
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb176
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb176
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb176
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb176

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
[177] F. Sarfraz, E. Arani, B. Zonooz, Knowledge distillation beyond model compres-
sion, in: 25th International Conference on Pattern Recognition, IEEE, 2021, pp.
6136–6143.

[178] S. Swaminathan, D. Garg, R. Kannan, F. Andres, Sparse low rank factorization
for deep neural network compression, Neurocomputing 398 (2020) 185–196.

[179] J. Guo, Y. Li, W. Lin, Y. Chen, J. Li, Network decoupling: From regular
to depthwise separable convolutions, 2018, p. 12, arXiv preprint arXiv:1808.
05517.

[180] P. Indyk, A. Vakilian, Y. Yuan, Learning-based low-rank approximations, Adv.
Neural Inf. Process. Syst. 32 (2019).

[181] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of deep
convolutional neural networks for fast and low power mobile applications,
2015, p. 16, arXiv preprint arXiv:1511.06530.

[182] K. Mitsuno, J. Miyao, T. Kurita, Hierarchical group sparse regularization for
deep convolutional neural networks, in: International Joint Conference on
Neural Networks, IEEE, 2020, pp. 1–8.

[183] P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, J. Xin, Understanding straight-
through estimator in training activation quantized neural nets, 2019, p. 30,
arXiv preprint arXiv:1903.05662.

[184] J. Lin, Y. Rao, J. Lu, J. Zhou, Runtime neural pruning, Adv. Neural Inf. Process.
Syst. 30 (2017).

[185] J. Czarnowski, T. Laidlow, R. Clark, A.J. Davison, Deepfactors: Real-time
probabilistic dense monocular SLAM, IEEE Robot. Autom. Lett. 5 (2) (2020)
721–728.

[186] SAE International and/or its affiliates, Taxonomy and Definitions for Terms
Related to Driving Automation Systems for On-Road Motor Vehicles, Tech. Rep.
J3016, SAE International, 2021, URL https://www.sae.org/standards/content/
j3016/.

[187] P. Coppola, F. Silvestri, Autonomous vehicles and future mobility solutions, in:
Autonomous Vehicles and Future Mobility, Elsevier, 2019, pp. 1–15.

[188] Bosch Mobility Solutions, Sense, think, act: What automated vehicles need to
be capable of, 2023, https://www.bosch-mobility-solutions.com/en/mobility-
topics/automated-driving-sense-think-act/.

[189] Siemens Digital Industries Software and/or its affiliates, The Sense-Think-
Act Model, Tech. Rep. 81278-C4, Siemens Digital Industries Software, 2020,
URL https://www.plm.automation.siemens.com/media/global/de/Siemens-SW-
The%20sense-think-act-model-White%20Paper_tcm53-81439.pdf.

[190] B. Krzanich, Data is the New Oil in the Future of Automated Driving, Tech. Rep.,
Intel Corporation, 2016, URL https://download.intel.com/newsroom/2021/
archive/2016-11-15-editorials-krzanich-the-future-of-automated-driving.pdf.

[191] M. Krail, On autopilot to a more efficient future? How data processing
by connected and autonomous vehicles will impact energy consumption,
Tech. Rep. 53-2021-EN, Agora Verkehrswende, 2021, URL https://www.agora-
verkehrswende.de/en/publications/on-autopilot-to-a-more-efficient-future/.

[192] X. Long, J. Wu, L. Chen, Energy-efficient offloading in mobile edge computing
with edge-cloud collaboration, in: International Conference on Algorithms and
Architectures for Parallel Processing, Springer, 2018, pp. 460–475.

[193] J. Shao, H. Zhang, Y. Mao, J. Zhang, Branchy-GNN: A device-edge co-
inference framework for efficient point cloud processing, in: IEEE International
Conference on Acoustics, Speech and Signal Processing, IEEE, 2021, pp.
8488–8492.

[194] J. Santa, P.J. Fernández, J. Ortiz, R. Sanchez-Iborra, A.F. Skarmeta, SURRO-
GATES: Virtual OBUs to foster 5G vehicular services, Electronics 8 (2) (2019)
117.

[195] J. Santa, J. Ortiz, P.J. Fernandez, M. Luis, C. Gomes, J. Oliveira, D. Gomes,
R. Sanchez-Iborra, S. Sargento, A.F. Skarmeta, MIGRATE: Mobile device
virtualisation through state transfer, IEEE Access 8 (2020) 25848–25862.

[196] J. Feng, Z. Liu, C. Wu, Y. Ji, AVE: Autonomous vehicular edge computing
framework with ACO-based scheduling, IEEE Trans. Veh. Technol. 66 (12)
(2017) 10660–10675.

[197] J. Tang, S. Liu, B. Yu, W. Shi, PI-edge: A low-power edge computing system
for real-time autonomous driving services, 2018, p. 13, arXiv preprint arXiv:
1901.04978.

[198] J. Tang, S. Liu, L. Liu, B. Yu, W. Shi, LoPECS: A low-power edge computing
system for real-time autonomous driving services, IEEE Access 8 (2020)
30467–30479.

