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Abstract
Cell-cell adhesion plays a vital role in the development and maintenance of multicel-
lular organisms. One of its functions is regulation of cell migration, such as occurs,
e.g. during embryogenesis or in cancer. In this work, we develop a versatile multi-
scale approach to modelling a moving self-adhesive cell population that combines a
careful microscopic description of a deterministic adhesion-driven motion component
with an efficient mesoscopic representation of a stochastic velocity-jump process. This
approach gives rise to mesoscopic models in the form of kinetic transport equations
featuring multiple non-localities. Subsequent parabolic and hyperbolic scalings pro-
duce general classes of equations with non-local adhesion and myopic diffusion, a
special case being the classical macroscopic model proposed in Armstrong et al. (J
Theoret Biol 243(1): 98–113, 2006). Our simulations show how the combination of
the two motion effects can unfold. Cell-cell adhesion relies on the subcellular cell
adhesion molecule binding. Our approach lends itself conveniently to capturing this
microscopic effect. On the macroscale, this results in an additional non-linear integral
equation of a novel type that is coupled to the cell density equation.
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1 Introduction

1.1 Biological background

Development and functioning of multicellular organisms crucially depend on cell-
cell adhesion (CCA). This is the process of cells binding to their neighbours to form
multicellular complexes by building cell-cell junctions. Formation of new tissues and
organs during embryogenesis as well as their maintenance, be it as part of homeostasis
or during wound healing, all rely on CCA. Alteration of CCA is linked to cancer
invasion and metastasis (Hanahan and Weinberg 2011; Friedl and Alexander 2011).

Various types of cell-cell junctions exist, each enabling a specific adhesion function-
ality. Mainly responsible for keeping cells together are adherens junctions (Alberts
et al. 2008, Chapter 19). They are facilitated by a particular type of cell adhesion
molecule (CAM), an adhesion-mediating transmembrane protein, called cadherin.
Cadherins require extracellular calcium (Ca2+) in order to form junctions. Through
catenins, a family of intracellular proteins, cadherins are indirectly connected to actin
filaments that are part of the cell cytoskeleton. Since individual cadherin bonds are
rather weak, many such bonds need to be established in parallel to secure a strong
anchoring junction between two cells. A comprehensive description of these junc-
tions can be found in Alberts et al. (2008, Chapter 19).

Depending on other chemical factors, cadherins either suppress migration out of
resting epithelium or support collective invasion. While E-cadherin is responsible for
strong bonds in the former case, various members of the cadherin family that have
weaker adhesion strengths than E-cadherin, such as N-cadherin, are mainly observed
whenmigration occurs. Loss of E-cadherin, the main cell-cell binding CAM in epithe-
lial cells, is believed to be a fundamental event in the epithelial-mesenchymal transition
(EMT), a process by which cells switch from epithelial to mesenchymal stem type.
In cancer, EMT enables invasion, the precursor of metastasis. Another key adhesion
type is cell-tissue adhesion, yet in this work we concentrate solely on CCA. We refer
to Friedl and Alexander (2011), Hanahan and Weinberg (2011), as well as references
in these sources, for further details on the role of cell adhesion in cancer.

Motivated by the biological observations outlined above, our main aim in this
paper is to derive two prototypical classes of continuum mathematical models for a
diffusion-advection-driven motion of a self-adhesive cell population in a heteroge-
neous environment. The model in Armstrong et al. (2006) is regained as a special case
of one of these models, (3.14). This equation does not account for calcium-mediated
cadherin binding dynamics, whereas our novel model (4.35) includes such dynamics.

1.2 Modelling background

Reaction-diffusion-advection equations with a density-dependent non-local advection
velocity in the formof a spatial integral are a popular choicewhen it comes tomodelling
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adhesion on the level of population densities. Such non-local terms indirectly account
for cell-cell interactions through the effect that they have on the bulk motion. Starting
from the integro-partial differential equation (IPDE) that was proposed in Armstrong
et al. (2006) many extensions of that adhesion model were developed and treated
mathematically rigorously and numerically, see Chen et al. (2020) and references
therein. Numerical simulations confirm that models of this sort reproduce aggregate
formation caused by CCA.

However, it is hardly possible to capture important information that needs to be
passed from lower scales to obtain a realistic model if modelling is done directly on
the level of densities. More accurate models are obtained by zooming to the cellular or
even subcellular levels and/or the level of cell density distributions and subsequently
performing an upscaling. Several approaches to such derivations were adopted in the
context of IPDE (diffusion)-adhesion models. We briefly review them.

M1 One possible starting point is a system of a large number of first-order stochastic
differential equations (SDEs). Each of the SDEs describes the temporal evolution
of the spatial position of a single population member that interacts with other
individuals and is influenced by stochastic fluctuations, typically in the form of
a Gaussian white noise. Interaction, which is often a combination of multiple
effects, is characterised by an appropriate interaction potential. In the cases where
one preliminarily considers a system of second order SDEs for spatial positions,
simplifying assumptions are made in order to reduce to the first-order as above.
Using empirical measures and Itô’s formula, one can deduce the corresponding
mean field stochastic IPDE for population density that contains a non-locality in
the drift term. Choosing suitable scalings in each part of the interaction poten-
tial allows to remove randomness: as the number of particles tends to infinity,
a fully deterministic macroscopic mean field IPDE is obtained. The interaction
potential contributes with non-local advection and/or the non-linear part of diffu-
sion. Stochastic fluctuations produce a linear diffusion component. For a detailed
discussion of this approach to derivation of non-local diffusion-advection models
spanning from modelling aspects to rigorous mathematical treatment we refer to
Morale et al. (2005, 1998) as well as references therein.
In Theoret et al. (2014), two classes of mean field IPDE models of adhesion were
derived while keeping the number of individuals finite. This was achieved by
imposing closing relations. The mean-field approximation yielded an IPDE of the
same form as in Armstrong et al. (2006), whereas the Kirkwood superposition
approximation produced a non-standard system of two strongly coupled IPDEs.
No application of the described approach has dealt with CAM binding dynamics
or comparable effects.

