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A Biologically Inspired Appearance Model for
Robust Visual Tracking

Shengping Zhang, Member, IEEE, Xiangyuan Lan, Hongxun Yao, Member, IEEE, Huiyu Zhou,
Dacheng Tao, Fellow, IEEE, Xuelong Li, Fellow, IEEE

Abstract—In this work, we propose a biologically inspired
appearance model for robust visual tracking. Motivated in part
by the success of the hierarchical organization of the primary
visual cortex (area V1), we establish an architecture consisting
of five layers: whitening, rectification, normalization, coding and
polling. The first three layers stem from the models developed
for object recognition. In this paper, our attention focuses on the
coding and pooling layers. In particular, we use a discriminative
sparse coding method in the coding layer along with spatial
pyramid representation in the pooling layer, which makes it easier
to distinguish the target to be tracked from its background in
the presence of appearance variations. An extensive experimental
study shows that the proposed method has higher tracking
accuracy than several state-of-the-art trackers.

Index Terms—Visual tracking, Appearance modeling, Biologi-
cally inspiration, Sparse coding

I. INTRODUCTION

V ISUAL tracking is a task that continuously infers the
state of a specific target from an image sequence; it is a

specific task of computer vision which has attracted increasing
interest in recent years [1]–[15]. Given a target template, a
visual tracking process usually consists of four stages: 1) Can-
didate sampling, whereas we sample a set of target candidates
from the current image frame. 2) Appearance modeling, where
we describe the target template and a number of candidates for
correspondence using an appearance representation method. 3)
Target searching, which allows us to find which candidate has
the best similarity to the target template. 4) Template updating,
where we update the appearance of the target template in order
to adapt to the variations of the target appearance over time.

In these four stages, appearance modeling attracts large
attention in the last few decades [3], [16]–[29]. A good
appearance model should not only be used to distinguish the
target from its background but also should be robust against
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appearance variations due to pose changes, illumination and
occlusions. Although many appearance models have been re-
ported in the literature, they still do not have sufficient capabil-
ities to handle these challenges. One of the main reasons is that
most of these models are based on handcrafted features [30]–
[32]. The computation procedures of these features are fixed
regardless of input data and therefore cannot be adapted to
different tracking scenarios. Several recent models resort to
machine learning methods and devise suitable training criteria
and optimization methods to learn features from data [33]–
[35]. In spite of their high adaptive capability, these methods
still somehow depend on prior knowledge, which does not
easily transfer to other applications.

While robust visual tracking remains very challenging to
computers, it is effortless for humans to accomplish this task.
The progress made in understanding the brain mechanisms of
visual information processing, especially the primary visual
cortex (area V1), enable us to develop effective appearance
models to handle the tracking problems. In this paper, we focus
on developing a biologically inspired appearance model for
robust visual tracking. The motivation is twofold:

• Motivation (i): psychophysical evidence has shown that
V1 can process visual information using a hierarchical
structure [36], [37], which alternates between simple and
complex cells. Riesenhuber and Poggio [38] proposed a
quantitative model to simulate such a hierarchy, where the
responses of simple cells were produced using local filters
whilst the invariance properties of complex cells were
created using a max pooling process over the neighboring
positions.

• Motivation (ii): Olshausen and Field [39] proposed an
unsupervised learning method, called sparse coding, to
represent a natural image as a linear combination of a set
of basis functions. Assume the coefficients are sparse and
statistically independent. People have observed that these
basis functions captured the underling image structures
(lines and edges). More importantly, the basis functions
have similar response properties to those of the simple
cells in area V1.

Motivation (i) suggests that we can perform appearance
modeling for visual tracking by simulating the hierarchical
structure of area V1. In the literature, several appearance
models with this motivation have been reported for object
recognition [40]–[42], which used one or two stages of V1-
like feature representation. The responses of simple cells at
the bottom of the hierarchy was generated using Gabor filters.
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At the top of the hierarchy, complex cells were simulated by
performing max pooling over the local neighboring responses.
Their experimental results show that these models outperform
the other state-of-the-art object recognition systems on several
standard datasets [40], [41].

Although these models are biologically inspired, simple
cells were only simulated by handcrafted Gabor filters, result-
ing in a relatively poor evolutionary capability in their systems.
In fact, neurons in the visual cortex should be adapted to
different statistical properties of the visual signals to which
they are exposed [43], [44]. Therefore, a more reasonable
simulation of simple cells in visual cortex is to use learning
based methods to capture the statistical properties of the visual
signals. Sparse coding shown in the motivation (ii) is a model
that meets this requirement. Therefore, we here propose to use
sparse coding to model the responses of simple cells in V1.
Furthermore, considering the importance of the discriminative
ability of an appearance representation for visual tracking,
we therefore use discriminative sparse coding and spatial
pyramid pooling to make the representation more capable of
distinguishing the target from its background.

The architecture of the proposed biologically inspired ap-
pearance model is shown in Fig. 1, which consists of five
layers. The whitening, rectification and normalization layers
stem from object recognition models and perform very well
in various applications [41], [42]. However, in visual tracking
applications, we need to maintain the discriminative capability
of the appearance model employed in the tracker all the
time, which is more challenging than the case of object
recognition, and therefore, our attention in this paper focuses
on the coding and pooling layers. In particular, in the coding
layer, we will adopt a discriminative sparse coding technique
to represent local patches densely sampled from the input
image. This makes it easy to distinguish between the target
and the background patches. In the pooling layer, average
pooling with spatial pyramid representation will be used to
aggregate the local codes into a global representation of the
input image. The multiple scale pyramid structure can be
used to preserve the spatial relationship of the local codes,
and hence increase the global discriminative capability of the
final feature representation with strong robustness against local
appearance variations.

The rest of this paper is organized as follows. In Section II,
we review the work closely related to our proposed approach.
Section III gives a detailed description of the proposed biologi-
cally inspired appearance model. The tracking algorithm based
on the proposed appearance model is introduced in Section IV.
Experimental results are reported and analyzed in section V.
We conclude the paper in Section VI.

II. RELATED WORK

In this section, we review the biologically inspired ap-
pearance models used for object recognition, state-of-the-art
tracking approaches and corresponding benchmarks.