[199] H. Ibn-Khedher, M. Laroui, M.B. Mabrouk, H. Moungla, H. Afifi, A.N. Oleari,
A.E. Kamal, Edge computing assisted autonomous driving using artificial
intelligence, in: International Wireless Communications and Mobile Computing,
IEEE, 2021, pp. 254–259.

[200] D. Katare, M. El-Sharkawy, Embedded system enabled vehicle collision detec-
tion: An ANN classifier, in: IEEE 9th Annual Computing and Communication
Workshop and Conference, IEEE, 2019, pp. 284–289.

[201] M. Lechner, R. Hasani, A. Amini, T.A. Henzinger, D. Rus, R. Grosu, Neural
circuit policies enabling auditable autonomy, Nat. Mach. Intell. 2 (10) (2020)
642–652.

[202] T. Li, A.K. Sahu, A. Talwalkar, V. Smith, Federated learning: Challenges,
methods, and future directions, IEEE Signal Process. Mag. 37 (3) (2020) 50–60.

[203] E. Talpes, D.D. Sarma, G. Venkataramanan, P. Bannon, B. McGee, B. Floering,
A. Jalote, C. Hsiong, S. Arora, A. Gorti, et al., Compute solution for Tesla’s full
self-driving computer, IEEE Micro 40 (2) (2020) 25–35.
24
[204] M. Koschuch, W. Sebron, Z. Szalay, Á. Török, H. Tschiürtz, I. Wahl, Safety &
security in the context of autonomous driving, in: IEEE International Conference
on Connected Vehicles and Expo, IEEE, 2019, pp. 1–7.

[205] A. Ramamoorthy, Automotive Megatrends and Their Impact on Memory
and Storage, Tech. Rep., Micron Technology, 2023, URL https://media-
www.micron.com/-/media/client/global/documents/solutions/automotive/
automotive_megatrends_white_paper.pdf.

[206] J. Gehrke, S. Madden, Query processing in sensor networks, IEEE Pervasive
Comput. 3 (1) (2004) 46–55.

[207] F. Pereira, R. Correia, P. Pinho, S.I. Lopes, N.B. Carvalho, Challenges in
resource-constrained IoT devices: Energy and communication as critical success
factors for future IoT deployment, Sensors 20 (22) (2020) 6420.

[208] Z. Taufique, B. Zhu, G. Coppola, M. Shoaran, M.A.B. Altaf, A low power multi-
class migraine detection processor based on somatosensory evoked potentials,
IEEE Trans. Circuits Syst. II 68 (5) (2021) 1720–1724.

[209] J. Yoo, L. Yan, D. El-Damak, M.B. Altaf, A. Shoeb, H.-J. Yoo, A. Chandrakasan,
An 8-channel scalable EEG acquisition SoC with fully integrated patient-specific
seizure classification and recording processor, in: IEEE International Solid-State
Circuits Conference, IEEE, 2012, pp. 292–294.

[210] X. Liu, O. Baiocchi, A comparison of the definitions for smart sensors, smart
objects and things in IoT, in: IEEE 7th Annual Information Technology,
Electronics and Mobile Communication Conference, IEEE, 2016, pp. 1–4.

[211] D.J. Pagliari, M. Poncino, On the impact of smart sensor approximations on
the accuracy of machine learning tasks, Heliyon 6 (12) (2020) e05750.

[212] Z. Taufique, A. Kanduri, M.A.B. Altaf, P. Liljeberg, Approximate feature extrac-
tion for low power epileptic seizure prediction in wearable devices, in: IEEE
Nordic Circuits and Systems Conference, IEEE, 2021, pp. 1–7.

[213] K. Bregar, T. Krištofelc, M. Depolli, V. Avbelj, A. Rashkovska, Power autonomy
estimation of low-power sensor for long-term ECG monitoring, Sensors 22 (14)
(2022) 5070.

[214] H. Zong, P. Brimblecombe, L. Sun, P. Wei, K.-F. Ho, Q. Zhang, J. Cai, H. Kan,
M. Chu, W. Che, et al., Reducing the influence of environmental factors on
performance of a diffusion-based personal exposure kit, Sensors 21 (14) (2021)
4637.

[215] H. Markandeya, G. Karakonstantis, S. Raghunathan, P. Irazoqui, K. Roy, Low-
power DWT-based quasi-averaging algorithm and architecture for epileptic
seizure detection, in: 16th ACM/IEEE International Symposium on Low Power
Electronics and Design, ACM, 2010, pp. 301–306.

[216] A. Subasi, M.I. Gursoy, EEG signal classification using PCA, ICA, LDA and
support vector machines, Expert Syst. Appl. 37 (12) (2010) 8659–8666.

[217] G. Karakonstantis, A. Sankaranarayanan, M.M. Sabry, D. Atienza, A. Burg, A
quality-scalable and energy-efficient approach for spectral analysis of heart rate
variability, in: Design, Automation & Test in Europe Conference & Exhibition,
IEEE, 2014, pp. 1–6.