M2 Assuming that cell motion follows a space-jump random process, the evolution of
the population density can bemodelled by aMaster equation. The timederivative of
the density is then given by a spatial integral operator governed by a redistribution
kernel that describes the probability of jumping fromone position to another.Under
suitable assumptions on the redistribution kernel one can rescale the equation
and then pass to the limit letting the jump length tend to zero, with the result
being a diffusion-advection PDE. This approach allowed to formally derive IPDE
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diffusion-adhesionmodels in Buttenschön et al. (2018), see also references therein
on further details regarding derivation and scaling of Master equations.
In Buttenschön et al. (2018), the redistribution kernel was split into the even and
odd components, leading to a myopic diffusion and advection, respectively. The
odd component was generated by the so-called cell’s polarization vector. This
vector was assumed to be a superposition of local adhesion strengths generated
in small test volumes in the cell’s environment. The local adhesion strength was
assumed to be proportional to: the distance to the cell, the available space, and the
amount of bound CAMs. Depending on the way the latter evolution was modelled,
one obtained adhesion velocities proportional to either single or double spatial
integrals. A special case of the first option led to the model in Armstrong et al.
(2006). The subcellular binding-unbinding dynamics of CAMs was described by
quickly equilibrating ordinary differential equations (ODEs). Their coefficients
were obtained from local densities or their integrals.

M3 If it can be assumed that cell motion follows a velocity-jump process, then a
kinetic transport equation (KTE) lends itself to the description of the evolution of
the mesoscopic cell density with respect to time, position, velocity, and, possibly,
other variables (see M4 below). In the absence of source terms, it takes the form of
an IPDE where the differential transport term captures the deterministic directed
movement and a velocity integral term cumulates the effect of stochastic fluctua-
tions due to switching from one velocity to another. The later term is the turning
operator based on a turning kernel that gives the probability of velocity switches.
Removing the turning operator would leave us with a mesoscopic mean field equa-
tion of the form of a conservative transport equation (CTE). This equation can be
obtained from a microscopic ODE system describing deterministic cell movement
using empirical measures, i.e. in the same fashion as described in M1. It is com-
monly assumed that velocity changes are purely stochastic in nature, implying the
absence of velocity-induced transport. However, a fewworks have introduced such
a transport term into the model (Zhigun and Surulescu 2022; Dietrich et al. 2022;
Corbin et al. 2021; Chauvière et al. 2007). We mention in passing that in the phys-
ical context similar equations exist. For instance, the linear Boltzmann-Maxwell
equation can describe a gas of charged particles moving under the influence of
an external field through an unchanging background of another type of particles.
Yet cell interactions with other cells and lifeless matter in their surroundings are
unlike collisions of physical particles with each other or their background. Hence,
different kind of forces and interaction kernels need to be considered.
Upscaling, i.e. a suitable rescaling of a KTE using a small scaling parameter
and a limit procedure while this parameter is being sent to zero, yields a mean
field equation for the macroscopic population density. Standard scalings are the
hyperbolic and the parabolic ones. As a rule, the hyperbolic scaling is available
without preconditions, whereas the parabolic scaling is only possible if the first
velocity moment of the turning operator tends to zero. In contrast to the parabolic
upscaling where diffusion arises directly, higher-order correction terms need to be
included in order to produce diffusion in the hyperbolic scaling case. We refer to
Hillen and Painter (2013) for a detailed discussion of the two scaling types in the
context of movement of living organisms, cells in particular.
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Table 1 Comparison of M1–M3 and our approach

Method Origin of

adhesion term diffusion term CAM dynamics

M1 deterministic deterministic & stochastic none

M2 stochastic & CAMs stochastic deterministic

M3 stochastic stochastic none

Section 4 deterministic & CAMs stochastic deterministic

This approach was applied in the contexts of self-organised animal aggregations
(Carrillo et al. 2015;Eftimie 2008) and cell dispersalmediated bynon-local sensing
(Loy and Preziosi 2020a, b). In these works, formal derivations of advection (-
diffusion) equations were based on KTEs containing transport with respect to
the spatial variable alone. To produce non-localities on the macroscale, turning
operatorswere chosen that containedboth velocity and spatial averaging. In thefirst
setting, the focus was on the interaction inside a population in one (Carrillo et al.
2015; Eftimie 2008) and two (Carrillo et al. 2015) dimensions (see also references
in these works with regard to previous mesoscopic modelling in this context). This
multilayered effect was modelled by a turning kernel that is split into constants
and samplings, over the whole domain, of several interaction sub-kernels. Along
with density- and distance-dependent weightings, the latter involves functions that
measure differences between the previous velocity direction and the directions
of: the future velocity and the neighbours’ velocity and relative position. The
modelling in Loy and Preziosi (2020a, b) had no dimension restrictions and aimed
at describing cell polarization. There, the turning kernel samples density- and
distance-weighted measurements of a macroscopic quantity at positions along the
future velocity direction. Choosing this quantity to be the cell population density,
non-local CCA can be captured.
A suitable rescaling in Carrillo et al. (2015) kept the lowest-order part of the
kernel velocity-independent, allowing for a parabolic scaling that yielded a PDE
with non-localities in both the diffusion coefficient and the adhesion velocity. Due
to the structure of the kernel, the parabolic scaling in Loy and Preziosi (2020a, b)
was only possible under an assumption that removed the non-locality.
CAM binding dynamics or comparable effects were not considered in either of
these works.

In the present work we develop an alternative approach to modelling CCA. Our
main goal is to construct a flexiblemultiscalemodelling framework that captures better
the biological observations described in Subsection 1.1 above. To be precise, we want
to ensure that on the macroscale:

(i) the diffusion term originates from stochastic fluctuations;
(ii) the adhesion term is non-local,
(iii) microscopic CAM binding dynamics being its source.
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Table 1 compares the above outlined approaches and our approach in Sect. 4 (dis-
cussed below). The comparison is based on criteria that are related to the declared
objectives (i)–(iii). Each of M1–M3 meets the requirements partially, yet fails to meet
them all. Note that even thoughM2 incorporates CAMbinding dynamics, that dynam-
ics is purely deterministic (as it is generated by ODEs), whereas the adhesion term
still has a stochastic origin, as it is derived from a redistribution kernel.

Since we aim at carefully modelling the CAM binding dynamics, we need to recall
a relevant extension of the KTE framework.