A. Biologically inspired models for object recognition
Based on the findings in human psychophysics and electro-

physiology studies [36], [37], [45], Riesenhuber and Poggio

[38] proposed a quantitative model to simulate the hierarchical
structure in human vision for object recognition, where the
response of the simple cells was obtained using the second
derivative of Gaussian filters, and the invariance properties of
the complex cells were obtained using a max pooling operator
over the neighboring positions. Serre et al. [40] proposed the
HMAX model which uses Gabor filters to replace the second
derivative of Gaussian filters used in [38]. In addition, they also
proposed to use a two-stage V1 like feature representation. In
the second stage of the system, the filters were built by ran-
domly sampling the outputs of the first stage. The max pooling
of the filters’ response over the entire image forms the final
feature representation. Pinto et al. [41] simplified the HMAX
model and only used the first stage of the HMAX model
with additional preprocessing and normalization operators. In
addition, they used a sum operator instead of a max operator
in the pooling stage. The experiments against several object
recognition datasets demonstrate that their system achieved
better performance than the other state-of-the-art systems.
Yang et al. [46] improved the bag-of-features (BoF) model [47]
by using sparse coding to replace the K-means in the vector
quantization step. Although they do not claim their method is
biologically inspired, their feature extraction method is very
similar to that of [41]. Other researchers such as [42], [48],
[49] conducted extensive experiments in object recognition
in order to compare the performance of different hierarchical
architectures. The evaluation results indicate that a single layer
model with coding, pooling and suitable preprocessing and
normalization operators can achieve the expected recognition
performance.

B. State-of-the-art tracking approaches and corresponding
benchmarks

Visual tracking has attracted increasing interests in recent
years. A large number of novel tracking approaches, large
benchmark datasets and experimental comparison were re-
ported [1], [6], [50]–[54]. In [50], a kernelized structured
output support vector machine was learned online to achieve
adaptive tracking. Real-time tracking was achieved by in-
troducing a budgeting mechanism which prevents the un-
bounded growth of the number of support vectors which
would otherwise occur during tracking. Very recently, deep
learning has been successfully applied to different vision tasks.
Inspired by recent advances in deep learning architectures,
Wang et al. proposed a deep compact image representation
for visual tracking [51], which first trains a stacked denoising
autoencoder offline to learn generic image features that are
more robust against variations and then transfers the offline
training to an online tracking process. In [55], Chen et al. used
cells to extract local appearance, and constructed complex cells
to integrate the information from cells to provide diverse and
important object cues for visual tracking. With different spatial
arrangements of cells, complex cells are of various contextual
information at multiple scales, which is important to improve
the tracking accuracy. Although two biological terms such as
“cells” and “complex cells” were used in their paper, there is
little biologically inspiration. In [6], the authors proposed a
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Fig. 1. The architecture of the proposed biologically inspired appearance modeling framework (LGN = Lateral Geniculate Nucleus).

new Kernelized Correlation Filter (KCF) for visual tracking,
which can achieve fast and accurate tracking. To evaluate
the progress in visual tracking, there are also several bench-
mark databases and experimental surveys on recent tracking
methods. In [1], a benchmark with 50 test sequences was
built for evaluating state-of-the-art tracking methods, which
is then further extended in [54] to have 100 test sequences.
In [53], a set of nineteen trackers were evaluated on 315 video
fragments, which provides objective insight into the strengths
and weaknesses of these trackers.

In the literature, several appearance models based on sparse
coding have been proposed for visual tracking, which usually
consist of two steps: local coding and global pooling. After the
input image is divided into a set of image patches, each patch
is sparsely coded by a linear combination of a set of basis
functions. The combination coefficients are used as codes to
describe the image patch. The final appearance representation
of the input image is obtained by pooling the codes of all
the patches to form a histogram-like feature vector. Zhang
et al. [56] proposed to code image patches using independent
component analysis (ICA) basis functions, which were learned
from a set of randomly sampled image patches. Average
pooling was used to obtain the final appearance representation.
In [19], each patch was coded by the basis functions of sparse
coding, which were learned using the sampled patches out of
the target image. Similar to [56], average pooling was used
to construct the final feature representation. Wang et al. [57]
combined the sampled patches from the target image and
the identity vectors as basis functions to code each patch.
All the codes were concatenated together to form the final
feature representation. Zhong et al. [58] learned the basis
functions of sparse coding from the patches sampled from
the target image via K-means. The pooling step is similar
to the one used in [57]. Jia et al. [20] maintained multiple
target templates. Local patches sampled from each template
were collected and formed as basis functions to code patches
sampled from the input image with the same spatial layout.
They used an alignment pooling operator to preserve the
structural relationship between local codes.

Although these appearance models, based on sparse coding,
have shown promising results in some applications, they
also accompany some inevitable shortcomings: 1) the basis
functions of sparse coding are obtained by either learning

from images [56] or sampling the patches from the tracking
data [20]. The basis functions are so generative that the
resulting sparse codes from the target are not discriminative
enough to distinguish the target from its background. 2) The
sparse codes are pooled by either summing all the coefficient
vectors over the entire image which losses the spatial rela-
tionship [19], [56], or concatenating all the coefficient vectors
which preserves the spatial relationship but also violating
the local invariance of the appearance representation [57]. 3)
Supported by the biological studies [59], [60] and empirical
evaluation [41], [42], non-linear operators such as whitening,
rectification and normalization operators can also enhance the
representation capability. However, the existing appearance
models based on sparse coding only contain the basic coding
and pooling operators and therefore ignore the role of the non-
linear operators.

III. PROPOSED BIOLOGICALLY INSPIRED APPEARANCE
MODEL

The visual information received by simple cells in V1 is
just part of the information contained in the whole retina
image, which is determined by the size of the receptive field
of simple cells. To simulate this mechanism, first of all, a
set of n patches are densely sampled from an input image I.
Let X = [x1,x2, . . . ,xn] ∈ Rd×n be the sampled patch set,
where xi ∈ Rd refer to the stacked pixel intensities from the
i-th patch. To reduce the impact of noise, each patch is first
normalized by subtracting its mean and then divided by its
standard deviation.