[218] G. Zhu, Y. Li, P.P. Wen, Epileptic seizure detection in EEGs signals using a fast
weighted horizontal visibility algorithm, Comput. Methods Programs Biomed.
115 (2) (2014) 64–75.

[219] O. Faust, U.R. Acharya, H. Adeli, A. Adeli, Wavelet-based EEG processing for
computer-aided seizure detection and epilepsy diagnosis, Seizure 26 (2015)
56–64.

[220] A. Ghosh, A. Raha, A. Mukherjee, Energy-efficient IoT-health monitoring system
using approximate computing, Internet Things 9 (2020) 100166.

[221] C. Eleftheriadis, G. Karakonstantis, Fast and accurate power spectral analysis of
heart rate variability using fast Gaussian gridding, Comput. Cardiol. 48 (2021)
1–4.

[222] B. Liu, X. Ding, H. Cai, W. Zhu, Z. Wang, W. Liu, J. Yang, Precision adaptive
MFCC based on R2SDF-FFT and approximate computing for low-power speech
keywords recognition, IEEE Circuits Syst. Mag. 21 (4) (2021) 24–39.

[223] A. Muneeb, M. Ali, M.A.B. Altaf, A 2.7 𝜇J/classification machine-learning
based approximate computing seizure detection SoC, in: IEEE International
Symposium on Circuits and Systems, IEEE, 2022, pp. 55–59.

[224] W.B. Qaim, A. Ometov, C. Campolo, A. Molinaro, E.S. Lohan, J. Nurmi,
Understanding the performance of task offloading for wearables in a two-
tier edge architecture, in: 13th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops, IEEE, 2021, pp. 1–9.

[225] A. George, A. Ravindran, Scalable approximate computing techniques for
latency and bandwidth constrained IoT edge, in: International Summit Smart
City 360 ◦, Springer, 2020, pp. 274–292.

[226] Z. Wen, P. Bhatotia, R. Chen, M. Lee, et al., ApproxIoT: Approximate analytics
for edge computing, in: IEEE 38th International Conference on Distributed
Computing Systems, IEEE, 2018, pp. 411–421.

[227] A.R. Zamani, I. Petri, J. Diaz-Montes, O. Rana, M. Parashar, Edge-supported
approximate analysis for long running computations, in: IEEE 5th International
Conference on Future Internet of Things and Cloud, IEEE, 2017, pp. 321–328.

[228] M.A. Scrugli, D. Loi, L. Raffo, P. Meloni, A runtime-adaptive cognitive IoT node
for healthcare monitoring, in: 16th ACM International Conference on Computing
Frontiers, ACM, 2019, pp. 350–357.

[229] M.A. Sohail, Z. Taufique, S.M. Abubakar, W. Saadeh, M.A.B. Altaf, An ECG
processor for the detection of eight cardiac arrhythmias with minimum false
alarms, in: IEEE Biomedical Circuits and Systems Conference, BioCAS, IEEE,
2019, pp. 1–4.

