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Abstract

Extending the popular HAR model with additional information channels to

forecast realized volatility of WTI futures prices, we show that machine

learning-generated forecasts provide better forecasting quality and that portfo-

lios that are constructed with these forecasts outperform their competing

models resulting in economic gains. Analyzing the selection process, we show

that information channels vary across forecasting horizon. Variable selection

produces clusters and provides evidence that there are structural changes with

regard to the significance of information channels.
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1 | INTRODUCTION

As a tangible quantification of uncertainty, the measur-
ing, understanding, and modeling of volatility is a corner-
stone of comprehending commodity markets in their

functionality, price discovery, and structure of connected-
ness to other markets. Commodity markets are inevitably
linked to the economic activity and well-being of global
and local economies as they embody the backbone for
supply and demand of primary materials and feedstock
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for production, biomaterial for agricultural and food
industries, and energy commodities among others. Energy
commodity markets in particular play an important role
in research as their understanding is of utmost importance
to pricing, security, and planning of supply, as well as pol-
icy design and implications. The link between oil prices
and economic growth is well documented and discussed
in literature (Charfeddine et al., 2020; Hamilton, 2003;
Kilian, 2009). In this study, we present novel evidence on
the impact of exogenous information channels on the
realized volatility of crude oil futures prices. Building on
the popular heterogeneous autoregressive (HAR) model
by Corsi (2009), we show that models incorporating vari-
ables that map the equity channel, sentiment, or foreign
exchange (FX) market volatility result in more accurate
predictions of realized volatility than the baseline HAR.
In addition, we find that machine learning (ML) variants
of the HAR model outperform baseline HAR models by
selecting the most useful exogenous predictors from the
set of different information channels; both in view of fore-
casting performance and economic gain. We also analyze
in detail the time variation and importance of variables to
predict oil price volatility. When comparing the variable
selection across forecasting horizons, we find a positive
relation between forecasting horizon and number of dif-
ferent information channels. Looking at the variable
importance of those channels, we find particularly FX to
adds to the information contained in past realized
volatility.

We contribute to the literature on the connectedness
of crude oil markets. It is argued that there exists an
information transmission between the volatility of mar-
kets leading to co-movement of the global oil market
(Kaufmann & Banerjee, 2014; Luo et al., 2023;
Reboredo, 2011). In addition, WTI is taking a leading
role as global benchmark, and other energy markets
such as Brent crude oil follow these movements (Elder
et al., 2014; Klein, 2018). Adding to the complexity of
this research, studies show that exogenous factors and
information channels that cannot be directly associated
with energy markets are also affecting price and volatil-
ity behavior (e.g., Nguyen & Walther, 2020). Notably,
other information channels, such as equity markets
(Degiannakis & Filis, 2017; Haugom et al., 2014; Luo
et al., 2020) or Google search volume (Afkhami
et al., 2017), are shown to provide valuable information
to forecast oil volatility with extended HAR models.

In contrast to the extent literature, we test the impact
of volatility of different equity markets (e.g., Dow Jones
Industrial, the CAC40, and the S&P 500, commodity
futures markets(e.g., Natural Gas and Gold), FX markets,
sentiment, volatility indicators (e.g., OVX and VIX), and,
Google trends (e.g., oil price-related search terms) on

realized volatility of the WTI crude oil. As we utilize an
overall number of 28 exogenous channels from five cate-
gories resulting in a total of 84 exogenous HAR factors,
model parameter parsimony is—evidently—forgone. We
extend the baseline HAR model with each category of
exogenous variables separately. Then, we introduce a
“kitchen sink” approach to obtain the last HAR extension
in which we simultaneously include all exogenous vari-
ables. Hence, the number of parameters in each HAR
extension ranges from 16 to 31 for separated channels
and 88 for the model incorporating all channels since
each channel element is included in daily, weekly, and
monthly averages. These highly parameterized models
are predestined to be combined with ML methods to filter
for the most relevant contributing factors as well as to
overcome multicollinearity within and across informa-
tion channels. Additionally, we are tracking the selection
of variables across different forecasting horizons for infer-
ence on possibly time-varying impact of equity and senti-
ment channels on forecasts of realized volatility of crude
oil futures prices.

In addition, we contribute to the literature on model-
ing and forecasting the (realized) volatility of oil prices. It
is well documented that crude oil volatility behavior is
characterized by its time-varying nature, including struc-
tural breaks or other time-varying effects (Fattouh, 2010;
Fong & See, 2002; Klein & Walther, 2016; Nomikos &
Pouliasis, 2011). This motivates the adaption of models
covering these properties. In contrast, some studies
show that more sophisticated HAR models based on
stylized volatility facts do not necessarily outperform
HAR version without extensions or exogenous factors
(Degiannakis et al., 2022; Prokopczuk et al., 2016;
Sévi, 2014). Related to our paper, Ma et al. (2018) and
Zhang, Wei, et al. (2019) show that ML improves volatil-
ity forecasts for crude oil prices using a large set of exoge-
nous predictors. We extend these studies by comparing
various popular ML-based variable selection methods on
large predictor sets for crude oil forecasts and their eco-
nomic gains. These methods include the widely applied
LASSO and Bayesian Model Averaging (BMA) as well as
novel approaches to HAR models with Bootstrap Aggre-
gation and Bagging (BAG) and Stochastic Search Variable
Selection (SSVS). In this regard, we also contribute to the
general literature of modeling and forecasting with HAR
models.

The remainder of the paper is structured as follows.
Section 2 introduces HAR models, their extensions, and
the variable or adaptive selection methodologies of the
study. Section 3 describes the data sets and presents some
preliminary analysis of exogenous information channels.
Section 4 reports and discusses the results of the empiri-
cal study, and Section 5 concludes.
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2 | MODEL AND METHODOLOGY

2.1 | Heterogeneous autoregressive
volatility models with adaptable predictors

In order to measure time-varying daily volatility based on
the available high-frequency data sets, we calculate the
realized volatility RVt of day t as

RVt ¼
Xm
i¼1

r2t,i, ð1Þ

where m is the number of observed intraday returns rt,i
with i¼ 1,…,m. This ith intraday return of day t is calcu-
lated as logarithmic difference of intraday prices as

rt,i ¼ 100� log Pt,i� log Pt,i�1ð Þ,

where Pt,i and Pt,i�1 are two consecutive intraday prices.
We choose to sample prices at 5-min intervals.1

We follow the approach of Corsi (2009) and exploit
the autoregressive character of daily realized volatility by
cascading its memory structure in a short-, medium-, and
long-term component that yields the HAR model for real-
ized volatility. Our baseline HAR model uses the specifi-
cations outlined in Corsi and Renò (2012). Here, we run
a different regression model for each forecasting horizon
h. This way, long-term forecasts do not have to rely on
the relative weights for 1-day-ahead predictions for h>1
(Ederington & Guan, 2010). In particular, we define

log RV hð Þ
tþh ¼

1
h

Xh
j¼1

log RVtþh�jþ1 and ð2Þ

log RV hð Þ
t ¼ 1

h

Xh
j¼1

log RVt�jþ1, ð3Þ

where h� 1,…,22f g denotes the days-ahead forecasting
horizons. We distinguish logRV hð Þ

tþh, which is the average
realized volatility for time tþ1 to tþh, from logRV hð Þ

t ,
which is the average realized volatility for time t�hþ1
to t. Lastly, logRVt is the realized volatility at time t and
equivalent to logRV 1ð Þ

t .
Our HAR baseline model reads as

log RV hð Þ
tþh ¼ β0þβ1 log RVtþβ2 log RV 5ð Þ

t þβ3 log RV 22ð Þ
t

þu hð Þ
tþh,

ð4Þ

where β0, β1, β2, and β3 are real-valued coefficients corre-
sponding to the intercept and the short-, medium-, and

long-term autoregressive impact of realized volatility and
u is an i.i.d. error term with zero mean. In the standard
HAR defined in Equation (4), RVt then refers to the real-
ized volatility of the previous day, RV 5ð Þ

t refers to the
average realized volatility over the past 5 days, and
RV 22ð Þ

t refers to the 22-day average.
As outlined in the introduction, there exist numerous

extensions to the HAR model, in particular in view of
modeling realized volatility of commodities.2 In this
research, we focus on an extension of the HAR model
framework with exogenous factors following the notion
of Zhang, Ma, and Wang (2019) and Luo et al. (2022).