M4 The kinetic theory of active particles (KTAP) (Bellomo et al. 2018) extends M3 to
the settings where there are non-physical ’activity’ variables that characterise the
state of a cell along with its position and velocity. In the context of cell adhesion,
this framework allowed to incorporate integrin binding dynamics. This class of
CAMs mediates cell-tissue rather than cell-cell interactions. The corresponding
models were first developed in Kelkel and Surulescu (2011, 2012) to describe
cancer invasion, for which cell-tissue interactions are a prerequisite. Viewing the
proportion of bound integrins of a cell to molecules of a signal as an activity vari-
able, the authors derived multiscale systems that couple a KTE for mesoscopic
cell density and macroscopic reaction (-diffusion) equations for chemical signals.
This approach was taken further in Engwer et al. (2015), where a formal upscaling
was performed. Binding and unbinding of integrins was assumed to equilibrate
very quickly. For other, much slower, processes, a standard parabolic scaling was
adopted. The result was an equation containing myopic diffusion and local advec-
tion.
For free-swimming cells moving in response to a chemical signal, similar KTEs
were constructed with active variables being certain characteristics of cell internal
state (Perthame et al. 2018, 2020). Experimenting with different types of terms
and scalings led to non-standard terms on the macroscale, such as, e.g. fractional
diffusion (Perthame et al. 2018) or flux-limited chemotaxis (Perthame et al. 2020).
In these works, the upscaling was done in a rigorous way.
So far, no non-local interactions of activity variables on the microscale have been
considered.

Inspired by M1–M4 as well as approaches to microscale modelling of the deter-
ministic portion of cell motion preceding a KTE in Dietrich et al. (2022), Zhigun
and Surulescu 2022 and to KTE upscaling in Zhigun and Surulescu (2022), we use a
multiscale approach to formally derive two classes of non-local CCAmodels: firstly, a
basic model without CAM binding dynamics in Sect. 3 and, secondly, a considerably
more involved model which includes such dynamics in Sect. 4. Our derivations go
through the following series of steps.

(1) Develop a detailed microscopic description of the deterministic part of the evolu-
tion of cells and, in the case of the second model, also of their CAMs;

(2) lift the modelling to the mesoscopic level of a CTE using empirical measures;
(3) introduce a turning kernel to account for stochastic fluctuations, yielding a KTE;
(4) perform the parabolic and hyperbolic upscalings to obtain macroscopic IPDEs.

In both cases, the resulting macroscopic cell density satisfies an IPDE with myopic
diffusion and non-local adhesion. In our second model (4.35) the adhesion strength is
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proportional to the fraction of bound CAMs. This quantity satisfies, together with the
cell density, a novel non-linear integral equation.

Our strategy benefits from the accuracy and flexibility allowed by both the
microscale modelling of the deterministic motion component and the mesoscale mod-
elling of stochastic velocity changes. In particular, it allows to avoid direct modelling
and handling of stochasticity. They are part of method M1 and are often challenging.

Wewould like to stress that thiswork aims at developing amodelling framework and
an understanding of what type of CCA models we should expect on the macroscale.
We do not address a specific situation that would correspond to a concrete experiment.
Another word of caution concerns the upscaling procedures, which are only done
formally. A rigorous verification, such as was carried out in Zhigun and Surulescu
(2022), is beyond the scope of the present work.

The remainder of the paper is organised as follows. After introducing some notation
in Sect. 2, we first derive a basic model without CAM binding dynamics in Sect. 3
and then a more involved model that includes such dynamics in Sect. 4. In Sect 5,
we present and discuss the results of one-dimensional simulations for the model in
Sect. 3. Finally, we discuss and summarise our findings in Sect. 6.

2 Notation

In this Section we introduce some notations that are used throughout this paper.

• We denote by | · | the length of a vector but also the volume of a set in Rd , d ∈ N.
• For ρ > 0 we set

Bρ := {θ ∈ R
d : |θ | < ρ},

Bρ := {θ ∈ R
d : |θ | ≤ ρ},

Sρ := {θ ∈ R
d : |θ | = ρ}.

• Several physical variables have their traditional meaning, i.e. t ∈ [0,∞), x ∈ R
d ,

and v ∈ R
d stand for time, position in space, and velocity, respectively, the space

dimension being d ∈ N. In the context where these and, in Sect. 4, yet another
variable, y, serve as independent variables, we refer to t and x as macroscopic
variables, v and y being referred to as non-macroscopic or mesoscopic.

• Convolution with respect to variable x is denoted by �.
• When integrating with respect to a variable w ∈ W ⊂ R

k , k ∈ N, we use the
notation

cw :=
∫
W
c dw

if c is a function defined on W and it is evident from the context what W is.
Similarly, if c is a measure on W , we set

cw :=
∫
W
c(dw)
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to be the integral with respect to that measure. Ifw is a vector consisting of all non-
macroscopic variables, we omit the upper index and write c instead. We refer to a
density moment that is obtained through such integration as macroscopic moment.

• If z0 is a point in R
k , k ∈ N, then δz0 denotes the Dirac delta distribution centred

at z0.
• Weomit arguments of functions inmany instances in order to simplify the notation.

3 Modelling without CAM binding dynamics

In this Sectionwe formally derive a basic non-local diffusion-adhesionmodel under the
assumption that adhesion originates directly from cell-cell interactions, thus ignoring
the subcellular CAM binding dynamics at this stage. We follow steps (1)–(4) outlined
in Sect. 1.2.

3.1 Microscale model

Similar to Zhigun and Surulescu (2022), Dietrich et al. (2022), Corbin et al. (2021),
we begin with a detailed description of the deterministic part of the cell movement on
the microscale which includes acceleration due to external forces. Let a population of
a large number

1 � N ∈ N

of cells be modelled as points with position and velocity coordinates

(xi , vi ) ∈ R
d × R

d , i ∈ {1, . . . , N }.

Following Newton’s second law, we set up an initial value problem (IVP) for an ODE
system that describes their motion:

dxi
dt

= vi , (3.1a)

dvi

dt
= −avi + χ(·, xi ) 1

N

N∑
j=1
j �=i

∇x Hr (xi − x j ), (3.1b)

(xi , vi )(0) = (xi0, vi0), (3.1c)

where (xi0, vi0) ∈ R
d × R

d , i ∈ {1, . . . , N }, a, r > 0,

Hr (x) := 1

r |Br |
∫ r

min{|x |,r}
F(s) ds, (3.2)
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and

F : [0, r ] → [0,∞), χ : [0,∞) × R
d → [0,∞), χ = χ(t, x),

are some continuous functions.
As in Dietrich et al. (2022) and Zhigun and Surulescu (2022), the term (−av) on the

right-hand side of (3.1b) is included to describe the acceleration (rather, deceleration)
due to the viscous force. Following Stokes’ law, we take it to be proportional to the
velocity of the cell.

The reminder of the right-hand side of (3.1b) describes the acceleration due to CCA
forces. This diverts from the choices made in Zhigun and Surulescu (2022), Dietrich
et al. (2022), Corbin et al. (2021), where the external forces that acted on cells were
local and solely due to macroscopic signals. It is also different from M1 because no
simplifying assumptions are made that would allow to reduce the ODE system (3.1)
to a single first-order ODE for xi .