The proposed appearance modeling method is used to find a
feature mapping function y = F(X), which takes in the patch
set X and then outputs a feature vector y that is capable of
representing the appearance of the image I. Under the hierar-
chical framework as shown in Fig. 1, let W , C, R, N and P
be the feature mappings of the whitening, coding, rectification,
normalization and pooling layers, respectively. The feature
mapping function F can be obtained by sequencing all the
layers as F = P ◦N ◦R◦C ◦W . Algorithm 1 summarised the
steps of our appearance modelling method. In the following
sub-sections, we will introduce how to implement these feature
mappings in details.
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Algorithm 1: The proposed appearance modelling method.
Input : Input image I, parameters n and λ
Output: Appearance representation y

1 Sample n patches X = [x1,x2, . . . ,xn] from the input
image I;

2 Whiten each patch xi in X to have the whitened patch
wi;

3 Code each whitened patch wi using the learned
discriminative dictionary to get the responses ci;

4 Rectify the responses of a whitened patch to obtain the
rectified responses ri;

5 Normalize the rectified responses of a whitened patch to
gain the normalised responses ni;

6 Integrate the normalised responses in a pyramid division
to obtain the feature representation
y = {ys,v,h|s = 0, 1, 2, v = 1, 2, . . . , 2s, h = 1, 2, . . . , 2s}

A. Whitening layer

A natural scene observed by the human eye is transmitted
to the retina. Since the adjacent pixels of the image tend to
be highly correlated in intensity, it is wasteful for the retina to
transmit every pixel separately to the brain for further process-
ing. Instead of doing this, the retina performs a decorrelation
operation via retinal neurons, which can be implemented using
the ZCA whitening operator [61]. To whiten each patch in X,
the covariance matrix is firstly computed as XX>, where >
denotes matrix transpose. The eigen-value decomposition of
the covariance matrix is EDE> where the orthogonal matrix
E consists of eigenvectors and the diagonal matrix D consists
of eigenvalues. Then the whitening operator can be achieved
as follows:

wi =W(xi) = ED−1/2E>xi (1)

After the whitening, all the dimensions of the image patches
are uncorrelated and their variances are equal. For computa-
tion, the whitening operator is also useful to speed up the
convergence of the coefficient inference in the subsequent
coding layer.

B. Coding layer

The goal of the coding layer is to extract local features from
each image patch. In contrast to other handcrafted features, in
this work, we consider using sparse coding to learn sparse
features for each image patch. The motivation of using sparse
coding to extract features is twofold: 1) the sparse features
are capable of capturing the underlying structural properties
of the images due to small reconstruction errors and the
sparsity constraints in the dictionary learning. 2) Studies in
neuroscience clearly reveal that the human brain codes visual
information in a sparse manner.

Given a dictionary with K basis functions V =
[v1,v2, . . . ,vK ] ∈ Rd×K , the coding responses of a whitened
patch wi can be computed as

ci = C(wi) = argmin
c
‖wi −Vc‖22 + λ‖c‖1 (2)

where λ is a regularization parameter that controls the im-
portance of the sparsity constraint of the responses to the
reconstruction error. Similar to the design of the handcrafted
filters [38], [40], a critical step in the coding layer is to
learn the dictionary V from a set of image patches X̃ =
[x̃1, x̃2, . . . x̃ñ] ∈ Rd×ñ which are sampled from a set of
training images. After the whitening, these image patches
supply training samples W̃ = [w̃1, w̃2, . . . w̃ñ] ∈ Rd×ñ for
the dictionary learning, where w̃i = W(x̃i). The traditional
sparse coding scheme learns the dictionary by solving the
following equations:

argmin
V,ci

ñ∑

i=1

‖w̃i −Vci‖22 + λ‖ci‖1 (3)

The objective function above only contains the reconstruc-
tion error and sparse coding responses, which is essentially
required for learning a sparse but approximate representation.
However, such a representation is not good enough for those
applications, which require high discriminative ability, e.g.,
the visual tracking task studied in this work. To make the
coding responses easier to discriminate the target from its
background, in this work, we utilize a discriminative dictionary
learning method [62], which learns two dictionaries for the
target and the background, respectively. We call them as the
target dictionary and the background dictionary accordingly in
the later sections of this paper. The target dictionary represents
the patches sampled from the target image with the minimal
reconstruction error, while representing the patches sampled
from the background image with the maximal reconstruction
error. Similarly, the background dictionary represents the
background patches with the minimal reconstruction error,
while representing the target patches with the maximal recon-
struction error. The objective of using this dictionary learning
method is to produce discriminative codes in the coding layer
when we use the dictionary consisting of both the target and
background dictionaries.

Let W̃f = [w̃f,1, w̃f,2, . . . , w̃f,nf
] ∈ Rd×nf and W̃b =

[w̃b,1, w̃b,2, . . . , w̃b,nb
] ∈ Rd×nb be the training patches sam-

pled from the target and the background images, respectively.
Let Vf ∈ Rd×Kf and Vb ∈ Rd×Kb be the dictionary pair
learned from the target and the background patches, respec-
tively. The reconstruction error of coding a sample w̃ using
the dictionary V is computed as E(w̃,V) = ‖w̃−VC(w̃)‖22.
To learn and create the dictionary pair Vf and Vb, we define
the following discriminative cost function:

L(w̃,Vf ,Vb) = log(1 + eλ(E(w̃,Vf )−E(w̃,Vb))) (4)

where λ > 0 is a parameter to be determined. L(w̃,Vf ,Vb)
is close to zero when E(w̃,Vf ) < E(w̃,Vb)). The discrim-
inative dictionary pair Vf and Vb can be established by
optimizing this cost function:

min
Vf ,Vb

=
1

nf

nf∑

i=1

L(w̃f,i,Vf ,Vb) + γE(w̃f,i,Vf )

+
1

nb

nb∑

i=1

L(w̃b,i,Vb,Vf ) + γE(w̃b,i,Vb) (5)
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where γ > 0 is a parameter to be determined, and nb and
nf are two numbers of the investigated patches. Given the
randomly initialized Vf and Vb, this optimization problem
can be solved by a standard K-SVD technique [63] with
typically 5 iterations, consisting of two steps: 1) Coding—
compute codes for each patch in W̃f (or W̃b) using dictionary
Vf (or Vb). 2) Updating—update each column of Vf or Vb

to reduce the residual of the cost function. After learning
and updating the dictionaries Vf and Vb, we then create
a combination form as V = [Vf ,Vb] ∈ Rd×K where
K = Kf +Kb.