We consider five classes of exogenous predictors that
might impact the volatility behavior of crude oil futures
prices. The first class includes equity market volatilities
of eight major economies. The second class refers to mar-
ket sentiment and uncertainty measures. The third and
fourth classes of exogenous variables comprise realized
volatility of related commodity futures—with a documen-
ted economic link to crude oil futures—and foreign cur-
rency (FX) markets, respectively. The last class includes a
constructed sentiment index based on the popularity of
different Google search queries. The details on these
exogenous predictors are described in detail in the data
description in Section 3.

We extend the basic HAR of Equation (4) with lagged
daily, weekly, and monthly aggregates of exogenous vari-
ables Xk,t as follows:

log RV hð Þ
tþh ¼ β0þβ1 log RVtþβ2 log RV 5ð Þ

t þβ3 log RV 22ð Þ
t

þ
XNC

k¼1

α1,kX
C
k,tþ

XNC

k¼1

α2,kX
C, 5ð Þ
k,t

þ
XNC

k¼1

α3,kX
C, 22ð Þ
k,t þu hð Þ

tþh:

ð5Þ

where NC refers to the number of exogenous predictors
from category C and α1,k, α2,k, and α3,k for k¼ 1,…,N1 are
the corresponding coefficients of the daily, weekly, and
monthly averages or aggregates of the kth component of
exogenous predictor category C.

Using model Equation (5) in combination with our
predictor classes, we obtain five different models, which
we label HAR-Equity, HAR-Sentiment, HAR-Commodity,
HAR-FX, and HAR-Google. For HAR-Equity, we use real-
ized volatilities sampled at a matching 5-min interval. We
employ squared daily returns of commodity futures and
FX rates as well as the US dollar index to proxy volatilities
of commodity futures and FX markets. The weekly and
monthly volatilities of commodity futures and FX markets
are defined as r2, 5ð Þ

i,t and r2, 22ð Þ
i,t , which are computed in an
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identical way as the weekly and monthly realized
volatilities.

In addition to the aforementioned extensions of the
baseline HAR model using different asset classes and
information channels, we employ a model containing
all exogenous factors of this study, which we label
HAR-All. This HAR-All contains 84 exogenous param-
eters, three endogenous parameters, and the intercept.
As we use different ML approaches for exogenous vari-
able selection, the HAR-All poses an additional oppor-
tunity to compare these differing techniques in terms
of forecasting performance and economic valuation.
For further robustness of our findings, we also employ
a model class using the information from the first
principal component of each asset/information channel
for each time horizon. This model class is labeled
HAR-PCA.

In order to have a very parsimonious benchmark, we
also include an autoregressive (AR) model with lag
1. Doing so allows us to assess to which extent additional
and aggregated information adds predictive power over
the information already present in the last observed real-
ized volatility.

Finally, we also add an augmented AR(1) model,
AR(1)-X, which includes the additional information sets
similar to the extended HAR in Equation (5).

2.2 | HAR models with variable selection
approaches

There exist some popular approaches in literature with
regard to selecting predictors and shrinking variable
dimensions. Our motivation for implementing a range
of these methodologies is twofold. First, information
processing is computationally costly, and the inclusion
of insignificant predictors leads to an increasing need
of information processing capacity. Investors and
researchers alike prefer to focus on relevant informa-
tion channels via variable selection schemes to simplify
economic models (Gabaix, 2014; Luo & Young, 2016;
Zhang, Ma, & Wang, 2019). Second, many exogenous
and powerful predictors, such as macroeconomic and
financial market indicators, are highly correlated,
which can lead to an over-fitting problem and oversha-
dowing of significant parameters through present mul-
ticollinearity. With variable selection methods, only the
most relevant variables are selected as predictors, thus
reducing the risk of over-fitting issues and improving
the forecast accuracy (Campbell & Slack, 2008;
Korobilis, 2017; Korobilis & Koop, 2020). Analyzing
the systematic selection of variables also allows us to
identify breakpoints offering additional insight on the

variability of the statistical and economical benefit of
including exogenous predictors in HAR frameworks.

As outlined in the introduction, we construct a set of
competing HAR models based on several variable selec-
tion approaches, including the well-known LASSO,
BMA, BAG, and SSVS. These approaches can be further
categorized as Bayesian algorithms that include predictor
selection with BMA and SSVS approaches and ML with
LASSO and BAG falling in this category. We briefly intro-
duce the selection approaches and use the abbreviation
for the selection method as prefix to the respective HAR
variant in what follows.

For the LASSO-HAR, we employ the R-package
“glmnet” of Friedman et al. (2010) to compute and select
the coefficients of the HAR models and its extensions
introduced above. The coefficients are obtained by
solving

bβLASSO ¼ argmin
β0,γ

1
2T

XT
t¼1

yi,t�β0�Zt�1β
� �2þλ

X3K
j¼1

βj
�� �� !

,

where Zt�1 is a K-dimensional column vector of all the
predictor variables in the different HAR models above
and β is a K-dimensional row-vector with the respective
coefficients. The non-negative regularization or penalty
parameter λ is selected given the minimum mean cross-
validated error. Eventually, bβLASSO is the K-dimensional
vector of the estimated coefficients from the LASSO
regression.

The BMA tackles the problem of model uncertainty
and model selection from a Bayesian perspective. Over a
set of models ℳi for i¼ 1,…,2K (i.e., all combinations of
K predictors), the BMA determines the posterior proba-
bility of each model. The approach then averages the
models using their posterior probability. For the BMA-
HAR model, we follow the setting of Fern�andez et al.
(2001). We specify the g-prior with g¼ 1=K2. Markov-
chain Monte Carlo methods are used for the estimation
of the BMA-HAR models according to Madigan et al.
(1995) and Dellaportas et al. (2002).

The BAG approach reduces the variance of forecasts
by averaging the randomness of variable selection and
has been applied widely in the areas of macro and finan-
cial forecasting (Audrino & Medeiros, 2011; Huang &
Lee, 2010; Inoue & Kilian, 2008; Lee & Yang, 2006;
Stock & Watson, 2012). With bagging, the bootstrap
method is employed to generate a large amount of sam-
ples from the original data to re-evaluate the selection of
predictors and to produce the bootstrap replications of
forecasts and the forecast realized volatilities are obtained
by averaging the forecasting values based on the boot-
strap samples. Particularly, we use the same setting and
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critical values according to Inoue and Kilian (2008) and
Ribeiro (2016). The optimal predictor set is data-
dependent in the sense of the pre-tests in the extended
linear HAR model above. The bagging approach is pro-
ceeded as follows:

• Arrange the set of predictors Zt, t¼ 2,…,T, in the form
of a matrix M of dimension T�1ð Þ�K, where K is the
number of predictors in Zt .

• Create bootstrap samples of the form Z0�
ið Þ2,…,Z0�

ið ÞT
n o

,
for i¼ 1,…,B, by drawing blocks of m rows of M with
replacement, where the block size m is selected to cap-
ture the possible dependence in the error term of the
realized volatility for oil futures. Based on Ribeiro
(2016), we choose B¼ 100 replications and a block size
of m¼ T1=4

� �
for the moving block bootstrap procedure.

• Re-estimate the model with the B replicative bootstrap
data of the selected predictors, and then use the esti-
mated parameter as well as the original data of predic-
tors to forecast the realized volatility.

• The final forecast is derived by averaging these boot-
strapped forecasts.

For the SSVS-HAR, we use the full hierarchical specifica-
tion of the SSVS prior according to George and
McCulloch (1993) and in a slightly different context
according to Korobilis (2013) as follows:

p βijξið Þ� 1� ξið ÞN 0,τ20
� �þ ξiN 0,τ21

� �
,

P ξijπð Þ�Bernoulli πið Þ:

These priors are specified with π¼ 0:5, τ0 ¼ 0:001,
and τ1 ¼ 4. Given these priors, the posterior results of the
parameters β,ξ, and σ2 are sampled with the Gibbs sam-
pling method based on their conditional posterior
distributions.

Although LASSO and the BAG approaches reduce
dimensionality of the predictor set, the BMA and SSVS
use a weighting of predictors to select and emphasize the
most important variables. The above selection methods
are applied to Equation (4) and the information class-
model combinations of (5). This includes the baseline
HAR model and necessarily the HAR-RV components in
each HAR extension to allow for a deselection of endoge-
nous variance measures.

2.3 | Forecast evaluation

We measure the out-of-sample performance for three dif-
ferent forecast horizons, that is, short-term (1 day ahead,
h¼ 1), medium-term (1 week ahead, h¼ 5), and long-
term (1 month ahead, h¼ 22). From the full data set, we

use 2/3 as in-sample or initial training set and use the
remainder as out-of-sample set.