The adhesion force, a special case of the interaction force, is the sum of forces
due to interaction with individual cells within reach. The scaling by 1/N before the
sum in (3.1b) corresponds to the mean field assumption that we adopt here. Similar
to Armstrong et al. (2006), Theoret et al. (2014), Buttenschön et al. (2018) and many
other works, we assume that interaction occurs only within a sensing region that has
the form of a ball of a fixed sensing radius r centred at the cell’s position. The case
of a more realistic sensing radius that could be a function of the physical variables,
as proposed in Loy and Preziosi (2020b), is not considered here. To account for a
possible spatial heterogeneity of sensitivity to adhesion, we multiply by a parameter
function χ instead. Note that in general the resulting interaction kernel

K (t, x, x ′) := χ(t, x)∇x Hr (x − x ′) (3.3)

is not skew-symmetric with respect to the spatial variables x and x ′ and depends on
t . Unlike the collision of physical particles that follows Newton’s third law, here we
allow for non-mechanical influences on the strength of the force one cell exerts on the
other.

As is standard practice, we assume the interaction force between two individual to
be proportional to the gradient of a potential, Hr , which we refer to as adhesion poten-
tial. Function F describes the dependence of the adhesion strength upon the distance
relative to r . The chosen domain of integration in (3.2) ensures that no interaction
occurs outside the sensing region. The gradient of Hr computes to

∇x Hr (x) =
{

− 1
r |Br |

x
|x | F(|x |) in Br\{0},

0 in Rd\Br ,
(3.4)

and, unless F(0) = F(r) = 0, it fails to exist at 0 and/or on Sr . One could avoid this
problem by replacing ∇Hr in (3.1b) by a function that extends it to the whole of Rd .
We ignore the issue, assuming that cells do not accumulate on lower-dimensional sets
such as points and spheres of radius r . Even if a small proportion of cells happens
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to be at a distance exactly zero or r from a certain cell at some point in time, the
corresponding contribution to the right-hand side of (3.1b) would then be small due
to the factor 1/N .

As seen in Sect. 3.3 below, the r -dependent coefficient 1/(r |Br |) in (3.4) appears
before the non-local adhesion term on the macroscale. We give our motivation for its
inclusion as well as argue that F(0) needs to be non-zero later in Sect. 3.3.

Finally, since cell speeds cannot become arbitrary large, we want to ensure that
they are contained in the ball Bs for some unattainable upper bound s > 0. A suitable
rescaling turns s into 1. Thus, from now onwe require that vi ’s do not leave the velocity
space

V := B1.

Basic ODE theory guaranties this under the condition

1

r |Br | sup
[0,∞)×Rd

χ sup
[0,r ]

F ≤ a (3.5)

due to (3.4).

Remark 3.1 (Well-posedness for (3.1)) System (3.1) can be rewritten in the form

dz

dt
= g(·, z),

z(0) = z0,

where

z := (xT1 , vT1 , . . . , xTN , vTN )T : [0,∞) → (Rd × V )N ,

and

g : [0,∞) × (Rd × V )N → [0,∞) × (Rd × V )N

is obtained by copying into a vector the right-hand sides of the equations in (3.1) in the
correct order. Let us now assume that both F and χ are Lipschitz. As discussed above,
∇x Hr may fail to exist on a lower-dimensional set in R

d , implying that the classical
well-posedness theory of first-order ODE systems cannot be used. Still, we verify in a
coming paper that∇Hr belongs to the class of the vector-valued functions of bounded
variation (BV), i.e. it possesses derivatives that are signed Radon measures. Using
the chain rule for BV functions (Ambrosio et al. 2000, Chapter 3 Sect. 3.10 Theorem
3.96)), one can deduce that g inherits this property on (Rd × V )N . Furthermore, it is
evident that g is essentially bounded and satisfies

∇z · g(z) ≡ −dNa,
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so that the divergence is bounded. Therefore, the theory developed inAmbrosio (2004)
provides well-posedness of (3.1) in a certain generalised sense. We do not pursue this
further here.

3.2 Mesoscale model

Our next step is to lift the microscopic model (3.1) to the mesoscale and extend it to
a full KTE that also accounts for stochastic velocity changes.

For each N ∈ N, we introduce the time-dependent empirical measure

cN (t, ·, ·) := 1

N

N∑
i=1

δ(xi ,vi )(t), t ∈ [0,∞), (3.6)

where (xi , vi ) is the trajectory that the i th cell follows in the space-velocity space. This
measure-valued function is an appropriate description of the mesoscopic population
density rescaled so that the total mass is normalized to one. Each distribution δ(xi ,vi )

models a point mass concentrated at (xi , vi ), i.e. the density of a cell at xi with velocity
vi .

Let us assume for a moment that Hr is sufficiently regular. In this case, the classical
ODE theory provides the well-posedness of (3.1). Moreover, the empirical measure
cN corresponding to the solution of (3.1) satisfies in the distributional sense the mean
field PDE

∇(t,x,v) · ((1, v,−av + χ∇x Hr � cN ) cN ) = 0 (3.7)

and, obviously, also the initial condition

cN (0, ·, ·) = 1

N

N∑
j=1

δ(xi0,vi0).

For constant χ , this is well-known, see, e.g. Golse (2013). The general case follows
with Lemma A.1 in the Appendix. However, if Hr is not regular enough, (3.7) may
fail to make sense. In particular, (∇x Hr � c̄)c is in general not well-defined if ∇x Hr is
not continuous and c is a discrete, hence singular, measure. For the reason detailed in
Sect. 3.1 we ignore this issue here.

Since the population number is assumed to be large, we are interested in the mean
field limit as N → ∞. This allows to deal with less concentrated, hence less singular,
solutions to (3.7) that are functions and not discrete measures. Since (3.7) does not
depend on N , it is reasonable to expect that this is the equation that is obtained in the
limit, i.e. that cN converges to some c that satisfies

∇(t,x,v) · ((1, v,−av + χ∇x Hr � c) c) = 0. (3.8)
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The CTE (3.8) provides the description of the deterministic part of cell movement
driven by (3.1) on the mesoscopic level. To complete the modelling, we still need to
include a term that accounts for stochastic perturbations. Since adhesion is particularly
relevant in cancer (see Sect. 1.1), we include a turning operator that accounts for
chaotic realignment with tissue fibers. Following (Zhigun and Surulescu 2022; Hillen
and Painter 2013), we choose a basic turning operator

c �→ dqc − c

to illustrate our approach. Here q models the orientational distribution of tissue fibers
and satisfies the following assumptions:

Assumptions 3.2

1. q : Rd × V → [0,∞) and only depends on x and v
|v| ;

2. q̄ = 1
d .