After obtaining the dictionary, we have the coding outputs of
the whitened patches {w1,w2, . . . ,wn} as {c1, c2, . . . , cn},
where ci = C(wi) is computed using Eq. (2) with the learned
dictionary.

C. Rectification layer

Neuroscience studies [59], [64] indicate that simple cells in
visual cortex are rarely in their maximum saturation regime
and suggest that their response can be approximated by a
rectification operator:

ri = R(ci) = max(0, ci) (6)

where max(·, ·) operates on two vectors and returns the
maximal value of each dimension. The rectification layer
makes the response to the opposite of an excitatory pattern
to be 0 (i.e. no response). On the other hand, the outputs of
the coding layer, the coefficients, still possess some small but
non-zero values. The rectification operator enables the codes
much sparser than an usual case, which has been proved to
achieve better object recognition performance [42].

D. Normalization Layer

Empirical evidence shows that the rectified coefficients,
corresponding to the basis functions at the neighboring spatial
positions, orientations and scales, are highly correlated. An
operator of removing these dependencies is divisive normal-
ization [60], [65], which represents each coefficient by a
weighted combination of its rectified neighbors. Let ri and
r1i , r

2
i , . . . , r

P
i be the rectification layer’s outputs of the image

patch xi and its P neighboring patches, respectively, the divi-
sive normalization for the k-th dimension can be implemented
by

ni(k) = N (ri(k)) =
ri(k)∑P

p=1 wpr
p
i (k) + δ

(7)

where r(k) denotes the k-th element of the vector r, w =
[w1, w2, . . . , wP ] are the weights of the neighboring patches
and δ is a constant. The parameters w and δ can be learned by
collecting a set of patches and then minimizing the prediction
error. To simplify the model, we here use equal weights wp =
1
P and an infinitesimal value δ.

E. Pooling layer

The purpose of appearance modeling is to find a global
feature representation to describe the target to be tracked. After

obtaining the rectified and normalized coding responses of
the local patches sampled from the input image, we combine
these local codes to form a global representation. This can
be implemented by a pooling operator, which employs the
statistics of the local sparse codes. Biological studies have
shown that the complex cells in area V1 also use a pooling
operator to make the final representation invariant to small
distortions. Some biological models recruited sum pooling,
e.g. [37], which computed the sum of responses to a specific
stimuli over a neighboring space. Recently, people proposed
to use max pooling instead of sum polling [40], [66], which
used a max operator to replace the sum operator in the sum
pooling. Although max pooling can produce a more invariant
representation, our experimental results indicate that it is not a
good pooling operator for representing the appearance model
in visual tracking. The reason is that max pooling increases
the invariance while losing much discriminative elements.
Comparison experiments in object recognition also indicate
that, when an appropriate rectification layer is adopted, sum
pooling slightly outperforms max pooling [42]. Therefore, in
this paper, we choose to use sum pooling rather than max
pooling. However, sum pooling over the entire image has a
significant drawback — the spatial relationships of the local
codes will be lost. Since the spatial relationships are important
for visual tracking, we propose to use spatial pyramid pooling
proposed in [67], which effectively preserves the spatial re-
lationships and effectively increases the global discriminative
capability with sufficient local robustness against appearance
variations.

s = 0 s = 1 s = 2

h

v

Fig. 2. The spatial pyramid structure with three scales.

In particular, we evenly partition the input image into 2s×2s
sub-images in three different scales s = {0, 1, 2}. See an
example shown in Fig. 2. Let v and h be the indices of
the sub-images along the vertical and horizontal directions,
respectively. The (v, h)-th sub-image in the scale s is denoted
as Is,v,h where v = 1, 2, . . . , 2s and h = 1, 2, . . . , 2s. Let
Ns,v,h = [ns,v,h,1,ns,v,h,2, . . . ,ns,v,h,L] ∈ RK×L be the
normalization layer outputs of L image patches sampled in
the sub-image Is,v,h. Because each patch in the sub-image is
encoded by all the basis functions, the distribution of responses
of all the basis functions can be used as features to describe the
sub-image. Taking this into account, the feature representation
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Algorithm 2: The proposed tracking algorithm using a
novel appearance modeling technique.
Input : Image sequence {It}t=1:T , initial target state z0,

target templates {Îj0}j=1:J , parameters N and Σ
Output: The tracking results {zi∗t }t=1:T

1 Compute appearance representations {ŷj0}j=1:J for
template images {Îj0}j=1:J using Algorithm 1;

2 for t = 1, 2, . . . do
3 Sample a set of N particle {zi1}i=1:N from

N (zt−1,Σ);
4 Determine images {Iit}i=1:N from target candidates

paramerized using {zit}i=1:N ;
5 Compute appearance representations {yit}i=1:N for

{Iit}i=1:N using Algorithm 1;
6 Compute particle weights {wit}i=1:N using Eq. (14);
7 Obtain the tracking result at time t, zi

∗

t using
Eq. (15);

8 Update target templates using the procedure
described in Section IV-C;

9 Resample N particles {zit}i=1:N with replacement
from the current particle set according to
probabilities {wit}i=1:N ;

10 end

ys,v,h of the sub-image Is,v,h can be obtained by sum pooling
along each dimension over all the image patches in the sub-
image, which calculates the activation frequencies of basis
functions when encoding the image patches in the sub-image.
For example, the k-th element of ys,v,h is obtained by

ys,v,h(k) = P(Ns,v,h(k)) =

L∑

l=1

ns,v,h,l(k) (8)

where N(k) denotes the k-th row of the matrix N and n(k)
the k-th element of the vector n. After pooling along all the
dimensions, we then normalize ys,v,h to make the sum of its
all elements to be one. The feature set {ys,v,h|s = 0, 1, 2, v =
1, 2, . . . , 2s, h = 1, 2, . . . , 2s}, computed from all the sub-
images, are used as the final appearance representation of the
input image.