The 1-day-ahead forecasts are obtained by re-
estimating the models on an expanding training set. For
the 5- and 22-day-ahead forecasts, we follow Corsi (2009)
and Corsi and Renò (2012) and estimate the aggregated
or averaged realized volatility. Alternatively, one could
also forecast h-steps ahead by iterating the model
(Marcellino, 2006). However, this forecast method is seen
to be less favorable given a propagation of forecast errors
due to iterating 1-day-ahead forecasts (Ederington &
Guan, 2010; Sizova, 2011).

In what follows, we evaluate the set of combinations
of the HAR model with a variable selection approach and
different sets of exogenous variables presented in
Section 2, both with respect to forecast precision and eco-
nomic significance.

2.3.1 | Statistical evaluation

We evaluate the forecast accuracy by the mean squared
error (MSE) and mean absolute error (MAE) loss func-
tions that read

MSE¼T�1
XT
t¼1

RVt� cRVt

� �2
,

MAE¼T�1
XT
t¼1

RVt� cRVt

��� ���,
where RVt is the actual realized variance and cRVt is the
forecasted realized variance. Here, T refers to the out-
of-sample number of observations. We then statistically
test whether a model outperforms its peers, by employing
the Model Confidence Set (MCS) by Hansen et al. (2011).3

In addition, we use the out-of-sample R2
OS to measure

the proportion of variance explained by the forecasts
and to overcome the scale-depended drawbacks for the
loss functions above (Blair et al., 2001; Campbell &
Slack, 2008). The R2

OS is computed as

R2
OS ¼ 1�

PT
t¼1

cRVt�RVt

� �2
PT

t¼1 RVt�RV
� �2 ,

and can be compared with the well-known in-sample R2.

2.3.2 | Economic evaluation

In order to assess the economic relevance of the forecasts,
we calculate the economic gain of the variable selection

LUO ET AL. 5



approaches over the standard AR(1) models. Particularly,
we consider an investor who has the mean–variance
utility:

U Rp
� �¼E Rp

� ��1
2
γVar Rp

� �

where γ is the risk-aversion rate. The return of the inves-
tor's portfolio is denoted Rp, E Rp

� �
is the expected portfo-

lio return, and Var Rp
� �

is the portfolio variance.
The risk-averse investor allocates a budget to a

portfolio comprising a risky asset and a risk-free asset.
Following Campbell and Thompson (2008), Ferreira and

TABLE 1 Summary statistics and preliminary analyses of all variables with n¼ 2596 observations spanning an observation period from

January 5, 2010, to May 11, 2018.

Mean StD Skewness Kurtosis LB Q 5ð Þ LB Q 10ð Þ LB Q 22ð Þ ADF

Panel A: Oil price volatility

WTI 1.6437 2.1386 5.9846 72.07 1328.90*** 2154.52*** 3902.56*** �22.79***

Panel B: Stock market volatility

DJI 0.6906 1.7313 20.2846 638.60 677.82*** 915.44*** 1172.76*** �28.99***

CAC40 1.0420 1.4011 6.4217 68.54 3007.06*** 4644.45*** 6735.51*** �16.00***

FTSE 0.8330 1.7036 19.2349 584.26 629.27*** 937.99*** 1313.33*** �29.36***

DAX30 1.0383 1.4757 6.4259 68.48 3390.22*** 5270.25*** 8212.72*** �15.70***

HSI 0.5594 0.7255 8.4951 109.85 968.97*** 1338.56*** 1836.23*** �21.77***

NIK225 0.7241 1.4659 9.6691 136.76 830.84*** 1125.37*** 1358.30*** �25.09***

S&P500 0.6808 1.4255 11.5266 232.55 1476.86*** 2132.20*** 3010.69*** �23.51***

SSEC 1.3308 2.8446 7.5797 79.72 3647.71*** 5241.38*** 8480.71*** �18.81***

ESTOXX 1.2290 1.9335 12.4211 283.72 1456.65*** 2210.27*** 3167.91*** �22.29***

Panel C: Commodity market volatility

Natural gas 7.3079 15.1738 6.7816 78.48 101.62*** 150.39*** 245.00*** �35.78***

Gold 1.0719 3.2044 15.7551 399.87 43.02*** 66.20*** 124.05*** �37.66***

Corn 3.0175 14.3666 34.4336 1416.36 1.42 3.87 5.37 �43.39***

Soybeans 1.9011 5.9385 16.4822 402.11 12.74** 25.52*** 70.26*** �41.38***

Panel D: Currency market volatility

USD Ind 0.2154 0.4035 5.0454 43.70 39.98*** 75.60*** 142.44*** �34.35***

EUR/USD 0.3441 0.6227 3.8660 23.73 53.34*** 110.52*** 221.31*** �34.23***

YEN/USD 0.3815 0.9172 6.8758 67.78 29.96*** 52.48*** 101.66*** �36.96***

YUAN/USD 0.0218 0.0992 20.0454 577.77 152.56*** 181.70*** 209.26*** �34.38***

RUB/USD 1.1339 7.4884 25.6058 751.43 872.65*** 1046.20*** 1174.03*** �23.73***

GBP/USD 0.3301 1.6039 37.3447 1585.73 101.01*** 111.08*** 115.10*** �37.47***

Panel E: Sentiment variables

GFSI 86.6074 8.2043 0.3545 1.65 10590.41*** 21029.28*** 45525.06*** 0.67

VIX 17.1377 5.9161 1.6643 6.36 8783.62*** 15907.39*** 29015.25*** �2.18**

OVX 33.3028 10.6372 0.8036 3.78 9888.71*** 18927.99*** 37680.58*** �1.29

EPU 105.9849 62.8497 1.5436 6.41 3500.21*** 6109.56*** 11052.43*** �10.19***

Panel F: Google search volume

G1: “Oil Production” 16.8724 11.5640 1.9246 10.54 2415.77*** 4227.39*** 7041.84*** �13.36***

G2: “Financial Crisis” 28.0232 12.8161 1.1214 4.89 7446.00*** 13463.94*** 22717.45*** �4.96***

G3: “Oil Demand” 12.2505 13.1789 1.3274 5.76 770.13*** 1373.19*** 2242.12*** �22.37***

G4: “Oil Price” 14.8950 13.7390 2.0530 8.77 9068.64*** 16746.01*** 31571.58*** �4.26***

G5: “OPEC Conference” 2.8353 7.9100 4.6590 36.03 171.30*** 287.13*** 434.10*** �35.15***

**Statistical significance at 5% level.
***Statistical significance at 1% level.
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Santa-Clara (2011), and Neely et al. (2014), the optimal
portfolio weights, based on information at time t for allo-
cations at time tþ1, should be

bwt ¼ 1
γ

brtþ1bσ2tþ1

 !
,

where brtþ1 is the forecasted excess return of the oil
futures based on a moving average with a 1-year
(256 trading days) rolling window. The forecasted vari-
ance bσ2tþ1 is derived from the various combinations of the
AR and HAR models and variable selection methods pre-
sented in Section 2. In particular, we calculate the portfo-
lio weights at the end of each month, using the predicted
next month's variance from the various 22-day-ahead
models. We repeat the process until the end of our
out-of-sample period. Then, the portfolio return at time
tþ1 is given by

Rp,tþ1 ¼ bwtrtþ1þRf
tþ1,

where rtþ1 and Rf
tþ1 are the excess return of the WTI

futures and the risk-free return of a 5-year US treasury
note, respectively.

To assess the economic value, we follow Fleming
et al. (2001) and Fleming et al. (2003). Based on the qua-
dratic utility

U rp,t,γ
� �¼ 1þ rp,t

� �� γ

2 1þ γð Þ 1þ rp,t
� �2

with risk aversion γ and portfolio excess return rp,t, we
determine the economic value with the constant Δ
between two portfolios such that

XT
t¼T1þ1

U rp1,t
� �¼ XT

t¼T1þ1

U rp2,t�Δ
� �

:

The greater Δ is, the more return a risk-averse inves-
tor is willing to sacrifice to switch from portfolio p1,
representing a benchmark AR(1) model, to p2 being a
HAR/variable selection combination. We follow the liter-
ature and use two levels of risk aversion rate for the
investor, the mild risk aversion rate γ¼ 1 and the strong
risk aversion rate γ¼ 10.

3 | SAMPLE AND DATA

In this study, we make use of high-frequency intraday
data of WTI futures in 5-min resolution. This data is
obtained from the Tick Data Database. We choose the
most liquid crude oil futures contract instead of a fixed
maturity to avoid any price and volatility distortion due
to rollover processes.