http://refhub.elsevier.com/S1383-7621(24)00051-1/sb177
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb177
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb177
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb177
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb177
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb178
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb178
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb178
http://arxiv.org/abs/1808.05517
http://arxiv.org/abs/1808.05517
http://arxiv.org/abs/1808.05517
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb180
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb180
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb180
http://arxiv.org/abs/1511.06530
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb182
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb182
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb182
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb182
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb182
http://arxiv.org/abs/1903.05662
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb184
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb184
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb184
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb185
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb185
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb185
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb185
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb185
https://www.sae.org/standards/content/j3016/
https://www.sae.org/standards/content/j3016/
https://www.sae.org/standards/content/j3016/
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb187
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb187
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb187
https://www.bosch-mobility-solutions.com/en/mobility-topics/automated-driving-sense-think-act/
https://www.bosch-mobility-solutions.com/en/mobility-topics/automated-driving-sense-think-act/
https://www.bosch-mobility-solutions.com/en/mobility-topics/automated-driving-sense-think-act/
https://www.plm.automation.siemens.com/media/global/de/Siemens-SW-The%20sense-think-act-model-White%20Paper_tcm53-81439.pdf
https://www.plm.automation.siemens.com/media/global/de/Siemens-SW-The%20sense-think-act-model-White%20Paper_tcm53-81439.pdf
https://www.plm.automation.siemens.com/media/global/de/Siemens-SW-The%20sense-think-act-model-White%20Paper_tcm53-81439.pdf
https://download.intel.com/newsroom/2021/archive/2016-11-15-editorials-krzanich-the-future-of-automated-driving.pdf
https://download.intel.com/newsroom/2021/archive/2016-11-15-editorials-krzanich-the-future-of-automated-driving.pdf
https://download.intel.com/newsroom/2021/archive/2016-11-15-editorials-krzanich-the-future-of-automated-driving.pdf
https://www.agora-verkehrswende.de/en/publications/on-autopilot-to-a-more-efficient-future/
https://www.agora-verkehrswende.de/en/publications/on-autopilot-to-a-more-efficient-future/
https://www.agora-verkehrswende.de/en/publications/on-autopilot-to-a-more-efficient-future/
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb192
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb192
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb192
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb192
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb192
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb193
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb193
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb193
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb193
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb193
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb193
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb193
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb194
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb194
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb194
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb194
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb194
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb195
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb195
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb195
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb195
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb195
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb196
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb196
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb196
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb196
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb196
http://arxiv.org/abs/1901.04978
http://arxiv.org/abs/1901.04978
http://arxiv.org/abs/1901.04978
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb198
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb198
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb198
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb198
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb198
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb199
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb199
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb199
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb199
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb199
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb199
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb199
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb200
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb200
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb200
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb200
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb200
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb201
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb201
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb201
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb201
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb201
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb202
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb202
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb202
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb203
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb203
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb203
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb203
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb203
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb204
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb204
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb204
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb204
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb204
https://media-www.micron.com/-/media/client/global/documents/solutions/automotive/automotive_megatrends_white_paper.pdf
https://media-www.micron.com/-/media/client/global/documents/solutions/automotive/automotive_megatrends_white_paper.pdf
https://media-www.micron.com/-/media/client/global/documents/solutions/automotive/automotive_megatrends_white_paper.pdf
https://media-www.micron.com/-/media/client/global/documents/solutions/automotive/automotive_megatrends_white_paper.pdf
https://media-www.micron.com/-/media/client/global/documents/solutions/automotive/automotive_megatrends_white_paper.pdf
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb206
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb206
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb206
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb207
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb207
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb207
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb207
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb207
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb208
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb208
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb208
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb208
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb208
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb209
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb209
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb209
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb209
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb209
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb209
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb209
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb210
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb210
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb210
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb210
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb210
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb211
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb211
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb211
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb212
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb212
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb212
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb212
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb212
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb213
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb213
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb213
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb213
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb213
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb214
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb214
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb214
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb214
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb214
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb214
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb214
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb215
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb215
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb215
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb215
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb215
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb215
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb215
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb216
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb216
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb216
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb217
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb217
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb217
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb217
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb217
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb217
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb217
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb218
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb218
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb218
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb218
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb218
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb219
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb219
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb219
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb219
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb219
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb220
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb220
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb220
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb221
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb221
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb221
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb221
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb221
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb222
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb222
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb222
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb222
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb222
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb223
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb223
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb223
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb223
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb223
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb224
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb224
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb224
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb224
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb224
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb224
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb224
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb225
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb225
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb225
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb225
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb225
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb226
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb226
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb226
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb226
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb226
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb227
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb227
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb227
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb227
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb227
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb228
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb228
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb228
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb228
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb228
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb229
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb229
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb229
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb229
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb229
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb229
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb229

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
[230] X. Yu, P. Chum, K.-B. Sim, Analysis the effect of PCA for feature reduction in
non-stationary EEG based motor imagery of BCI system, Optik 125 (3) (2014)
1498–1502.

[231] A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, John
Wiley & Sons, Inc., 2001.

[232] H. Rajaguru, S.K. Prabhakar, Power spectral density and KNN based adaboost
classifier for epilepsy classification from EEG, in: International Conference
of Electronics, Communication and Aerospace Technology, IEEE, 2017, pp.
441–444.

[233] E. Svertoka, S. Saafi, A. Rusu-Casandra, R. Burget, I. Marghescu, J. Hosek, A.
Ometov, Wearables for industrial work safety: A survey, Sensors 21 (11) (2021)
3844.

[234] J. Lee, B. Varghese, R. Woods, H. Vandierendonck, TOD: Transprecise object
detection to maximise real-time accuracy on the edge, in: IEEE 5th International
Conference on Fog and Edge Computing, IEEE, 2021, pp. 53–60.

[235] B. Maity, B. Donyanavard, A. Surhonne, A. Rahmani, A. Herkersdorf, N. Dutt,
SEAMS: Self-optimizing runtime manager for approximate memory hierarchies,
ACM Trans. Embed. Comput. Syst. 20 (5) (2021) 1–26.

[236] X. Meng, H. Wang, B. Liu, A robust vehicle localization approach based on
GNSS/IMU/DMI/LiDAR sensor fusion for autonomous vehicles, Sensors 17 (9)
(2017) 2140.

[237] S. Narayana, R.V. Prasad, V. Rao, L. Mottola, T.V. Prabhakar, Hummingbird:
Energy efficient GPS receiver for small satellites, in: 26th Annual International
Conference on Mobile Computing and Networking, ACM, 2020, pp. 1–13.

[238] E.D. Kaplan, C.J. Hegarty, Understanding GPS, Principles and Applications, third
ed, Artech House, 2017.

[239] J. Leclère, R. Landry Jr., C. Botteron, Comparison of L1 and L5 bands GNSS
signals acquisition, Sensors 18 (9) (2018) 2779.

[240] J. Torres-Sospedra, I. Silva, L. Klus, D. Quezada-Gaibor, A. Crivello, P. Barsoc-
chi, C. Pendão, E.S. Lohan, J. Nurmi, A. Moreira, Towards ubiquitous indoor
positioning: Comparing systems across heterogeneous datasets, in: International
Conference on Indoor Positioning and Indoor Navigation, IEEE, 2021, pp. 1–8.