Please note that the multi-scale pooling is implemented for
each input image to compute its appearance representation.
Here the input image can be either a target template image (as
shown in Fig. 2) or a target candidate image (e.g., an image
with the same size as the target image but which may contain
some background regions). The number of all the sub-images
in all the three scales is 21.

IV. PROPOSED TRACKING ALGORITHM

Based on the proposed appearance model presented above,
in this section, we introduce the proposed tracking algo-
rithm using a multi-scale pyramid matching scheme within
a standard particle filter framework. The detailed algorithm
for tracking is outlined in Algorithm 2.

A. Particle filter framework

Particle filtering [68] is a popular computation method
to recursively approximates the posterior distribution of the
state variables characterizing a dynamic system. It consists
of two stages: prediction and update. Let zt and It be the
state variable and the observation at time t, respectively. The
posterior distribution of zt given all the available observations
I1:t−1 = {I1, I2, . . . , It−1} up to time t− 1 can be predicated
using the state transition model p(zt|zt−1) as:

p(zt|I1:t−1) =
∫
p(zt|zt−1)p(zt−1|I1:t−1)dzt−1 (9)

At time t, the observation It is available, the posterior distri-
bution of zt is updated using the Bayes’ rule as

p(zt|I1:t) =
p(It|zt)p(zt|I1:t−1)

p(It|I1:t−1)
(10)

Using a sequential importance sampling technique, we can
approximate the posterior distribution p(zt|I1:t) by a set of
N weighted samples (also called particles) {zit, wit}i=1,...,N ,
where wit are the importance weights of particles zit. Let
q(zt|I1:t, z1:t−1) be the importance distribution from which
the particles are drawn, the importance weights wit are updated
as:

wit = wit−1
p(It|zit)p(zit|zit−1)
q(zt|I1:t, z1:t−1)

(11)

To avoid the degeneracy case where the weights of some
particles possibly keep increasing, particles are resampled
according to their importance weights so as to generate a
set of equally weighted particles. In the case of bootstrap
filtering [68], the state transition distribution is chosen as
the importance distribution q(zt|I1:t, z1:t−1) = p(zt|zt−1) ∼
N (0,Σ) where Σ is a diagonal matrix, the weights are
updated as the observation likelihood wit = p(It|zit).

Particle filtering has found its applications in contour track-
ing [69]. Perez et al. [70] used particle filtering for tracking
a target parameterized by a rectangle region. The key step
of particle filtering for visual tracking is to compute the
weight for each particle using the observation likelihood.
In practice, the observation likelihood p(It|zit) is computed
as the similarity between the target template image and the
target candidate image parameterized by the particle zit. In
the next subsection, we present how to combine our proposed
appearance model with a multi-scale pyramid matching to
assign an appropriate weight to each particle.

B. Particle weighting based on the proposed appearance
model

To compute the weight wi for the i − th particle zi,
we first crop a candidate image Ii paramerized by zi from
the current image1. Using the proposed appearance model,
we can compute a set of feature descriptors {yis,v,h|s =
0, 1, 2, v = 1, 2, . . . , 22, h = 1, 2, . . . , 2s} from the candi-
date image Ii. In addition, we maintain a set of J target
templates {Î1, Î2, . . . , ÎJ}. The feature descriptors of the j-th

1the time index is omitted for readability
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target template are {ŷjs,v,h|s = 0, 1, 2, v = 1, 2, . . . , 22, h =

1, 2, . . . , 2s}. The distance between the j-th template Îj and
the candidate Ii is computed by summing the pairwise distance
between their corresponding descriptors, shown as follows:

ρ(Ii, Îj) =

2∑

s=0

2s∑

v=1

2s∑

h=1

K∑

k=1

(
yis,v,h(k)− ŷjs,v,h(k)

)2

yis,v,h(k) + ŷjs,v,h(k)
(12)

Based on the above distance, we further define the similarity
between the j-th template Îj and the candidate Ii as

η(Ii, Îj) = D
(
ρ(Ii, Îj); 0, σ

2
)

(13)

where D(x;µ, σ2) is the Gaussian distribution with mean µ
and variance σ2. We fix µ = 0 and σ2 to 15 in all the
experiments reported in this paper.

We use the weighted sum of the similarities between the
candidate Ii and all the target templates {Î1, Î2, . . . , ÎJ} as
the weight of the i-th particle:

wi =

J∑

j=1

πjη(Ii, Îj) (14)

where πj is the weight associated to j-th target template
image. All the target templates are initialized to have the same
weights and then the weights are updated using the procedure
that will be introduced in subsection IV-C.

The tracking result in the current frame is the particle with
the largest weight with an index computed as

i∗ = arg max
i=1,...,N

wi (15)

Please note that discriminative approaches such as SVM or
structured SVM can be used for visual tracking with the
proposed appearance model. However, in this paper we still
use distance matching (Eq. 12) due to its simplicity and
efficiency.

C. Online multiple template update

In order to capture the target’s appearance variations during
tracking, we maintain a set of target templates and update them
online. For the purpose of dynamical updating, we assign a
weight to each template, which reflects how much the template
is similar to the tracked target. After the target has been
tracked, the tracking result will be added to the template set
so that we capture the latest target appearance. However, we
do not know if the tracking result is correct. Therefore, to
avoid the accumulation of errors, we only include the recent
tracking results that are similar enough to the corresponding
templates for template updating. The index used to indicate
this similarity is represented by j∗ = argmaxj η(Ii∗ , Îj).
We set a threshold τ so that if the cosine angle between
Ii∗ and Îj∗ is less than the threshold, we then replace the
J-th template ÎJ using the available tracking result Ii∗ . The
weight πJ of the J-th template is assigned to be the median of
the previous weights of all the templates before the template
updating starts. The weights of the remaining templates are
updated as πj = η(Ii∗ , Îj) where j = 1, 2, . . . , J−1. After the
updating, the weights of all the templates are then normalized

to have the sum as one and the templates are finally sorted in
a descending order according to their normalized weights.

V. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate
the effectiveness of the proposed method. We introduce the
implementation details and the evaluation protocol in sec-
tions V-A and V-B, respectively, including the parameter
setup, baseline trackers, test sequences and evaluation crite-
ria. In section V-C, we evaluate the proposed method when
different layer architectures are used. The comparison results
against the other baseline trackers are presented in section V-D.

A. Implementation details

For each sequence, the four corner points of the target is
manually labeled in the first frame. Similar to [71], the state
variable zt consists of six affine transformation parameters.
We set the variance matrix of the importance distribution Σ =
[0.005, 0.0005, 0.0005, 0.005, 3, 3]T for all the sequences. By
applying affine transformation using z0 as the initial parame-
ters, we define the target template image as the first image
frame and then duplicate it ten times to form the target
template set. To learn the dictionary, we obtain a foreground
patch set by densely extracting 8 × 8 local patches from the
target template images with 4 pixels as the step length. The
background patch set is obtained by sampling 8 × 8 patches
around the target region. For all the experiments, we manually
set the number of particles to be N = 600, the number of basis
functions of the dictionaries Kf = Kb = 64, the regularization
parameter λ = 0.01 to achieve a tradeoff between the tracking
accuracy and speed. The proposed algorithm is implemented
in MATLAB and runs around 4 frames per second on a PC
with a 2.4 GHz Intel Core i5 processor and a 4GB memory.

B. Experiment Protocols

Recently, a large scale benchmark library2 for visual track-
ing was built by Wu et al. [1] and further extended [54], which
contains the source codes of most state-of-the-art trackers and
a large number of annotated test sequences. Most importantly,
they propose robust evaluation metrics, which are used to
reliably measure the performance of a tracker on different
challenging scenarios. In this work, we follow the evaluation
protocols reported in the literature. In particular, we choose all
the 100 test sequences from their dataset including different
tracking challenges such as illumination variation, low resolu-
tion, scale variation, occlusion, deformation, motion blur, fast
motion, in-plane rotation, out-of-plane rotation, out-of-view
and background clutter.

To make the comparisons fair, we deliberately chose two
state of the art sparse coding based trackers including the
L1 tracker using accelerated proximal gradient (L1APG) [72]
and the online robust non-negative dictionary learning (ON-
NDL) [73]. We also selected five latest trackers including
the deep learning based tracker (DLT) [74], Complex Cell
based Tracker (CCT) [52], the self-correction ensemble-based

2http://visual-tracking.net

http://visual-tracking.net
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tracking (SC-EBT) [75], the transfer learning based visual
tracking with Gaussian process regression (TGPR) [76], and
the Kernelized Correlation Filters based tracker (KCF) [6] for
comparisons. For these trackers, we run the publicly available
source codes on the benchmark in order to obtain their results.
Please note that the results reported here may be of slight
difference from the results reported in their original papers
due to the utilization of parameters.

Two frame based metrics widely used in tracking per-
formance evaluation are: 1) center location error, which is
defined as the Euclidean distance between the central location
of the tracked target and the manually labeled ground-truthed
position; 2) bounding box overlap which is the ratio of the
areas of the intersection and the union of the bounding box
indicating the tracked subject and the ground-truthed bounding
box. To measure the overall performance of a tracker on a test
sequence, success rate and precision score are adopted. The
former is computed as the percentage of image frames which
have a bounding box overlap larger than a given threshold.
The later is the percentage of image frames which have a
central position error less than a given threshold. In each
case, when multiple thresholds are used, a curve is drawn to
show how success rates or precision scores are affected by
different thresholds. These curves are namely Success plot
and Precious plot, respectively. In practical evaluations, we
average the curves of a tracker over all the sequences which
have the same challenge and show a curve for each challenge
item rather than a test sequence. In addition, we use the
area under curve (AUC) of the success plot to quantitatively
measure the overall performance of a tracker on a challenge
item.

The conventional way to evaluate trackers is to run a tracker
throughout a test sequence with an initialization from the
ground-truthed position in the first frame. However, we found
that the initialization usually affects the performance of a
tracker significantly. Therefore, it is necessary to test how
robust a tracker is against different initialization states. In [1],
Wu et al. proposed two ways to analyze a tracker’s robustness
against initialization: temporal robustness evaluation (TRE)
that perturbs the initialization by starting a tracker at different
frames and spatial robustness evaluation (SRE) that perturbs
the initialization spatially by starting a tracker at different
bounding boxes. In this work, we adopt the SRE for all the
comparison shown in this paper.

C. Comparison with different layer architectures

We compare different layer architectures on eight test se-
quences. First of all, we study whether or not the discrim-
inative sparse coding in the coding layer and the multiple
scale pyramid representation in the pooling layer help to
improve the tracking accuracy. To find out the benefits of
using different pyramid scales, we design seven experiments
with multiple pyramid scale s = {0}, s = {1}, s = {2},
s = {0, 1}, s = {0, 2} and s = {0, 1, 2}. For each scale, to
evaluate the benefits of using discriminative sparse coding, we
compare the proposed tracker using the discriminative basis
functions Vd and the one using the generic basis functions

that are learned using local patches extracted from the target
image via Eq. 3. The AUC of these experiments are shown
in Table I, where for each scale, the left column indicates the
results when the discriminative basis functions are used and
the right column refers to the results when the generic basis
functions are used. It clearly shows that for most of the test
sequences, pyramid scale s = {2} leads to the highest tracking
success rates. In the meantime, s = {0} (corresponding to no
pyramid structure) has the worst results. These results justify
that pyramid representation especially with a large scale helps
to achieve good visual tracking accuracy. From this table, we
also observe that using the discriminative basis functions in the
coding layer brings us better results than only using general
basis functions.