This kind of turning operator has been used in many models for cancer migration,
see, e.g. references given in Zhigun and Surulescu (2022). The resulting mesoscopic
equation is

∇(t,x,v) · ((1, v,−av + χ∇x Hr � c) c) = dqc − c. (3.9)

It is a blend of a KTE and a mean field equation. This doubly non-local IPDE accounts
for both the deterministic cell-cell and stochastic cell-tissue interactions.

Due to (3.5) and (3.4) we have that

(−av + χ∇x Hr � u) · v

≤ −a|v|2 + |v| sup
[0,∞)×Rd

χ sup
Br

|∇Hr |‖u‖L1(Rd )

= −a + sup
[0,∞)×Rd

χ sup
Br

|∇Hr |

≤ 0 in [0,∞) × R
d × S1 for ‖u‖L1(Rd ) = 1. (3.10)

Consequently, the characteristics of the transport part of Eq. (3.9) that start in Rd × V
do not leave this set. Hence,

c = 0 in [0,∞) × R
d × S1 (3.11)

are admissible boundary conditions for Eq. (3.9)

Remark 3.3 (Mean field limit for (3.7)) For constant χ , the fact that (3.8) is obtained
from (3.7) in the mean field limit is a direct consequence of the results in Dobrušin
(1979), provided that Hr is smooth, and Jabin and Wang (2016) if it is not, at least for
a = 0.

Remark 3.4 (Solvability of (3.9)) We are not aware of results on solvability for such
doubly non-local non-linear equations as (3.9).
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3.3 Macroscale model

In this Subsection we upscale (3.9), (3.11) to obtain equations for the macroscopic
cell density. To begin with, we introduce a macroscopic rescaling of time and space
and of functions depending on them: for ε ∈ (0, 1] let

t̂ = εκ t, κ ∈ {1, 2},
x̂ = εx, r̂ = εr ,

χ̂(t̂, x̂) := χ(t, x), F̂(ŝ) := F(s), q̂(x̂, v) := q(x, v),

cε(t̂, x̂, v) := c(t, x, v).

The values κ = 1 and κ = 2 correspond to the usual hyperbolic and parabolic scalings,
respectively. Under the proposed scaling we have

∇x Hr � c(t, x) = − 1

r |Br |
∫
Br

y

|y| F(|y|)c(t, x − y) dy

= − εd+1

r̂ |Br̂ |
∫
B r̂

ε

y

|y| F̂(ε|y|)cε
(
t̂, x̂ − εy

)
dy

= − ε

r̂ |Br̂ |
∫
Br̂

y

|y| F(ŷ)cε
(
t̂, x̂ − ŷ

)
d ŷ

= ε∇x̂ Hr̂ � cε(t̂, x̂). (3.12)

Rescaling (3.9) and (3.11), using (3.12), and dropping the hats leads to

∇(t,x,v) · ((
εκ, εv,−a(v − vε∗)

)
cε

) = dqcε − cε, (3.13a)

cε = 0 in Rd × S1, (3.13b)

vε∗ := ε
1

a
χ∇x Hr � cε. (3.13c)

Set

c0 := lim
ε→0

cε,

c01 := lim
ε→0

∂εc
ε,

cε
01 := c0 + εc01.

We are interested in obtaining equations for the macroscopic zero- and first-order
approximations of cε, i.e. c0 and cε

01. Equation (3.13a) has the same form as equation
(3.3) in Zhigun and Surulescu (2022). However, the term vε∗ is not exactly of the form
we considered in Zhigun and Surulescu (2022). Indeed, it depends on variable t and
lacks saturation. Still, since it vanishes at ε = 0, the very same formal derivation as
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was done in that work can be carried out in the present case. In particular, one obtains
equations

(a + 1)∂t c0 = 1

2a + 1

d

d + 2
∇x∇T

x :
(
D[q]c0

)
− ∇x · (c0χ∇x Hr � c0)

if κ = 2 and E[q] ≡ 0 (3.14)

and

(a + 1)∂t cε01 + d

d + 1
∇x ·

(
E[q]cε01

)

= ε

(
1

2a + 1

d

d + 2
∇x∇T

x :
(
D[q]cε01

)
− 1

(a + 1)2
d2

(d + 1)2
∇x ·

(
E[q]∇x ·

(
cε01E[q]

)))

− ε∇x ·
(
cε01χ∇x Hr � cε01

)

+ O
(
ε2

)
if κ = 1, (3.15)

where

E[q] :=
∫
S1

θq(θ) dθ,

D[q] :=
∫
S1

θθT q(θ) dθ.

Recalling the adhesion operator

Ar u(x) = 1

r |Br |
∫
Br

u(x + ξ)
ξ

|ξ | F(|ξ |) dξ (3.16)

from Armstrong et al. (2006) and noticing that

Ar u ≡∇x Hr � u, (3.17)

we can alternatively rewrite (3.14) and (3.15) as follows:

(a + 1)∂t c0 = 1

2a + 1

d

d + 2
∇x∇T

x :
(
D[q]c0

)
− ∇x · (c0χAr c0)

if κ = 2 and E[q] ≡ 0 (3.18)

and

(a + 1)∂t cε01 + d

d + 1
∇x ·

(
E[q]cε01

)

= ε

(
1

2a + 1

d

d + 2
∇x∇T

x :
(
D[q]cε01

)
− 1

(a + 1)2
d2

(d + 1)2
∇x ·

(
E[q]∇x ·

(
cε01E[q]

)))

− ε∇x ·
(
cε01χAr cε01

)

+ O
(
ε2

)
if κ = 1. (3.19)
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Both (3.18) and (3.19) contain the same q-dependent terms, such as, e.g. themyopic
diffusion

∇x∇T
x : (D[q]u) ,

as the corresponding equations (3.18) and (3.51) from Zhigun and Surulescu (2022).
We refer to that work for a discussion of these terms, as well as for the formulas for
the mesoscopic approximations c0 and c01. In contrast to Zhigun and Surulescu (2022),
our new equations (3.18)and (3.19) also contain the non-local advection term

−∇x · (uχAr u)

of the form originally proposed in Armstrong et al. (2006) to model CCA. That model
is a special case of (3.18) and corresponds to χ and q being constant.