[241] Y. Lu, M. Gerasimenko, R. Kovalchukov, M. Stusek, J. Urama, J. Hosek, M.
Valkama, E.S. Lohan, Feasibility of location-aware handover for autonomous
vehicles in industrial multi-radio environments, Sensors 20 (21) (2020) 6290.

[242] B. Yang, Projection approximation subspace tracking, IEEE Trans. Signal
Process. 43 (1) (1995) 95–107.

[243] F. Van Diggelen, A-GPS: Assisted GPS, GNSS, and SBAS, Artech House, 2009.
[244] Z. Chen, G. Gokeda, Y. Yu, Introduction to Direction-of-Arrival Estimation,

Artech House, 2010.
[245] J. Liu, B. Priyantha, T. Hart, H.S. Ramos, A.A. Loureiro, Q. Wang, Energy

efficient GPS sensing with cloud offloading, in: 10th ACM Conference on
Embedded Network Sensor Systems, ACM, 2012, pp. 85–98.

[246] P. Misra, W. Hu, Y. Jin, J. Liu, A.S. de Paula, N. Wirström, T. Voigt, Energy
efficient GPS acquisition with sparse-GPS, in: 13th International Symposium on
Information Processing in Sensor Networks, ACM, 2014, pp. 155–166.

[247] V. Bellad, Intermittent GNSS Signal Tracking for Improved Receiver Power
Performance (Ph.D. thesis), University of Calgary, 2015, URL https://prism.
ucalgary.ca/handle/11023/2667.

[248] Y. Zhang, M. Wang, Y. Li, Low computational signal acquisition for GNSS
receivers using a resampling strategy and variable circular correlation time,
Sensors 18 (2) (2018) 678.

[249] European GNSS Agency and/or its affiliates, Power-Efficient Positioning for
the Internet of Things, Tech. Rep. TS-02-20-382-EN-N, European GNSS
Agency, 2020, URL https://www.euspa.europa.eu/newsroom/news/power-
efficient-positioning-iot.

[250] J. Svatoň, F. Vejražka, P. Kubalík, J. Schmidt, J. Boreckỳ, Novel partial corre-
lation method algorithm for acquisition of GNSS tiered signals, NAVIGATION:
J. Inst. Navig. 67 (4) (2020) 745–762.

[251] Q. Jie, X. Wang, Y. Chen, F. Shu, X. Zhan, P. Zhang, A rapid power-iterative
root-MUSIC estimator for massive/ultra-massive MIMO receiver, 2022, p. 6,
arXiv preprint arXiv:2205.03269.

[252] T. Troccoli, J. Pirskanen, A. Ometov, J. Nurmi, V. Kaseva, Implementation of
embedded multiple signal classification algorithm for mesh IoT networks, in:
International Conference on Localization and GNSS, IEEE, 2022, pp. 1–7.

[253] G. Pau, F. Arena, Y.E. Gebremariam, I. You, Bluetooth 5.1: An analysis of
direction finding capability for high-precision location services, Sensors 21 (11)
(2021) 3589.

[254] R. Bembenik, K. Falcman, BLE indoor positioning system using RSSI-based
trilateration, J. Wirel. Mob. Netw. Ubiquitous Comput. Depend. Appl. 11 (3)
(2020) 50–69.

[255] T. Troccoli, J. Pirskanen, J. Nurmi, A. Ometov, J. Morte, E.S. Lohan, V. Kaseva,
Direction of arrival method for L-shaped array with RF switch: An embedded
implementation perspective, Sensors 23 (6) (2023) 3356.

[256] B. Heidtmann, Low-Power GNSS for Tracking Applications, Tech. Rep.,
Ublox, 2021, URL https://www.u-blox.com/en/publication/white-paper/low-
power-gps-tracking-applications.

[257] T. Feng, Decimation double-phase estimator: An efficient and unambiguous
high-order binary offset carrier tracking algorithm, IEEE Signal Process. Lett.
23 (7) (2016) 905–909.
25
[258] H.S. Ramos, T. Zhang, J. Liu, N.B. Priyantha, A. Kansal, LEAP: A low energy
assisted GPS for trajectory-based services, in: 13th International Conference on
Ubiquitous Computing, ACM, 2011, pp. 335–344.

[259] J.A. Fessler, A.O. Hero, Space-alternating generalized expectation-maximization
algorithm, IEEE Trans. Signal Process. 42 (10) (1994) 2664–2677.

[260] S.A. Vorobyov, Principles of minimum variance robust adaptive beamforming
design, Signal Process. 93 (12) (2013) 3264–3277.

[261] R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational
invariance techniques, IEEE Trans. Acoust. Speech Signal Process. 37 (7) (1989)
984–995.

[262] R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE
Trans. Antennas and Propagation 34 (3) (1986) 276–280.

[263] O.A. Oumar, M.F. Siyau, T.P. Sattar, Comparison between MUSIC and ESPRIT
direction of arrival estimation algorithms for wireless communication systems,
in: The First International Conference on Future Generation Communication
Technologies, IEEE, 2012, pp. 99–103.