Following Degiannakis and Filis (2017), we include
five different classes of exogenous factors. The first group
referring to equity market volatility comprises indices for
the USA (S&P 500 and DJI), Germany (DAX30), France
(CAC40), UK (FTSE), Hong Kong (HSI), Japan
(Nikkei225), and China (SSEC), as well as the European
Stock index (STOXX50). The second group includes

FIGURE 1 Realized volatility of WTI futures prices on daily resolution from January 5, 2010, to May 11, 2018, calculated based on

Equation (1).
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TABLE 2 Statistical evaluations of various volatility models for one-step forecasts.

Model MSE MAE R2
OS

AR(1) 3.3568 (0.1558) 1.1461 (0.0125) 0.5492

HAR 2.7912 (0.5952) 1.0142 (0.0938) 0.6251

LASSO-HAR 3.0235 (0.3811) 1.0271 (0.0938) 0.5939

BMA-HAR 2.9122 (0.3811) 1.0088 (0.2217) 0.6089

BAG-HAR 2.7914 (0.5952) 1.0142 (0.0938) 0.6251

SSVS-HAR 2.8062 (0.3811) 1.0075 (0.0938) 0.6231

AR(1)-Equity 3.8988 (0.1558) 1.1875 (0.0938) 0.4764

HAR-Equity 2.9388 (0.3811) 1.0413 (0.0938) 0.6053

LASSO-HAR-Equity 2.9864 (0.3811) 1.0215 (0.0938) 0.5989

BMA-HAR-Equity 5.5407 (0.3811) 1.0915 (0.0938) 0.2559

BAG-HAR-Equity 2.7979 (0.3811) 1.0019 (0.0988) 0.6242

SSVS-HAR-Equity 2.8050 (0.3811) 1.0078 (0.0938) 0.6233

AR(1)-Sentiment 3.3205 (0.1558) 1.1425 (0.0125) 0.5540

HAR-Sentiment 2.7944 (0.4838) 1.0040 (0.0938) 0.6247

LASSO-HAR-Sentiment 2.9876 (0.3811) 1.0217 (0.0938) 0.5987

BMA-HAR-Sentiment 2.7981 (0.5952) 1.0024 (0.0938) 0.6242

BAG-HAR-Sentiment 2.7868 (0.5952) 1.0080 (0.0938) 0.6257

SSVS-HAR-Sentiment 2.8070 (0.3811) 1.0073 (0.0938) 0.6230

AR(1)-Commodity 3.3389 (0.1558) 1.1389 (0.0091) 0.5516

HAR-Commodity 2.8099 (0.3811) 1.0211 (0.0938) 0.6226

LASSO-HAR-Commodity 3.0269 (0.3811) 1.0253 (0.0938) 0.5935

BMA-HAR-Commodity 2.7984 (0.4838) 1.0139 (0.0938) 0.6242

BAG-HAR-Commodity 2.7975 (0.3811) 1.0150 (0.0938) 0.6243

SSVS-HAR-Commodity 2.8054 (0.3811) 1.0078 (0.0938) 0.6232

AR(1)-FX 3.3670 (0.1558) 1.1546 (0.0325) 0.5478

HAR-FX 3.2294 (0.3811) 1.0521 (0.0938) 0.5663

LASSO-HAR-FX 2.9660 (0.3811) 1.0187 (0.0938) 0.6017

BMA-HAR-FX 2.7426 (0.5952) 1.0131 (0.0938) 0.6317

BAG-HAR-FX 2.7843 (0.5952) 1.0028 (0.0953) 0.6261

SSVS-HAR-FX 2.8035 (0.3811) 1.0075 (0.0938) 0.6235

AR(1)-Google 3.3051 (0.1558) 1.1427 (0.0325) 0.5561

HAR-Google 2.7542 (0.5952) 1.0023 (0.0953) 0.6301

LASSO-HAR-Google 2.9671 (0.3811) 1.0161 (0.0938) 0.6015

BMA-HAR-Google 2.7162 (0.5952) 0.9897 (0.5070) 0.6352

BAG-HAR-Google 2.7075 (1.0000) 0.9897 (0.5070) 0.6364

SSVS-HAR-Google 2.8041 (0.3811) 1.0064 (0.0938) 0.6234

AR(1)-All 3.0871 (0.3811) 1.0954 (0.0938) 0.5854

HAR-All 3.1935 (0.3811) 1.1077 (0.0938) 0.5711

LASSO-HAR-All 2.7787 (0.5952) 0.9734 (1.0000) 0.6268

BMA-HAR-All 2.7324 (0.5952) 1.0898 (0.0325) 0.6330

BAG-HAR-All 2.7337 (0.5952) 0.9822 (0.5070) 0.6328

SSVS-HAR-All 2.7986 (0.4838) 1.0066 (0.0938) 0.6241
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sentiment and uncertainty measures of financial markets,
such as the Global Economic Policy Uncertainty (GEPU)
index (Baker et al., 2016), S&P500 implied volatility
(VIX), oil price implied volatility (OVX), and the BofA
Merrill Lynch Global Financial Stress Index (GFSI). The
third and the fourth groups contain the volatility—
measured as daily squared returns—of other commodity
futures traded at the CME such as Natural Gas, Gold,
Corn, and Soybeans, as well as FX rates with reference
US Dollar against the Euro, Japanese Yen, Chinese Yuan,
Russian Ruble, and the UK Pound. Realized volatilities
of equity indices of nine major stock markets are
obtained from the Oxford-Man Realized Library (Heber
et al., 2009).4 The remaining lower frequency data are
acquired from Datastream. The sample spans the time
period from January 5, 2010, to May 11, 2018. By data
pre-processing and synchronization of the data sets, we
obtain n¼ 2596 daily observations. In order to capture
market attention with regard to oil, we follow Afkhami
et al. (2017) and include Google search volumes for rele-
vant search terms as exogenous variables. Table A1 pro-
vides an overview and describes the construction.

Summary statistics and preliminary analyses are
given in Table 1. For realized volatilities of WTI futures
prices, we find the mean and standard deviation to be
higher than those of the financial market realized volatil-
ities. This underlines the observation that prices in crude
oil futures markets are much more volatile than equity
indices. Most importantly, we observe highly significant
autocorrelations of realized volatilities for WTI—and for
all stock market indices to that end. This reinforces our
decision to apply HAR frameworks as in the HAR model
in both realized volatility as well as exogenous factors.
The only exception to this present autocorrelation in real-
ized volatility are Corn futures, where neither 5, 10, nor

22 lags yield sufficient evidence regarding dependencies
between daily realized volatilities. Corn and Natural Gas
have the highest mean and standard deviation across all
volatility measures. This translates to very high intraday
returns, possibly triggered by intraday jumps, which is
also visible in Figure B2, plot (b). All volatility measures
are found to be stationary as expected from the construc-
tion in Equation (1). The resolution of Google search vol-
ume is in index points. Hence, summary statistics cannot
be compared directly. More importantly for our methodo-
logical framework, we find highly significant autocorrela-
tions, which we utilize in the employed autoregressive
structure of the HAR extensions.

The visualizations of the remainder of the variables
are found in Appendix B. Figure 1 visualizes the daily
realized volatility of WTI futures on our data range.
Figure B1 analogously visualizes the volatilities of major
stock market indices. We observe the clustering of highly
volatile periods in oil markets for 2011 and 2015–2017.
These volatility clusters are also present for equity indices
indicating some degree of connectedness which is explic-
itly modeled in our model framework. Periods of high
and low volatility are also depicted by specific sentiment
indices such as the VIX for equity markets (S&P500) and
the OVX (WTI) visualized in Figure B2a. Highly volatile
in general, the commodity futures for Natural Gas, Gold,
Corn, and Soybean—plotted in Figure B2b—also show
clustering of high- and low-volatility regimes albeit of
much higher magnitude and frequency than WTI and
equity futures in our sample. Volatility of FX markets is
depicted in Figure B3, and again, we find highly volatile
markets in 2015–2017. Some important events, such as
the sanctions of the USA against Russia and China
as well as the oil price collapse 2014–2015, are visible as
increasingly volatile rate movements in FX markets.

TABLE 2 (Continued)

Model MSE MAE R2
OS

AR(1)-PCA 3.1650 (0.1558) 1.0782 (0.0344) 0.5749

HAR-PCA 2.8896 (0.3811) 1.0117 (0.0938) 0.6119

LASSO-HAR-PCA 2.9953 (0.3811) 1.0215 (0.0938) 0.5977

BMA-HAR-PCA 2.8386 (0.3811) 1.0033 (0.1035) 0.6188

BAG-HAR-PCA 2.7992 (0.3811) 1.0085 (0.0938) 0.6240

SSVS-HAR-PCA 2.8047 (0.3811) 1.0070 (0.0938) 0.6233

Note: This table presents the mean squared error (MSE), the mean average error (MAE) loss results, and the R2
OS for short-term forecasts of WTI volatility.