Another way to rewrite, e.g. (3.18) is by decomposing the spatial motion into an
anisotropic diffusion in the divergence form and advection:

(a + 1)∂t c0 = 1

2a + 1

d

d + 2
∇x ·

(
D[q]∇x c0

)
+ ∇x ·

(
c0

(
1

2a + 1

d

d + 2
∇x · D[q] − χAr c0

))
.

(3.20)

In Sect. 5 below we show results of some numerical simulations for this model.
The heuristic analysis in Gerisch and Chaplain (2008) as well as the rigorous study

in Eckardt et al. (2020) showed that in the limit as r → 0 the non-local adhesion
operatorAr approaches the (local) spatial gradient, provided that F(0) = d + 1. This
is the expected limit behaviour and the reason for the factor 1/(r |Br |) in (3.16) and
the observation that F(0) �= 0, see Sect. 3.1.

Remark 3.5 (Non-local operator ∇̊r ) Since our approach to the derivation of the meso-
scopic equation (3.9) from the microscopic ODE system (3.1) is based on empirical
measures, it limits the admissible choices of the interaction potential. If we were to
start directly on the mesoscopic level and would only accept integrable densities c
rather than discrete measures, then we could choose a discontinuous potential such as

Hr (x) :=
{
1 in Br ,

0 in Rd\Br .
(3.21)

In this case, the gradient of Hr is a measure. In higher dimensions d ≥ 2 it is given by

∇x Hr = −idx dSr ,

which leads to

∇x Hr � u =
∫
Sr
u(x + ξ)ξ dξ

= ∇̊r u. (3.22)
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The latter is the non-local operator that was previously introduced in Othmer and
Hillen (2002) to describe non-local chemotaxis.

Remark 3.6 (Solvability of (3.14) and (3.19)) Several works established solvability of
non-local diffusion-adhesion equations as well as systems containing them, see Chen
et al. (2020) and references therein. Yet none of them included the case of a myopic
diffusion. Solvability in the presence of a scalar (Winkler and Surulescu 2017) or a
tensor (Heihoff 2023) myopic diffusion has so far been accomplished for models with
advection due to haptotaxis, i.e. a directed movement along the spatial gradient of the
macroscopic tissue density, rather than adhesion.

Remark 3.7 (Rigorous upscaling of (3.9)) The presented meso-to-macro upscaling is
formal. Unlike the case that was handled in Zhigun and Surulescu (2022), (3.9) is a
non-linear equation and, as previously observed in Sect. 3.2, the term uAr u is not
defined for singular measures u. Thus, the approach that we developed in Zhigun and
Surulescu (2022) is not directly applicable. Indeed, there we relied on the linearity of
the KTE and on the possibility of considering measure-valued solutions. A rigorous
upscaling for (3.9) remains an open question.

4 Modelling with CAM binding dynamics

In this Section we derive a new non-local diffusion-adhesion model that takes into
account subcellular CAM binding dynamics. We adhere to steps (1)–(4) outlined in
Sect. 1.2.

4.1 Microscale model

The basic microscopic model (3.1) neglects the CAMs binding dynamics, which, as
pointed out in the Introduction, is the underlying mechanism of cell-cell binding.
In Buttenschön et al. (2018), this mechanism was taken into account. There it was
assumed that at each time and position in space a single cell is moving while the
rest of the population in its background is effectively standing still. The interactions
between the cell and the background populationwere described by reversible reactions
that either discriminate between bound/free CAMs or not.

In this Subsection, we exploit the microscopic approach that allows to describe
mutual interactions between the CAMs of a pair of cells. For this purpose, we construct
a system of ODEs that includes equations not just for xi and vi but also for yi , the
proportion of bound CAMs of i th cell. This bears resemblance to modelling in Kelkel
and Surulescu (2011, 2012), although, in our case, the interactions occur inside the
population rather than with an external signal.

For the reader’s convenience, we first collect all involved model variables and
parameters, including those previously introduced in Sect. 3:

• 1 � N ∈ N: population number;
• t ∈ [0,∞): time;
• d ∈ N: space dimension;
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• xi : [0,∞) → R
d , xi = xi (t): position of i th cell in space;

• V = B1: velocity space;
• vi : [0,∞) → V , vi = vi (t): velocity of i th cell;
• a ∈ (0,∞): cell deceleration rate;
• r ∈ (0,∞): cell sensing radius;
• R ∈ (0,∞): total number of CAMs of a cell;
• yi : [0,∞) → (0, 1), yi = yi (t): proportion of bound CAMs of i th cell;
• S : [0,∞) × R

d → [0,∞), S = S(t, x): concentration of a chemical on which
the likeliness to bind/unbind depends;

• k+/k− : [0,∞) × [0,∞) → [0,∞) : CAM binding/unbinding rate constants,
depend on S and the distance between interacting cells;

• F : [0, r ] → [0,∞): distance-dependent component of adhesion force;
• Hr : adhesion potential as defined by (3.2);
• χ : [0,∞) × R

d → [0,∞), χ = χ(t, x): adhesion sensitivity.

We begin by describing the cell motion: for i ∈ {1, . . . , N }

dxi
dt

= vi , (4.1a)

dvi

dt
= −avi + χ(·, xi )yi 1

N

N∑
j=1
j �=i

∇x Hr (xi − x j ). (4.1b)

Unlike (3.1), in (4.1) the total adhesion force acting on the i th cell is taken to be
proportional to yi . This implies that the more bonds a cell has, the stronger this force
is.

We make the following assumptions on the CAM binding:

(Ai) a single type of CAMs influences cell motion;
(Aii) all cells have exactly the same number of these CAMs;
(Aiii) each cell has both bound and free CAMs at every point in time;
(Aiv) a CAM of a cell can only bind to a distinct CAM of another cell;
(Av) CAMs of a pair of cells can bind only if the distance between the cells is smaller

than the sensing radius r ;
(Avi) if the distance approaches r , then their CAMs unbind;
(Aii) binding/unbinding kinetics obeys an analog of the mass action law;
(Aiii) binding is reversible; the corresponding rates for a pair of cells depends on

the distance between them and the concentration of a chemical at the middle
distance.

An example of an application that we have in mind here is a simplified description of
the formation of adherens junctions through the calcium-mediated cadherin binding,
see Sect. 1.2 above.