[264] R.M. Gray, L.D. Davisson, An Introduction to Statistical Signal Processing,
Cambridge University Press, 2004.

[265] A. Barabell, Improving the resolution performance of eigenstructure-based
direction-finding algorithms, in: IEEE International Conference on Acoustics,
Speech, and Signal Processing, IEEE, 1983, pp. 336–339.

[266] I. Scarabottolo, G. Ansaloni, G.A. Constantinides, L. Pozzi, S. Reda, Approximate
logic synthesis: A survey, Proc. IEEE 108 (12) (2020) 2195–2213.

[267] C. Fernandez-Prades, J. Arribas, P. Closas, C. Aviles, L. Esteve, GNSS-SDR:
An open source tool for researchers and developers, in: 24th International
Technical Meeting of the Satellite Division of the Institute of Navigation, 2011,
pp. 780–794.

[268] Z. Bhuiyan, et al., The FGI-gsrx software defined GNSS receiver goes
open source, 2022, https://www.maanmittauslaitos.fi/en/topical_issues/fgi-
gsrx-software-defined-gnss-receiver-goes-open-source.

[269] K. Chen, J. Han, F. Lombardi, Two approximate voting schemes for reliable
computing, IEEE Trans. Comput. 66 (7) (2017) 1227–1239.

[270] J.H. Anajemba, J.A. Ansere, F. Sam, C. Iwendi, G. Srivastava, Optimal soft error
mitigation in wireless communication using approximate logic circuits, Sustain.
Comput.: Inform. Syst. 30 (2021) 100521.

Hans Jakob Damsgaard received the B.Sc. degree in elec-
trical engineering in 2019 and the M.Sc. degree in computer
science and engineering in 2021 as part of the Honours
programme at the Technical University of Denmark, DTU.
He is currently pursuing a Ph.D. in reconfigurable approx-
imate accelerators for secure edge computing at Tampere
University, TAU. He received the best paper award at
NorCAS’21. His current research interests include hardware
accelerators, networks-on-chip, computer architecture, and
hardware verification.

Antoine Grenier received his M.E. in geodesy and geomat-
ics from the Ecole Supèrieure des Géométres et Topographes
(France) in 2019. He then worked at the European Space
Agency (Netherlands) in the Galileo System Engineering sec-
tion from 2019 to 2021 as a Young Graduate Trainee. He is
currently pursuing a Ph.D. in approximation techniques for
low-cost GNSS receivers at Tampere University (TAU). His
current research interests include low-cost GNSS receivers,
GNSS processing algorithms, Software-Defined Radios and
GNSS measurements on Android devices.

Dewant Katare received his B.Sc. degree in electrical and
electronic engineering in 2016 at The Netherlands, and M.S.
degree in electrical and computer engineering in 2019 from
Purdue University, USA. He is currently a Ph.D. candidate,
researching on the topics of energy efficient approximate
Edge-AI for automated driving services at the department
of engineering systems and services, Delft University of
Technology, The Netherlands. His current research interests
include autonomous driving, distributed ML, Edge-AI and
model approximations.

Zain Taufique received his B.Sc. degree in electrical
engineering in 2015 at University of Engineering and
Technology, Lahore UET. He received his M.Sc. degree
in Electronics and Embedded Systems in 2020 from La-
hore University of Management and Sciences, LUMS. He is
currently pursuing a Ph.D. in approximate computing for
resource constraint devices at University of Turku, UTU.
His current research interests include multi-core computer
architectures, low power logic designs and edge computing.

http://refhub.elsevier.com/S1383-7621(24)00051-1/sb230
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb230
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb230
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb230
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb230
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb231
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb231
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb231
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb232
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb232
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb232
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb232
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb232
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb232
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb232
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb233
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb233
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb233
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb233
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb233
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb234
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb234
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb234
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb234
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb234
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb235
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb235
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb235
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb235
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb235
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb236
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb236
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb236
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb236
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb236
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb237
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb237
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb237
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb237
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb237
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb238
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb238
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb238
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb239
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb239
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb239
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb240
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb240
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb240
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb240
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb240
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb240
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb240
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb241
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb241
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb241
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb241
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb241
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb242
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb242
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb242
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb243
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb244
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb244
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb244
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb245
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb245
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb245
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb245
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb245
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb246
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb246
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb246
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb246
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb246
https://prism.ucalgary.ca/handle/11023/2667
https://prism.ucalgary.ca/handle/11023/2667
https://prism.ucalgary.ca/handle/11023/2667
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb248
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb248
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb248
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb248
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb248
https://www.euspa.europa.eu/newsroom/news/power-efficient-positioning-iot
https://www.euspa.europa.eu/newsroom/news/power-efficient-positioning-iot
https://www.euspa.europa.eu/newsroom/news/power-efficient-positioning-iot
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb250
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb250
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb250
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb250
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb250
http://arxiv.org/abs/2205.03269
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb252
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb252
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb252
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb252
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb252
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb253
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb253
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb253
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb253
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb253
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb254
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb254
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb254
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb254
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb254
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb255
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb255
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb255
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb255
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb255
https://www.u-blox.com/en/publication/white-paper/low-power-gps-tracking-applications
https://www.u-blox.com/en/publication/white-paper/low-power-gps-tracking-applications
https://www.u-blox.com/en/publication/white-paper/low-power-gps-tracking-applications
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb257
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb257
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb257
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb257
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb257
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb258
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb258
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb258
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb258
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb258
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb259
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb259
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb259
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb260
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb260
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb260
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb261
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb261
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb261
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb261
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb261
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb262
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb262
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb262
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb263
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb263
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb263
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb263
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb263
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb263
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb263
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb264
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb264
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb264
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb265
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb265
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb265
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb265
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb265
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb266
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb266
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb266
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb267
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb267
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb267
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb267
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb267
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb267
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb267
https://www.maanmittauslaitos.fi/en/topical_issues/fgi-gsrx-software-defined-gnss-receiver-goes-open-source
https://www.maanmittauslaitos.fi/en/topical_issues/fgi-gsrx-software-defined-gnss-receiver-goes-open-source
https://www.maanmittauslaitos.fi/en/topical_issues/fgi-gsrx-software-defined-gnss-receiver-goes-open-source
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb269
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb269
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb269
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb270
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb270
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb270
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb270
http://refhub.elsevier.com/S1383-7621(24)00051-1/sb270