Lower values of MSE and MAE loss functions imply higher forecast precision. The corresponding MCS p-values are listed in parentheses on the right sides of
the MAE and MSE results, with pMCS ≥ 0:1 implying an inclusion in the MCS at 10% confidence while pMCS ≥ 0:25 implies inclusion in the MCS at the 25%

confidence level. The R2
OS measures the proportion of variance explained by the forecasts: R2

OS ¼ 1�
P t¼T

t¼T1
bRVt�RVt

� �2P t¼T

t¼T1
RVt�RVð Þ2 . Higher values of R2

OS suggest higher

forecast precision.
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TABLE 3 Statistical evaluations of various volatility models for five-step forecasts.

Model MSE MAE R2
OS

AR(1) 1.3563 (0.0899) 1.0005 (0.0207) 0.6131

HAR 1.2262 (0.1700) 0.9738 (0.0207) 0.6502

LASSO-HAR 1.0817 (0.5343) 0.9077 (0.4274) 0.6914

BMA-HAR 1.2606 (0.1700) 0.9315 (0.0207) 0.6404

BAG-HAR 1.2276 (0.1352) 0.9744 (0.0207) 0.6498

SSVS-HAR 1.2408 (0.1284) 0.9560 (0.0207) 0.6460

AR(1)-Equity 2.6016 (0.0899) 1.0409 (0.0207) 0.2578

HAR-Equity 1.2215 (0.1700) 0.9654 (0.0207) 0.6515

LASSO-HAR-Equity 1.1642 (0.2327) 0.9438 (0.0207) 0.6679

BMA-HAR-Equity 1.3090 (0.1352) 0.9487 (0.0207) 0.6266

BAG-HAR-Equity 1.2593 (0.1284) 0.9918 (0.0182) 0.6408

SSVS-HAR-Equity 1.2350 (0.0899) 0.9553 (0.0207) 0.6477

AR(1)-Sentiment 1.3264 (0.0899) 0.9941 (0.0207) 0.6216

HAR-Sentiment 1.2425 (0.1352) 0.9835 (0.0207) 0.6455

LASSO-HAR-Sentiment 1.0913 (0.5343) 0.9107 (0.4274) 0.6887

BMA-HAR-Sentiment 1.2521 (0.0899) 0.9577 (0.0207) 0.6428

BAG-HAR-Sentiment 1.2337 (0.1352) 0.9781 (0.0207) 0.6480

SSVS-HAR-Sentiment 1.2411 (0.1284) 0.9561 (0.0207) 0.6459

AR(1)-Commodity 1.3505 (0.0899) 0.9982 (0.0207) 0.6147

HAR-Commodity 1.2310 (0.1352) 0.9788 (0.0207) 0.6488

LASSO-HAR-Commodity 1.0835 (0.5343) 0.9087 (0.4274) 0.6909

BMA-HAR-Commodity 1.2441 (0.1284) 0.9525 (0.0207) 0.6451

BAG-HAR-Commodity 1.2291 (0.1352) 0.9751 (0.0207) 0.6494

SSVS-HAR-Commodity 1.2355 (0.1284) 0.9557 (0.0207) 0.6475

AR(1)-FX 1.3719 (0.0899) 1.0043 (0.0207) 0.6086

HAR-FX 1.1413 (0.1700) 0.9484 (0.0207) 0.6744

LASSO-HAR-FX 1.0624 (1.0000) 0.8946 (1.0000) 0.6969

BMA-HAR-FX 1.1952 (0.1700) 0.9312 (0.0207) 0.6590

BAG-HAR-FX 1.2697 (0.0899) 1.0078 (0.0068) 0.6378

SSVS-HAR-FX 1.2347 (0.0899) 0.9541 (0.0207) 0.6478

AR(1)-Google 1.2448 (0.1700) 0.9864 (0.0207) 0.6449

HAR-Google 1.3549 (0.0899) 0.9978 (0.0207) 0.6135

LASSO-HAR-Google 1.1934 (0.1700) 0.9356 (0.0207) 0.6595

BMA-HAR-Google 1.3016 (0.0899) 0.9647 (0.0207) 0.6287

BAG-HAR-Google 1.3103 (0.0899) 0.9900 (0.0207) 0.6262

SSVS-HAR-Google 1.2424 (0.0899) 0.9563 (0.0207) 0.6456

AR(1)-All 1.4600 (0.0899) 0.9527 (0.0207) 0.5835

HAR-All 1.2649 (0.1284) 0.9780 (0.0207) 0.6392

LASSO-HAR-All 1.1733 (0.1700) 0.9527 (0.0207) 0.6653

BMA-HAR-All 1.2582 (0.1352) 0.9513 (0.0207) 0.6411

BAG-HAR-All 1.2898 (0.0899) 0.9944 (0.0182) 0.6320

SSVS-HAR-All 1.2140 (0.1284) 0.9559 (0.0207) 0.6537
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Interestingly, this also aligns with Google search queries,
featured as indices in Figure B4, for “oil production”
(G1), “oil demand” (G3), and “oil price” (G4), which
show that there is an increase in general interest in those
topics, which we utilize as additional attention measure.

4 | OUT-OF-SAMPLE RESULTS

4.1 | Forecasting accuracy

This section presents the results of the out-of-sample
analysis. In particular, we forecast the WTI volatility 1, 5,
and 22 days ahead using the above-mentioned models,
methods, and predictors. We stress the fact that all infor-
mation are known at the time to forecast the next
periods' volatility (real time).

We start our analysis by assessing the statistical accu-
racy of the different models. The results for 1-, 5-, and
22-day-ahead forecasts are presented in Tables 2, 3,
and 4.

For the 1-day-ahead forecasts, the best models are
BAG-HAR-Google and LASSO-HAR-All in terms of MSE
and MAE, respectively. The 25% MCS for the
MSE includes all models but most of the AR models.
Thus, the performance of any other model cannot be dif-
ferentiated from the BAG-HAR-Google. For the MAE,
the MCS are more exclusive. Only four models belong to
the 25% MCS (BMA- and BAG-HAR-Google, LASSO- and
BAG-HAR-All), and additional two models (BMA-HAR
and BMA-HAR-PCA) are elements of 10% MCS.

Turning to the 5-day-ahead forecast, we find a similar
pattern in variable selection. The 10% MCS for the MSE
loss function is quite large. However, only four models

are included in the 25% MCS: LASSO-HAR, LASSO-
HAR-Sentiment, LASSO-HAR-Commodity, and LASSO-
HAR-FX. The latter is also the best model in terms of the
lowest MSE and MAE. For the MAE, only five models
are part of the 10% and 25% MCS. Those models include
the aforementioned LASSO models as well as AR(1)-All.

The statistical accuracy for 22-day-ahead forecasts is
almost equal over the entire set of models. At least the
MCS includes all of them for both loss functions.
The MSE set even includes all HAR model variants in the
more restrictive 25% set. For MAE, with some other
models, all LASSO variants belong to the 25% MCS. We
also find that the best models for both loss functions are
the Google variants.

In contrast to Degiannakis and Filis (2017), we cannot
see a clear outperformance of HAR models incorporating
other asset class channels over the standard HAR models.
For all three forecasting horizons, the HAR and the vari-
ous HAR-X models are either together in the MCS or
they are not. Thus, we conclude that the ML approaches,
on top of the combination of HAR model and informa-
tion class, are what make the difference.

Summarizing, we find an outperformance of the
LASSO-HAR variants that are most of the time included
in the even more restrictive 25% confidence sets. The very
simple AR models are only included in two occasions in
the most restrictive sets indicating the value of the long-
term components of the HAR models. The LASSO-
HAR-All model, selection out of a set of all information,
is included in the 25% MCS for 1- and 22-day-ahead fore-
cast and thus cannot be distinguished from the best per-
forming models in terms of its forecast accuracy. We will
use this model in the following section, to investigate the
time-varying selection of variables.

TABLE 3 (Continued)

Model MSE MAE R2
OS

AR(1)-PCA 1.1660 (0.2327) 0.9162 (0.4274) 0.6674

HAR-PCA 1.2578 (0.1284) 0.9969 (0.0120) 0.6412

LASSO-HAR-PCA 1.0958 (0.2327) 0.9202 (0.0207) 0.6874

BMA-HAR-PCA 1.2570 (0.0899) 0.9642 (0.0207) 0.6414

BAG-HAR-PCA 1.2486 (0.1284) 0.9921 (0.0182) 0.6438

SSVS-HAR-PCA 1.2409 (0.1284) 0.9562 (0.0207) 0.6460

Note: This table presents the mean squared error (MSE), the mean average error (MAE) loss results, and the R2
OS for medium-term forecasts of WTI volatility.