We further investigate whether or not all the five layers are
necessary for the proposed appearance model. We choose the
architecture with all the five layers as the basic architecture
and then remove or replace some of the operators used in the
basic architecture to form different architectures. For example,
if the whitening layer or the normalization layer is removed
from the basic architecture, we call it basic-Wno or basic-Nno,
respectively. If we replace the max operator in the rectification
layer with an absolute or square operator, we call them basic-
Rabs or basic-Rsq . If we replace the sum operator in the
pooling layer with a max operator, we call it basic-Pmax.
Table II shows the tracking success rates of such experiments
based on the first eight test sequences, from which we can see
that the basic architecture achieves the best accuracy on all
the test sequences. When the whitening layer is removed, the
tracking success rates on all the sequences witness significant
drops. The reason is that the whitening operator helps speedup
the convergence of the dictionary learning in the coding layer
and if it is removed, then the system accuracy degrades. From
the comparison of using different rectification operators, we
observe that the max operator outperforms both the absolute
and the square operators. As explained in the previous section,
the max operator increases the sparsity of the codes obtained
in the coding layer and hence reduces the influence of the
background. Finally, we also see that the sum pooling based
method outperforms the max pooling based.

D. Comparison against different methods

We compare the proposed method with seven trackers on
all the 100 sequences used in [54]. Figs. 3 and 4 show the
success plots and precious plots for all the involved trackers
over all the test sequences containing a specific challenge
(e.g., fast motion, occlusion) as well as the overall success
plots and precious plots over all the test sequences. Figs. 3(a),
3(b), 3(c), 3(d), 4(e), 4(f), 3(h), 3(i), and 3(j) show
the success plots of the studied trackers for the challenges
of fast motion, background clutter, motion blur, deformations,
illumination variations, in-plane rotation, occlusions, out-plane
rotation and out of view, respectively. Our tracker significantly
outperforms the other trackers with different thresholds.

Low resolution, fast motion and scale variation are particu-
larly challenging for visual tracking. As shown in Figs. 3(g),
3(a) and 3(k) (and also Figs. 4(g) and 4(a)), our tracker
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TABLE I
THE TRACKING SUCCESS RATES ON EIGHT TEST SEQUENCES BY THE PROPOSED TRACKER USING DIFFERENT PYRAMID SCALES AND DISCRIMINATIVE

SPARSE CODING OR GENERIC SPARSE CODING. FOR EACH SEQUENCE, THE BEST RESULT IS HIGHLIGHTED IN RED COLOR AND HEREAFTER.

s = {0} s = {1} s = {2} s = {0, 1} s = {0, 2} s = {1, 2} s = {0, 1, 2}
car4 0.37 0.19 0.38 0.21 0.57 0.39 0.36 0.21 0.80 0.61 0.89 0.68 0.57 0.37
david outdoor 0.28 0.21 0.32 0.25 0.95 0.85 0.75 0.59 0.69 0.59 0.76 0.57 0.44 0.34
david indoor 0.36 0.19 0.33 0.24 1.00 0.79 0.36 0.21 0.77 0.61 0.85 0.64 0.69 0.44
sylv 0.86 0.72 0.56 0.47 0.62 0.52 1.00 0.77 0.79 0.65 0.98 0.72 0.96 0.79
lemming 0.18 0.11 0.18 0.12 0.63 0.40 0.19 0.13 0.35 0.21 0.45 0.35 0.57 0.41
box 0.71 0.62 0.86 0.77 0.95 0.85 0.92 0.79 0.63 0.50 0.69 0.58 0.92 0.72
basketball 0.21 0.14 0.38 0.21 0.76 0.58 0.42 0.31 0.55 0.46 0.52 0.37 0.47 0.35
faceocc2 0.82 0.65 0.75 0.59 0.70 0.53 0.83 0.69 1.00 0.79 0.84 0.75 0.83 0.62

TABLE II
THE TRACKING SUCCESS RATES ON THE EIGHT TEST SEQUENCES BY THE PROPOSED TRACKER USING DIFFERENT LAYER ARCHITECTURES.

basic basic-Wno basic-Rabs basic-Rsq basic-Nno basic-Pmax

car4 0.89 0.60 0.73 0.71 0.80 0.81
david outdoor 0.95 0.69 0.75 0.80 0.85 0.93
david indoor 1.00 0.77 0.84 0.81 0.90 0.94
sylv 1.00 0.79 0.86 0.81 0.90 0.92
lemming 0.63 0.46 0.52 0.51 0.55 0.51
box 0.95 0.77 0.86 0.81 0.89 0.87
basketball 0.76 0.60 0.66 0.70 0.72 0.68
faceocc2 1.00 0.72 0.90 0.86 0.92 0.94

is slightly worse than TGPR, which may be caused by our
dictionary learning methods on sampled patches with size
8 × 8. For low resolution or blurred videos caused by fast
motion, the sampled patches will contain few information,
which may cause the learned dictionaries less discriminative.

In Table III, we provide the AUC values for all the in-
volved trackers per each challenging scenario and the overall
performance on the whole dataset. As we can see, our tracker
achieved the best AUC in nine out of eleven challenges. In
terms of the overall AUC, our tracker outperforms all the other
trackers. Precious scores of the studied trackers are shown in
Table IV, from which we can see that our tracker achieved the
best AUC in ten out of eleven challenges and the best overall
AUC.

1) Comparison on tracking speed: To compare the com-
putational efficiency, we compute the time of running the
compared trackers on the car4 test sequence and reported the
tracking speeds (frames / second) in Table V. From this table,
we can see that our tracker can achieve about 4 frames per
second. Although it is not real time, it is still faster than the
ONNDL tracker and the SC-EBT tracker. With code optimi-
sation in C++ or running on GPU, our tracker has potential to
achieve real-time tracking. To see the computational cost of
each step of our tracker, we also reported the running time of
each step of our tracker on the car4 sequence. From Table VI,
we can see that the most computational expensive step is the
coding step.