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
Salar Shakibhamedan received his B.Sc. and M.Sc. degrees
in electrical engineering in 2015 and 2018 respectively,
from K. N. Toosi University of Technology in Iran. He is
currently a Ph.D. student, researching on the Approximate
Computing for smart sensors and embedded machine learn-
ing. In the institute of computer technology at the Vienna
university of technology in Austria. His current research in-
terests, include deep learning, Edge-AI, autonomous driving,
and approximate computing.

Tiago Troccoli obtained his B.Sc. and M.Sc. degrees in
Computer Science from the University of São Paulo and
the University of Campinas, respectively, in Brazil. He is
currently a Doctorate Researcher responsible for pioneer-
ing the novel generation of Indoor localization systems
based on direction of arrival (DOA). His research project
involves overcoming the challenges of implementing com-
plex numerical methods in Internet of Things networks
composed of constrained embedded systems. His research
is a collaborative effort between the industry (Wirepas) and
academia (University of Tampere) which is supported by the
European Union’s Horizon 2020 program through the Marie
Skodowska-Curie grant agreement.

Georgios Chatzitsompanis received his Diploma M.Eng
degree in Electrical Engineering from the National Technical
University of Athens (NTUA) in 2020. He is currently work-
ing towards his Ph.D. degree in the School of Electronics,
Electrical Engineering and Computer Science at the Queen’s
University of Belfast. His research interests include machine
learning, approximate hardware VLSI design for low-power
and investigation of process variation tolerant circuits.

Anil Kanduri received the MSc (Tech) degree in embed-
ded computing, in 2014, and the Ph.D. (Tech) degree
in computer systems, in 2018, from the University of
Turku, Finland. He is currently a senior researcher with
the Department of Future Technologies, University of Turku,
Finland. His research interests are in on-chip resource man-
agement, run-time power and performance modeling and
analysis, system software for heterogeneous processors, and
alternative computing methods and architectures.

Aleksandr Ometov received the M.Sc. degree in In-
formation Technology and the D.Sc. (Tech.) degree in
Telecommunications from the Tampere University of Tech-
nology (TUT), Finland, in 2016 and 2018, respectively. He
also holds the Specialist degree in Information Security from
the Saint Petersburg State University of Aerospace Instru-
mentation (SUAI) from 2013. He is a Postdoctoral Research
Fellow at Tampere University (TAU), Finland, and the
coordinator of the CONVERGENCE of Humans and Machines
research field funded by Jane and Aatos Erkko Founda-
tion, managing EU H2020 MCSA A-WEAR and APROPOS
ITN projects. His research interests include wireless com-
munications, information security, computing paradigms,
blockchain technology, and wearable applications.

Aaron Yi Ding is a tenured Associate Professor and leading
the Cyber–Physical Intelligence (CPI) Laboratory at TU
Delft, Netherlands. He has over 16 years of research and
development experience across EU, U.K., and USA, includ-
ing TU Munich, University of Cambridge, and Columbia
University. His research focuses on edge AI solutions for
cyber–physical systems in smart health, mobility, and en-
ergy domains. He has 80+ peer reviewed publications,
receiving best paper awards and recognition from ACM
SIGCOMM, ACM EdgeSys, ACM SenSys CCIoT, IEEE IN-
FOCOM, and the esteemed Nokia Foundation Scholarships.
He is the scientific director and coordinator for the EU
Horizon project SPATIAL. He is an Associate Editor of ACM
Transactions on Internet of Things (TIOT) and IEEE Open
Journal of the Intelligent Transportation Systems.
26
Nima Taherinejad received his Ph.D. degree in electrical
and computer engineering from The University of British
Columbia (UBC), Vancouver, Canada, in 2015. He is cur-
rently a Full Professor at Heidelberg University, Heidelberg,
Germany and affiliated with TU Wien (formerly known
also as Vienna University of Technology), Vienna, Austria,
as the PI of two projects. His areas of work include in-
memory computing, cyber–physical and embedded systems,
systems on chip, memristor-based circuit and systems, self-
* systems, and health-care. He has published three books,
three patents, and more than 80 articles. Dr. Taherinejad
has served as a reviewer and an editor of many journals
and conferences. He has also been an organizer and a chair
of various conferences and workshops. He has received sev-
eral awards and scholarships from universities, conferences,
and competitions he has attended. This includes the Best
University Booth award at DATE 2021, First prize in the
15th Digilent Design Contest (2019) and in the Open-Source
Hardware Competition at Eurolab4HPC (2019) as well as
Best Teacher and Best Course awards at TU Wien (2020).