Lower values of MSE and MAE loss functions imply higher forecast precision. The corresponding MCS p-values are listed in parentheses on the right sides of
the MAE and MSE results, with pMCS ≥ 0:1 implying an inclusion in the MCS at 10% confidence while pMCS ≥ 0:25 implies inclusion in the MCS at the 25%

confidence level. The R2
OS measures the proportion of variance explained by the forecasts: R2

OS ¼ 1�
P t¼T

t¼T1
bRVt�RVt

� �2P t¼T

t¼T1
RVt�RVð Þ2 . Higher values of R2

OS suggest higher

forecast precision.
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TABLE 4 Statistical evaluations of various volatility models for 22-step forecasts.

Model MSE MAE R2
OS

AR(1) 0.9316 (0.2538) 0.9087 (0.0743) 0.6040

HAR 0.7596 (0.3160) 0.7691 (0.6133) 0.6771

LASSO-HAR 0.7127 (0.5850) 0.7536 (0.8506) 0.6970

BMA-HAR 0.7494 (0.5850) 0.7831 (0.8131) 0.6814

BAG-HAR 0.7612 (0.3160) 0.7701 (0.1741) 0.6764

SSVS-HAR 0.7413 (0.3160) 0.7851 (0.1741) 0.6849

AR(1)-Equity 3.3078 (0.0586) 1.0013 (0.1741) �0.4061

HAR-Equity 0.7240 (0.5850) 0.7686 (0.1741) 0.6922

LASSO-HAR-Equity 0.7356 (0.3779) 0.7607 (0.8506) 0.6873

BMA-HAR-Equity 0.7413 (0.3779) 0.7835 (0.1741) 0.6849

BAG-HAR-Equity 0.7353 (0.3779) 0.7665 (0.6133) 0.6875

SSVS-HAR-Equity 0.7405 (0.3160) 0.7729 (0.1741) 0.6852

AR(1)-Sentiment 0.8986 (0.3160) 0.9041 (0.1575) 0.6180

HAR-Sentiment 0.7556 (0.3160) 0.7697 (0.6133) 0.6788

LASSO-HAR-Sentiment 0.7245 (0.5850) 0.7575 (0.8506) 0.6920

BMA-HAR-Sentiment 0.7318 (0.3779) 0.7813 (0.1741) 0.6889

BAG-HAR-Sentiment 0.7594 (0.3160) 0.7714 (0.1741) 0.6772

SSVS-HAR-Sentiment 0.7411 (0.3160) 0.7851 (0.1741) 0.6850

AR(1)-Commodity 0.9407 (0.2520) 0.9121 (0.0655) 0.6001

HAR-Commodity 0.7733 (0.3160) 0.7751 (0.1741) 0.6713

LASSO-HAR-Commodity 0.7406 (0.3160) 0.7626 (0.8131) 0.6852

BMA-HAR-Commodity 0.7503 (0.3160) 0.7824 (0.1741) 0.6811

BAG-HAR-Commodity 0.7743 (0.3160) 0.7750 (0.1741) 0.6709

SSVS-HAR-Commodity 0.7268 (0.3779) 0.7724 (0.6133) 0.6911

AR(1)-FX 0.9652 (0.0586) 0.8985 (0.1741) 0.5897

HAR-FX 0.7704 (0.3160) 0.7773 (0.1741) 0.6725

LASSO-HAR-FX 0.7235 (0.5850) 0.7575 (0.8506) 0.6925

BMA-HAR-FX 0.7451 (0.3160) 0.7900 (0.1741) 0.6833

BAG-HAR-FX 0.7722 (0.3160) 0.7754 (0.1741) 0.6718

SSVS-HAR-FX 0.7457 (0.3160) 0.7752 (0.1741) 0.6830

AR(1)-Google 0.8153 (0.3160) 0.8919 (0.1741) 0.6535

HAR-Google 0.6851 (0.9752) 0.7476 (1.0000) 0.7088

LASSO-HAR-Google 0.7228 (0.5850) 0.7570 (0.8506) 0.6928

BMA-HAR-Google 0.6811 (1.0000) 0.7595 (0.8506) 0.7105

BAG-HAR-Google 0.6885 (0.5850) 0.7492 (0.8506) 0.7074

SSVS-HAR-Google 0.7369 (0.3779) 0.7836 (0.1741) 0.6867

AR(1)-All 1.7713 (0.0586) 0.9155 (0.1741) 0.2471

HAR-All 0.7471 (0.3160) 0.7786 (0.1741) 0.6824

LASSO-HAR-All 0.7451 (0.3160) 0.7691 (0.6133) 0.6833

BMA-HAR-All 0.7245 (0.5850) 0.7766 (0.6133) 0.6920

BAG-HAR-All 0.7469 (0.3160) 0.7687 (0.6133) 0.6825

SSVS-HAR-All 0.7426 (0.3779) 0.7617 (0.8506) 0.6843
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4.2 | Economic value

From a statistical point of view, the standard HAR
models are outperformed by their ML-augmented coun-
terparts. In the next step, we evaluate the economic value
of the model augmentations. In particular, we focus on
portfolio construction based on volatility forecasts pro-
duced by all predictive models. We assess the annualized
return that a risk-averse investor would sacrifice in order
to switch from a benchmark portfolio—AR(1) models
without ML-driven variable selection—to any other
portfolio, including those that are produced by the aug-
mented models. The results for the different forecast hori-
zons are presented in Table 5.

In contrast to the statistical superiority of the LASSO
variants, we observe that this outperformance does not
translate to the best economic value. We find that the
BMA models are superior and allow a risk-averse inves-
tor with a quadratic utility function to improve their
overall utility. In particular, the BMA-HAR-FX yields the
highest annualized return. This model also results in
the highest economic value compared with an
AR(1) model. An investor with γ¼ 1 would be willing to
switch from a standard AR(1) model to a BMA-HAR-FX
model up to 5.28%. Even to switch from the standard
HAR model, the opportunity to incorporate more infor-
mation than just past realized volatility would be worth
more than 1% (5:28%�4:22%). In risk-adjusted terms,
however, we find BAG models to have the highest Sharpe
ratios. The BAG-HAR-All produces the highest Sharpe
ratio in our out-of-sample exercise (0.0678). The LASSO
variants, which yielded the highest statistical accuracy,
perform similarly to the standard HAR models. The vari-
able selection does not appear to be able to translate the
higher accuracy to economic performance.

In terms of adding other information channels, we
find economic value in incorporating such information in
volatility models. Although we did not necessarily find
an outperformance on a statistical accuracy, additional
information result in higher economic value in the
majority of cases. For example, the HAR model has a
smaller economic value and Sharpe Ratio than its senti-
ment, commodity, and FX-augmented counterparts as
well as the HAR-All and HAR-PCA. Similar patterns can
be observed between the ML-estimated HAR models and
their variants with additional information.

4.3 | Time-varying drivers

In order to understand the time variation of different
information classes, we investigate the selection of vari-
ables over our entire out-of-sample period. In particular,
we want to understand (1) which are the most important
variables (and at which frequency-average) when making
no prior choice, (2) how sticky are those variables, and
(3) can other information classes replace their own real-
ized volatility (i.e., the WTI RV at 1, 5, and 22-day
average).

The top plot in Figure 2 displays the 1-day-ahead fore-
casts variable selection with the LASSO-HAR-All over
the whole forecast period. All three RV horizons (red) are
selected throughout the out-of-sample period. In addi-
tion, we find that the most consistent variables are the
OVX (oil price uncertainty) at 5 and 22 days horizon and
the Google search volume for “Oil Price” the day before.

The middle plot in Figure 2 shows the 5-day-ahead
forecast variable selection. We find that the RV of the
WTI the day before is never selected. Only the weekly
and monthly RV appear to be relevant for the forecast.

TABLE 4 (Continued)

Model MSE MAE R2
OS

AR(1)-PCA 0.8703 (0.3160) 0.8518 (0.1741) 0.6300

HAR-PCA 0.7714 (0.3160) 0.7781 (0.1741) 0.6721

LASSO-HAR-PCA 0.7410 (0.3160) 0.7640 (0.6133) 0.6850

BMA-HAR-PCA 0.7539 (0.3160) 0.7862 (0.1741) 0.6795

BAG-HAR-PCA 0.7842 (0.3160) 0.7827 (0.1741) 0.6667

SSVS-HAR-PCA 0.7418 (0.3160) 0.7855 (0.1741) 0.6847

Note: This table presents the mean squared error (MSE), the mean average error (MAE) loss results, and the R2
OS for long-term forecasts of WTI volatility.