Let Fi and Bi denote respectively the free and bound CAMs of the i th cell. Then,
the above assumptions can be described by the following ‘reactions’: for all i, j ∈
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{1, . . . , N }, i �= j ,

Fi + F j

k+
(
S
(
t, 12 (xi+x j )

)
,|xi−x j |

)
−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−
k−

(
S
(
t, 12 (xi+x j )

)
,|xi−x j |

) Bi + B j , (4.2)

where

k± ≡ 0 in [0,∞) × [r ,∞). (4.3)

It is reasonable to suppose in this context that the following quantities replace the
standard chemical concentrations:

[Bi ] := [number of bound CAMs of i th cell]
[total number of CAMs in population] · [volume of the sensing region]

= yi R

N R|Br |
= yi

N |Br |
and, similarly,

[Fi ] := 1 − yi
N |Br | .

We provide an example of binding/unbinding rates k+/k−.

Example 4.1 For some non-decreasing K+ : [0,∞) → [0,∞) and non-increasing
K− : [0,∞) → [0,∞) and constants a±, b± ∈ (0,∞) set

k±(S, ρ) := K±(S)ϕ±(ρ) for S, ρ ∈ [0,∞),

ϕ±(ρ) :=
⎧⎨
⎩

(
rb

± − ρb±)±a±
for ρ ∈ [0, r),

0 for ρ ∈ [r ,∞).

This choice produces a speedy detachment when the cell distance is close to r .

In order to estimate the binding/unbinding rates in a concrete type of cell-cell
binding, the general framework developed in Bell (1978) can be adopted. There, the
binding process is decomposed into two phases: the formation of the encounter com-
plex and the actual bond formation, both being reversible reactions. The reaction rates
for the former are described by functions of the cell separating distance and the trans-
lational diffusion coefficient for CAM motion in the cell membrane. Specifically in
the case of cadherin binding, higher calcium concentrations correlate with faster dif-
fusion of cadherins in the cell membrane (Cai et al. 2016). As to the bond formation,
it is well-understood (Alberts et al. 2008, Chapter 19) that calcium is indispensable
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for cadherins to achieve the rigid structure that is necessary for them to bind. These
are the observations that have led us to assume that k± are functions of distance and
concentration of a chemical that mediates the binding of CAMs.

Applying the law of mass action to (4.2), we arrive at the following ODE system
for the dynamics of yi ’s:

dyi
dt

= 1

N

N∑
j=1
j �=i

Gr [S](t, (xi , yi ), (x j , y j )), i ∈ {1, . . . , N }, (4.4a)

where

Gr [S](t, (x, y), (x ′, y′)) := G+
r [S](t, x, x ′)(1 − y)(1 − y′) − G−

r [S](t, x, x ′)yy′,

(4.4b)

G±
r [S](t, x, x ′) := 1

|Br |k
±

(
S

(
t,
1

2
(x + x ′)

)
, |x − x ′|

)
. (4.4c)

System (4.1), (4.4) is our new microscopic model.
Since k± ≥ 0, we have that

Gr [S](t, (x, 0), (x ′, y′)) ≥ 0, Gr [S](t, (x, 1), (x ′, y′)) ≤ 0

for all t ∈ [0,∞), x, x ′ ∈ R
d , y′ ∈ [0, 1]. (4.5)

Standard ODE theory implies that yi ’s do not leave [0, 1].
Remark 4.2 (Well-posedness of (4.1), (4.4)) The well-posedness of (4.1), (4.4) can be
addressed in the same way as for (3.1), see Remark 3.1. Depending on the choice of
functions k± one could avail of the classical ODE existence and uniqueness results or
the more general theory from Ambrosio (2004). In particular, since the divergence of
the right-hand side of the ODE system for (xT1 , vT1 , y1, . . . , xTN , vTN , yN )T computes
to

− dNa − 1

N

N∑
i=1

N∑
j=1
j �=i

(G+
r [S](t, xi , x j )(1 − y j ) + G−

r [S](t, xi , x j )y j )

= −dNa − 1

N

N∑
j=1

⎛
⎜⎜⎝(1 − y j )

N∑
i=1
j �=i

G+
r [S](t, xi , x j ) + y j

N∑
i=1
j �=i

G−
r [S](t, xi , x j )

⎞
⎟⎟⎠ ,

(4.6)

the essential boundedness of k± is necessary for the results from Ambrosio (2004) to
apply.
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4.2 Mesoscale model

In this Subsection, we lift the microscopic model (4.1), (4.4) to the mesoscale and
extend it to a full KTE that includes stochastic velocity changes. Similar to Sect. 3.2,
we begin by introducing the empirical measures

cN (t, ·, ·, ·) := 1

N

N∑
j=1

δ(xi ,vi ,yi )(t).

A formal application of Lemma A.1 to system (4.1), (4.4) and Z := (xT , vT , y)T

yields that cN solves in the distributional sense the mean field IVP

∇(t,x,v,y) ·
((

1, v,−av + χ y∇x Hr � cN ,Gr [S]cN v − 1

N
tr Gr [S]

)
cN

)
= 0,

cN (0, ·, ·, ·) = 1

N

N∑
j=1

δ(xi ,vi ,yi )(0). (4.7a)

where

Gr [S]u (t, x, y) :=
∫ 1

0

∫
Rd

Gr [S](t, (x, y), (x ′, y′))u(t, x ′, y′) dx ′dy′,

tr Gr [S](t, x, y) := Gr [S](t, (x, y), (x, y)).

Here, as in Subsection 3.2, we ignore the potential discontinuities in the kernels.
Passing formally to the limit as N → ∞ in (4.7a), we arrive at the mean field limit
equation

∇(t,x,v,y) · ((
1, v,−av + χ y∇x Hr � c,Gr [S]cv

)
c
) = 0. (4.8)

To account for chaotic interactions with tissue we use the same turning operator as in
(3.9). The resulting mesoscopic equation is thus:

∇(t,x,v,y) · ((
1, v,−av + χ y∇x Hr � c,Gr [S]cv

)
c
) = dqcv − c. (4.9)

Due to (3.5) and (3.4) we have that

(−av + χ y∇x Hr � u) · v ≤ −a|v|2 + |v|sup
Br

|∇Hr |‖u‖L1(Rd )

= −a + sup
Br

|∇Hr |

≤ 0 in [0,∞) × R
d × S1 × [0, 1] for ‖u‖L1(Rd ) = 1. (4.10)
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Further, (4.5) implies that

Gr [S]u ≥ 0 in [0,∞) × R
d × {0}, for u ≥ 0, (4.11a)

Gr [S]u ≤ 0 in [0,∞) × R
d × {1}, for u ≥ 0. (4.11b)

Combining (3.5) and (4.11), we conclude that the characteristics of the transport part
of equation (4.8) that start in Rd × V × [0, 1] do not leave this set. Hence,

c = 0 in [0,∞) × R
d × ((B1 × {0, 1}) ∪ (S1 × (0, 1))) (4.12)

are admissible boundary conditions for (4.9).