Georgios Karakonstantis is an Associate Professor at the
School of Electronics, Electrical Engineering and Computer
Science of Queen’s University Belfast, United Kingdom.
He has published more than 85 papers in peer reviewed
journals and conferences, and he is inventor of a US patent
and author of two book chapters. He is the recipient of two
HiPEAC paper awards, two best paperawards at DATE, and
of a prize at the Altera Innovate Design Contest. He received
the M.Sc. and Ph.D. degree in Electrical and Computer
Engineering from Purdue University, West-Lafayette, USA.
His research focuses on energy-efficient and error-resilient
computing and storage architectures for embedded and
high-performance applications.

Roger Woods received the B.Sc. and Ph.D. degrees from
Queen’s University Belfast, U.K., in 1985 and 1990. He
is currently a Professor of Digital Systems at the School
of Electronics, Electrical Engineering and Computer Science
and the Dean of Research in the Faculty of Engineering and
Physical Sciences, Queen’s University Belfast. He is also a
Fellow of the Royal Academy of Engineering. His research
interests include heterogeneous programmable systems for
data analytics and embedded systems for medical and smart
city applications. He has published two research books and
over 245 leading journals and conference papers. In 2007,
he co-founded the spin-off company, Analytics Engines Ltd.
with several of his Ph.D. students, and now acts as their
Chief Scientist. He has supervised 30 Ph.D. theses. He is one
of the technical program committee members for a number
of IEEE conferences, including FPL, FPT and SAMOS.

Jari Nurmi received the D.Sc. degree in technology in 1994.
He works as a Professor at the Electrical Engineering Unit,
Tampere University, TAU (formerly Tampere University of
Technology, TUT), Finland, since 1999. He is working on
embedded computing systems, System-on-Chip, approximate
computing, wireless localization, positioning receiver pro-
totyping, and software-defined radio and software-defined
networks. He held various research, education, and manage-
ment positions at TUT since 1987, (e.g., an Acting Associate
Professor from 1991 to 1994) and was the Vice President
of the SME VLSI Solution Oy from 1995 to 1998. He
has supervised 32 Ph.D. and about 150 M.Sc. theses, and
been an opponent or a reviewer of over 50 Ph.D. theses
for other universities worldwide. He is a member of the
Technical Committee on VLSI Systems and Applications at
IEEE CASS. In 2004, he was one of the recipients of the
Nokia Educational Award and a recipient of the Tampere
Congress Award in 2005. In 2011, he received the IIDA
Innovation Award and in 2013 the Scientific Congress
Award and the HiPEAC Technology Transfer Award. He is

Journal of Systems Architecture 150 (2024) 103114H.J. Damsgaard et al.
a steering committee member of four international confer-
ences (chairman in two). He has edited five Springer books
and has published over 400 international conference and
journal articles and book chapters. He is also an associate
editor of three international journals. He is the Director of
27
the national DELTA doctoral training network of about 200
Ph.D. students, the Coordinator of the European doctoral
training network APROPOS, and the Head of the A-WEAR
European joint Ph.D. Degree Program at TAU. He was also
nominated as Tampere Congress Ambassador in 2023 and
serves in the board of Visit Tampere Ltd.

	Adaptive approximate computing in edge AI and IoT applications: A review
	Introduction
	Focus Areas
	Contributions
	Methodology
	Paper Structure

	Background
	Edge Computing
	Machine Learning for Edge AI

	Approximate Computing
	Circuit-level Techniques
	Inexact arithmetic
	Circuit-level approximations

	Architectures
	General-purpose architectures
	Application-specific architectures

	Application- and Algorithm-level Techniques
	Quantization
	Pruning
	Knowledge distillation
	Low-rank approximation

	Applications and Algorithms
	Autonomous Driving
	Driving services at the Edge
	Enabling autonomy

	Smart Sensing and Wearables
	Smart sensing at the Edge
	Effective processing of sensor data

	Positioning
	Outdoor positioning
	Indoor positioning
	Positioning at the Edge
	Efficient signal processing

	Discussion and Open Directions
	Autonomous Driving
	Insights
	Future directions

	Smart Sensing and Wearables
	Insights
	Future directions

	Positioning
	Insights
	Future directions

	Cross-Layer Research
	Insights
	Future directions

	Conclusion
	Acronyms
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