Lower values of MSE and MAE loss functions imply higher forecast precision. The corresponding MCS p-values are listed in parentheses on the right sides of
the MAE and MSE results, with pMCS ≥ 0:1 implying an inclusion in the MCS at 10% confidence while pMCS ≥ 0:25 implies inclusion in the MCS at the 25%

confidence level. The R2
OS measures the proportion of variance explained by the forecasts: R2

OS ¼ 1�
P t¼T

t¼T1
bRVt�RVt

� �2P t¼T

t¼T1
RVt�RVð Þ2 . Higher values of R2

OS suggest higher

forecast precision. The best model per measure is highlighted in bold face.
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TABLE 5 Economic evaluations.

γ¼ 1 γ¼ 10

rp
rp
σp

Δ1 Δ2 rp
rp
σp

Δ1 Δ2

AR(1) �1.7566 �0.0338 0.0000 0.0000 1.3663 0.2558 0.0000 0.0000

HAR 2.4220 0.0541 4.2157 4.2157 1.7842 0.3849 0.4402 0.4402

LASSO-HAR 1.9851 0.0443 3.7714 3.7714 1.7405 0.3757 0.3938 0.3938

BMA-HAR 1.3423 0.0243 3.1058 3.1058 1.6762 0.2960 0.3242 0.3242

BAG-HAR 2.4014 0.0536 4.1947 4.1947 1.7821 0.3843 0.4380 0.4380

SSVS-HAR 2.7588 0.0500 4.5450 4.5450 1.8179 0.3203 0.4745 0.4745

AR(1)-Equity 2.3220 0.0434 0.0000 4.1024 1.7742 0.3225 0.0000 0.4283

HAR-Equity 2.1395 0.0467 �0.1733 3.9270 1.7559 0.3706 �0.0180 0.4100

LASSO-HAR-Equity 2.0429 0.0455 �0.2693 3.8299 1.7463 0.3758 �0.0281 0.3999

BMA-HAR-Equity 2.0508 0.0364 �0.2768 3.8225 1.7471 0.3019 �0.0289 0.3990

BAG-HAR-Equity 2.3699 0.0528 0.0596 4.1625 1.7790 0.3827 0.0063 0.4346

SSVS-HAR-Equity 3.1705 0.0605 0.8574 4.9694 1.8590 0.3443 0.0895 0.5188

AR(1)-Sentiment �1.3490 �0.0253 0.0000 0.4041 1.4071 0.2567 0.0000 0.0422

HAR-Sentiment 2.5591 0.0566 3.9464 4.3549 1.7979 0.3845 0.4120 0.4547

LASSO-HAR-Sentiment 2.1009 0.0469 3.4811 3.8890 1.7521 0.3781 0.3634 0.4060

BMA-HAR-Sentiment 2.7992 0.0506 4.1773 4.5861 1.8219 0.3207 0.4361 0.4788

BAG-HAR-Sentiment 2.5643 0.0567 3.9517 4.3601 1.7984 0.3846 0.4126 0.4552

SSVS-HAR-Sentiment 2.7580 0.0499 4.1355 4.5442 1.8178 0.3202 0.4317 0.4744

AR(1)-Commodity �2.0925 �0.0410 0.0000 �0.3328 1.3327 0.2539 0.0000 �0.0347

HAR-Commodity 3.0198 0.0653 5.1612 4.8237 1.8440 0.3858 0.5389 0.5037

LASSO-HAR-Commodity 2.4507 0.0539 4.5811 4.2441 1.7871 0.3797 0.4783 0.4431

BMA-HAR-Commodity 3.2071 0.0572 5.3392 5.0016 1.8627 0.3232 0.5574 0.5222

BAG-HAR-Commodity 3.0205 0.0652 5.1617 4.8242 1.8440 0.3848 0.5389 0.5037

SSVS-HAR-Commodity 2.6341 0.0497 4.7581 4.4210 1.8054 0.3307 0.4967 0.4615

AR(1)-FX �3.7883 �0.0749 0.0000 �2.0091 1.1632 0.2236 0.0000 �0.2096

HAR-FX 2.9859 0.0653 6.8364 4.7896 1.8406 0.3893 0.7138 0.5001

LASSO-HAR-FX 2.2795 0.0506 6.1131 4.0704 1.7699 0.3800 0.6382 0.4250

BMA-HAR-FX 3.4803 0.0596 7.3270 5.2775 1.8900 0.3151 0.7649 0.5510

BAG-HAR-FX 2.8013 0.0615 6.6471 4.6014 1.8221 0.3867 0.6940 0.4804

SSVS-HAR-FX 2.4326 0.0469 6.2610 4.2174 1.7853 0.3344 0.6536 0.4403

AR(1)-Google �2.5096 �0.0461 0.0000 �0.7515 1.2910 0.2309 0.0000 �0.0784

HAR-Google 2.3959 0.0541 4.9514 4.1897 1.7816 0.3887 0.5170 0.4375

LASSO-HAR-Google 2.0954 0.0468 4.6446 3.8835 1.7515 0.3783 0.4849 0.4055

BMA-HAR-Google 2.7495 0.0507 5.2993 4.5369 1.8169 0.3257 0.5532 0.4736

BAG-HAR-Google 2.5362 0.0571 5.0944 4.3325 1.7956 0.3904 0.5319 0.4524

SSVS-HAR-Google 2.7582 0.0500 5.3068 4.5444 1.8178 0.3205 0.5540 0.4744

AR(1)-All �0.5690 �0.0110 0.0000 1.1862 1.4851 0.2787 0.0000 0.1237

HAR-All 2.8910 0.0603 3.4924 4.6900 1.8311 0.3697 0.3647 0.4897

LASSO-HAR-All 3.0138 0.0660 3.6203 4.8182 1.8434 0.3899 0.3781 0.5031

BMA-HAR-All 3.2646 0.0596 3.8635 5.0622 1.8685 0.3315 0.4034 0.5285

BAG-HAR-All 3.1723 0.0678 3.7804 4.9789 1.8592 0.3847 0.3948 0.5199

SSVS-HAR-All 2.1335 0.0462 2.7254 3.9204 1.7553 0.3676 0.2846 0.4093
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Other variables at daily horizon are selected, probably
replacing the RVs as a more suitable variable for predic-
tion. Although we do not find a persistent variable on the
short-term, weekly, and monthly averages of the Chinese
stock market (SSEC), sentiment (OVX, VIX, EPU), com-
modities (corn, soybean, natural gas), and FX (USD,
Yen/USD, GBP/USD) are selected almost through-out
the entire sample.

A look at the bottom plot of Figure 2 for 22 days
ahead reveals that the LASSO-HAR-All uses many differ-
ent variables throughout the sample at different time
horizons, for example, NIKKEI and SSEC, VIX, OVX,
natural gas, soybeans, and the Google search volumes for
“Financial Crisis” and “OPEC Conference.”

With increasing forecasting horizon, LASSO identifies
an increasing number of exogenous predictors to be use-
ful for volatility forecasting. This ML approach also
shows that the selection of variables is varying over time.
Apart from the more persistent variables mentioned
above, several exogenous variables only play a role for a
limited period of time and we observe clustering of vari-
able selections. This culminates in the observation that
for the 22-day forecasting horizon, there appears to be a
structural break in variable selection at the end of 2016.
Stock market volatility, which was significant until this
date, is not being chosen by LASSO, whereas some
commodity- and FX-related variables are integrated in
the forecasts. As to why LASSO discards several exoge-
nous predictors at the same time is not within the scope
of this work, and we leave this question open for future
research.

Lastly, we also consider ranking exogenous variables
with regard to variable importance. We follow
Narajewski and Ziel (2020) and calculate the average var-
iable importance over the out-of-sample by

VIi ¼T�1
XT
t¼1

VIt,i,

VIt,i ¼
bβ tð Þ
i

��� ���PN
i¼1
bβ tð Þ
i

��� ��� ,

where T is the number of out-of-sample observations,
N is the number of variables, and bβ tð Þ

i refers to the esti-
mated coefficient of variable i for the out-of-sample at
observation t. Note that for the LASSO estimation, all
variables are standardized. Hence, we are able to com-
pare the individual contribution based on these esti-
mates. Table 6 lists the 10 most important variables per
forecast horizon.

Although there exists some correlation between the
rankings of selections and importance, there are also
major differences. We find the RVs of the WTI itself
always in the ranking of 22 days, 5 days, and 1 day. The
most important variable over all forecast horizons is
the 22-day RV of the WTI, which contributes about 50%
to the forecasted RV (or more). We find the FX channel
to have a fair share of importance, especially in compari-
son with the other information channels. Sentiment indi-
ces (VIX, OVX, and GFSI) are also among the top 10 for
all forecasting horizons. In contrast to the frequency of
selection, however, Google search volumes do not carry
much variable importance for forecasts beyond 1 day. In
fact, the Google attention measures are not even in the
top 25.