2) Discussion: A number of biologically inspired appear-
ance models that simulate the hierarchical pathway in visual
cortex have been extensively studied in the last two decades,
and these existing appearance models were mainly developed
for object recognition. The challenge in object recognition
is to recognize the same class of objects in the presence
of different object transformation such as translation, scale,
and pose/view/illumination changes. To achieve the tasks, the

appearance models for object recognition are required to be
invariant to translation, scale, view and illumination changes.
Visual tracking indeed is a recognition problem but it has
its own characteristics. For example, in a standard particle
filter based tracker, the appearance model has not considered
scale changes and people can take advantage of the temporal
consistence constraint to identify the size changes of the
target. This makes appearance models used for visual tracking
different from those used for object recognition. In particular,
visual tracking is a binary classification problem. In this work,
motivated by the success of using the biologically inspired
appearance models for object recognition, we developed a bio-
logically inspired appearance model for visual tracking with an
emphasis on both discriminativity and appearance invariance.
We take advantage of the established hierarchical architecture
in visual cortex while introducing the discriminative sparse
coding and spatial pyramid representation to the tracking
system. Although the proposed appearance model is evaluated
in the context of visual tracking, the proposed framework is
easy to be extended to other multiple-class classification tasks
with well-aligned samples.

VI. CONCLUSION AND FUTURE WORK

In this paper, motivated by the success of the hierarchical
organization of the primary visual cortex in object recogni-
tion, we have proposed a biologically inspired appearance
model for robust visual tracking. The proposed appearance
model consists of five layers, simulating the visual informa-
tion processing pathway from retina to complex cells of the
primary visual cortex. Different from the existing biologically
inspired appearance models reported in the literature, which
over-emphasize the invariance to translation, scale and view
changes while ignoring the discriminative ability, the proposed
model made a good compromise between the discriminative
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(a) Fast motion
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(b) Background clutter
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(c) Motion blur
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(d) Deformation
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(e) Illumination variations
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(f) In-plane rotation
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(g) Low Resolution
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(h) Occlusion
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(i) Out-of-plane rotation
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(j) Out-of-View
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Fig. 3. Success plots for the challenges considered in this work.
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(b) Background clutter
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(c) Motion blur
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(d) Deformation
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(e) Illumination variations
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(f) In-plane rotation
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(g) Low resolution
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(h) Occlusion
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(i) Out-of-plane rotation
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(j) Out-of-View
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(k) Scale variation
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Fig. 4. Precision plots for the challenges considered in this work.
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Ours L1APG ONNDL DLT CCT SC-EBT KCF TGPR
Occlusion 0.514 0.339 0.363 0.386 0.372 0.400 0.424 0.443
Illumination variation 0.428 0.215 0.242 0.292 0.341 0.331 0.328 0.400
Scale variation 0.412 0.342 0.341 0.376 0.377 0.428 0.438 0.454
Background clutter 0.512 0.274 0.295 0.304 0.356 0.373 0.345 0.425
Deformation 0.522 0.280 0.341 0.316 0.320 0.385 0.358 0.422
Fast motion 0.454 0.283 0.350 0.288 0.303 0.275 0.288 0.487
Motion blur 0.492 0.255 0.328 0.244 0.275 0.242 0.267 0.477
In-plane rotation 0.472 0.339 0.342 0.363 0.385 0.397 0.398 0.467
Out-of-plane rotation 0.467 0.316 0.334 0.345 0.382 0.390 0.387 0.448
Out of view 0.589 0.309 0.394 0.382 0.398 0.365 0.380 0.492
Low resolution 0.312 0.297 0.314 0.0.304 0.0.179 0.222 0.260 0.458
Overall 0.485 0.335 0.360 0.355 0.366 0.398 0.3405 0.466

TABLE III
AUC COMPARISON OF THE STUDIED TRACKERS PER EACH CHALLENGING SCENARIO. NOTE THE LAST ROW IS NOT SIMPLY THE AVERAGE OF THE

OVERALL ROWS.

Ours L1APG ONNDL DLT CCT SC-EBT KCF TGPR
Occlusion 0.750 0.454 0.496 0.515 0.513 0.524 0.563 0.564
Illumination variation 0.637 0.284 0.316 0.364 0.478 0.425 0.409 0.488
Scale variation 0.642 0.481 0.515 0.511 0.573 0.563 0.580 0.616
Background clutter 0.711 0.348 0.389 0.393 0.487 0.488 0.449 0.505
Deformation 0.724 0.358 0.472 0.426 0.446 0.502 0.469 0.535
Fast motion 0.602 0.334 0.418 0.0.341 0.382 0.310 0.329 0.605
Motion blur 0.621 0.293 0.391 0.284 0.356 0.271 0.301 0.600
In-plane rotation 0.697 0.473 0.478 0.502 0.563 0.529 0.529 0.627
Out-of-plane rotation 0.700 0.446 0.476 0.476 0.573 0.526 0.520 0.596
Out of view 0.709 0.333 0.416 0.450 0.434 0.399 0.431 0.539
Low resolution 0.381 0.376 0.445 0.391 0.198 0.263 0.306 0.538
Overall 0.701 0.459 0.508 0.478 0.531 0.527 0.539 0.608

TABLE IV
PRECIOUS SCORES FOR THE STUDIED TRACKERS PER EACH CHALLENGING SCENARIO. NOTE THAT THE PRECIOUS SCORE IS COMPUTED FOR THE

THRESHOLD VALUE OF 20.

Ours L1APG ONNDL DLT CCT SC-EBT KCF TGPR
Tracking speed 4 25 0.5 5 9 0.8 120 0.59

TABLE V
AVERAGE TRACKING SPEED (FRAMES PER SECOND) TESTED ON THE car4 SEQUENCE.

Whitening Coding Rectification Normalization Pooling distance computation
Running time (in second) 20.83 87.56 12.16 18.89 15.92 23.26

TABLE VI
RUNNING TIME (IN SECONDS) OF EACH STEP TESTED ON THE car4 SEQUENCE.

ability and its robustness against appearance variations. Exper-
imental results show that the proposed model is reasonable and
achieved promising performance. Comparison results against
several state-of-the-art tracking methods also validated the
effectiveness of the proposed method.

The proposed appearance modelling method was inspired
by biological findings in object recognition of still images and
achieved desired tracking accuracy for video applications. Our
work disregarded the dynamic nature of cortical computation
and the representation of cortical information over time. In
the future work, we will develop learning tools to model the
temporal relationship between cortical responses, which may
further improve the tracking accuracy.
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