This observation is also confirmed, when looking at
the aggregated channel level. In Table 7, we report the
sum of the variable importance per variable of an
information channel (i.e., per variable and time aggre-
gated). Especially for longer horizons, the contribution

TABLE 5 (Continued)

γ¼ 1 γ¼ 10

rp
rp
σp

Δ1 Δ2 rp
rp
σp

Δ1 Δ2

AR(1)-PCA �1.4749 �0.0280 0.0000 0.2795 1.3945 0.2576 0.0000 0.0292

HAR-PCA 2.7687 0.0608 4.2853 4.5682 1.8189 0.3858 0.4474 0.4770

LASSO-HAR-PCA 2.2566 0.0502 3.7648 4.0472 1.7677 0.3798 0.3931 0.4226

BMA-HAR-PCA 3.0610 0.0550 4.5697 4.8527 1.8481 0.3228 0.4770 0.5066

BAG-HAR-PCA 2.7372 0.0601 4.2532 4.5360 1.8157 0.3851 0.4441 0.4736

SSVS-HAR-PCA 2.7722 0.0502 4.2758 4.5587 1.8192 0.3205 0.4464 0.4759

Note: Results for 22-step-ahead forecasts for the economic evaluation. We present the annualized average excess portfolio return rp, the average portfolio
Sharpe Ratio rp

σp
, and the economic value Δ of the portfolio over the standard AR model within the models class. Here, Δ1 and Δ2 refer to the economic value

compared to AR(1) model with the asset class information and the standard AR(1) model, respectively. The model with the highest economic value is
highlighted in bold face.
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FIGURE 2 Variable selection over time with the LASSO-HAR-All.
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of FX is quite substantial. Again, we find little support
for Google search volume. We also point out the
contrast between the variable importance of the com-
modity channel and the frequency of selection for com-
modity variables. Finally, the variable aggregates over
22 days hold valuable information for all forecasting
horizons.

We summarize that for all forecasting horizons, the
realized volatilities of the WTI are the most important
variables to predict future realized volatility of the
WTI. However, the observed other information chan-
nels do contribute to the predictions and in this way
either substitute or add information on top of the RVs.
In particular, FX appears to be an important source of
information.

5 | CONCLUSION

This paper demonstrates how extending existing models
of realized volatility with additional information from
other channels and recent ML techniques benefits the
quality of forecasts and subsequent portfolio perfor-
mance. We focus on modeling realized volatility of the
most liquid WTI crude oil futures prices. Existing HAR
models (Corsi, 2009) are first augmented with exogenous
factors, which have been shown to improve the forecast-
ing performance across different horizons (Luo
et al., 2022; Ma et al., 2018). Motivated by Degiannakis
and Filis (2017), we include several different information
channels that include major stock markets, relevant FX
market pairs, sentiment indices, other linked commodity

TABLE 6 Ranked variable importance of individual variables (top 10) across the applied forecasting horizons.

TABLE 7 Ranked variable importance of (aggregated) information channels across the applied forecasting horizons.
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markets, and Google search volumes for relevant search
terms. We then extend these models with four
machine-learning approaches that pick the most suit-
able factors for forecasting realized volatility over 1 day,
1 week, and 1 month. The model set is completed by a
PCA variant and a model including all possible exoge-
nous variables.

We present several novel findings. First and fore-
most, including ML to choose from a set of exogenous
variables improves the quality of realized volatility fore-
casts. In particular, LASSO variants show significant
improvements. Second, we find that the variable selec-
tion process depends strongly on the forecasting horizon.
Although for short-term forecasts, endogenous factors
dominate the selection of predictors, the number of pre-
dictors increases when increasing the forecasting hori-
zon. Sentiment variables, such as the EPU or OVX,
realized volatility of other stock markets and commodi-
ties as well as FX markets become increasingly impor-
tant for longer horizons. We also show that a
combination of short-, medium-, and long-term averages
of text-based Google indicators are relevant exogenous
factors that are included in the predictor set generated
by ML algorithms. Third, we show that portfolios that
are constructed with ML-HAR variants (particularly
BMA) provide higher returns than the baseline AR and
HAR models and its extensions with exogenous factors.
Surprisingly, forecast accuracy does not necessarily
imply the highest portfolio outperformance. Lastly, we
show that the selection process with its dynamic imple-
mentation is time-varying with respect to the variable
choices. Variable selection mostly clusters and these
clusters differ across forecasting horizons. In particular,
for the stock market channel, the results point toward
structural changes, especially for longer time horizons.
Although the most important variables remain the past
(aggregates) of realized volatility of the WTI, a great deal
of information is coming from the FX channel (espe-
cially for longer forecast horizons). In contrast, Google
search volume and other commodity volatilities do not
carry large fractions of variable importance for the fore-
cast of WTI realized volatility.

Future research might focus on as to why these
structural changes in the variable selection process exist
and why these changes materialize differently across
forecasting horizons. Having shown that superior fit
does not necessarily translate to superior portfolio per-
formance in our portfolio selection application, future
work could, for example, address an exploitation of
ML-generated forecasts of realized volatility for other
commodity or asset classes or extend our framework to
other ML models such as reinforcement learning (see,
e.g., Lavko et al., 2023).
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ENDNOTES
1 This choice of sampling frequency is widely adapted in literature as
it poses a trade-off between possible microstructure noise, where
sampling frequency is too high, and information loss, where sam-
pling frequency is too low (Aït-Sahalia & Yu, 2009; Liu et al., 2015).

2 Examples can be found in Sévi (2014), Klein and Todorova (2021),
Luo et al. (2022), and Degiannakis et al. (2022) among others.

3 From our full set of models M0 ¼ Mi, i¼ 1,…,k
	 


, the procedure
determines a set of models with superior forecast performancebM�

1�α. Given a confidence level α, the MCS bM�
1�α includes all

models from M0, which are statistically indistinguishable from
the best model in the set, that is, the model with the lowest MSE
or MAE, respectively. We implement the procedure using the TR

statistic, the stationary bootstrap with 10,000 draws, and α levels
of 0:1 and 0:25.

4 Data are freely available at https://realized.oxford-man.ox.ac.uk/.
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TABLE A1 Constructions of exogenous predictors.

Category Data Variable construction

Financial
market
volatility

DJI, CAC40, FTSE, DAX30, HSI, Nikki225, S&P500,
SSEC, STOXX50

We obtain the realized volatilities of the 9 stock indices
come from Oxford-Man Institute's “realized library”

Sentiment VIX, OVX, US EPU, GFSI index We obtain the four indices from Datastream database. The
first difference of the variables is used as the predictor.

Commodity
market

Natural gas, Gold, Corn, Soybean The daily prices of the four commodity futures are obtained
from Wind database. The return is computed by

rt ¼ 100 � logPt � logPt�1ð Þ. We use the square returns r2t
of the four commodity futures as the predictors.

Currency
market

US dollar index, Euro/US exchange rate, Japanese
Yan/US exchange rate, Chinese Yuan/US exchange
rate, Russia Rouble/US exchange rate, UK pound/US
exchange rate

The daily prices of US dollar index and the 5 foreign
exchange rates are obtained from Wind database. The
return is computed by rt ¼ 100 � logPt � logPt�1ð Þ. We use

the square returns r2t of the US dollar index and the 5
foreign exchange rates as the predictors.

Google
search
volume

Oil production, Financial crisis, Oil demand, Oil price,
OPEC conference

The Google search volume indices are downloaded from
the Google index database. We employ the first
difference of the Google search indices for the keywords
as the predictors.

Note: VIX and OVX denote the implied volatility index for S&P 500 and WTI, US EPU is the economic policy uncertainty index for the USA, and GFSI index is

the global financial stress index.
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APPENDIX B.

F IGURE B1 Realized volatility of stock indices on daily resolution from January 5, 2010, to May 11, 2018, obtained from the Oxford-

Man Realized Library.
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FIGURE B2 Sentiment indices as index points and realized volatility of commodity markets, proxied by squared daily returns, on daily

resolution from January 5, 2010, to May 11, 2018, obtained from Datastream.
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FIGURE B3 Realized volatility of FX markets, proxied by squared daily returns, on daily resolution from January 5, 2010, to May

11, 2018, obtained from Datastream.
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FIGURE B4 Google search volume indices on daily resolution from January 5, 2010, to May 11, 2018, obtained from Google.
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