Remark 4.3 (Rigorous treatment of (4.7a)) We are not aware of rigorous results on
well-posedness or mean field limit for such CTEs as (4.7a). Note that unlike standard
applications arising in physics, the kernels of the integral operators we are dealing
with here are not skew symmetric.

Remark 4.4 (Solvability of (4.9)) Equation (4.9) is a generalisation of (3.9). As men-
tioned in Remark 3.4, the solvability of the latter equation has not been addressed so
far.

4.3 Macroscale model

In this Subsection we upscale (4.9), (4.12) to obtain equations for the macroscopic
cell density. As in Sect. 3.2, we begin by introducing a macroscopic rescaling of time
and space and of functions depending on them: for ε ∈ (0, 1] let

t̂ = εκ t, for κ ∈ {1, 2},
x̂ = εx, r̂ = εr , d̂ = εd,

Ŝ(t̂, x̂) := S(t, x), χ̂(t̂, x̂) := χ(t, x), F̂(ŝ) := F(s), q̂(x̂, v) := q(x, v),

k̂±(S, d̂) := ε−μk±(S, d) for some μ > 0,

cε(t̂, x̂, v, y) := c(t, x, v, y).

As before, we consider here hyperbolic (κ = 1) and parabolic (κ = 2) space-time
scalings. The rescaling of reaction rate constants means rescaling of dy/dt . A negative
epsilon power is chosen to reflect the fact that the CAM binding and unbinding are
the fastest among all included processes. Rescaling (4.9) and (4.12) and dropping the
hats leads to

∇(t,x,v,y) · ((
εκ, εv,−av + εχ y∇x Hr � cε, ε−μGr [S]cεv)

cε
) = dqcεv − cε,

(4.13a)

cε = 0 in [0,∞) × R
d × ((B1 × {0, 1}) ∪ (S1 × (0, 1))). (4.13b)
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Following the approach from Zhigun and Surulescu (2022), we derive equations
connecting some zero, first, and second moments of cε. To begin with, we integrate
(4.13a) by parts with respect to (v, y) over V × [0, 1] using (4.13b) and then divide
by εκ in order to obtain an equation which connects the macroscopic zero and first
order v moments:

∂t cε + ε1−κ∇x · vcε = 0. (4.14)

Next, we multiply (4.13a) by v and once again integrate by parts over V ×[0, 1] using
(4.13b):

εκ∂tvcε + ε∇x · vvT cε + avcε − εχ ycε∇x Hr � cε = n

n + 1
E[q]cε − vcε. (4.15)

Rearranging and dividing (4.15) by εκ−1 leads to

− (a + 1)ε1−κvcε = ε2−κ∇x · vvT cε − ε2−κ

·
(

χ ycε∇x Hr � cε + ε−1 n

n + 1
E[q]cε

)
+ ε∂tvcε. (4.16)

Next, we apply (∇x ·) to both sides of (4.16) and plug the expression on the right-hand
side into (4.14). In order to eliminate the resulting term with the mixed derivative
(∇x ·)∂t we apply εκ∂t to both sides of (4.14). Thus we arrive at the following differ-
ential equation for the macroscopic moments of zero and second order:

εκ∂t2cε + (a + 1)∂t cε = ε2−κ∇x∇T
x : vvT cε − ε2−κ∇x ·(

χ ycε∇x Hr � cε + ε−1 n

n + 1
E[q]cε

)
. (4.17)

Now we are ready to start the limit procedure. Let

c0 := lim
ε→0

cε.

Sending ε to zero in (4.13b), we obtain

c0 = 0 in [0,∞) × R
d × ((B1 × {0, 1}) ∪ (S1 × (0, 1))). (4.18)

Multiplying (4.13a) by εμ and passing to the limit as ε → 0 yields an equation for c0:

∂y

(
Gr [S]c0v

c0
)

= 0. (4.19)

Integrating (4.19) using (4.18) yields

Gr [S]c0v
c0 ≡ 0. (4.20)
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To resolve (4.20) with respect to c0, we first need to study equation

Gr [S]u = 0 (4.21)

for a given function u. Combining (4.3) and (4.4b)-(4.4c), Gr [S]u can be expressed in
terms of moments:

Gr [S]u(·, ·, y′) = G+
r [S](uy − yuy) − y′ (G+

r [S](uy − yuy) + G−
r [S]yuy) ,

(4.22a)

G±
r [S]u(t, x) :=

∫
Rd

G±
r [S](t, x, x ′)u(t, x ′) dx ′. (4.22b)

Using (4.22a), we can resolve (4.21) with respect to variable y and obtain

Gr [S]u(·, ·, y∗) = 0 ⇔ y∗ = Yr [S] (
uy, yuy) , (4.23a)

Yr [S](μ0, μ1) := G+
r [S](μ0 − μ1)

G+
r [S](μ0 − μ1) + G−

r [S]μ1
, (4.23b)

provided that the denominator of the fraction on the right-hand side (4.23b) is non-zero.
Given that k± ≥ 0, we have that

G+
r [S](μ0 − μ1),G−

r [S]μ1 ≥ 0 for μ0 ≥ μ1 ≥ 0, (4.24)

and, moreover, if

G+
r [S](μ0 − μ1) > 0 or G−

r [S]μ1 > 0 (4.25)

as well, then Yr [S](μ0, μ1) is well-defined and

Yr [S](μ0, μ1) ∈ [0, 1].

Since y ∈ [0, 1], inequalities in (4.24) are satisfied for

μ0 := uy, μ1 := yuy .

Assuming that for u := c0
v
condition (4.25) is satisfied, i.e. that

μ0 := c0, μ1 := yc0

satisfy (4.25), we can resolve (4.20) with respect to the y-variable and obtain

c0(·, ·, ·, dy) = c0
y
δYr [S]

(
c0,yc0

)(y). (4.26)
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Multiplying (4.26) by y and integrating over V × [0, 1], we arrive at an equation that
connects the macroscopic zero and first order y moments of c0:

yc0 = c0Yr [S]
(
c0, yc0

)
. (4.27)

Next, we integrate (4.13a) with respect to y over [0, 1] using (4.13b) and pass to
the limit as ε → 0 to obtain

−a∇v ·
(
vc0

y) = dqc0 − c0
y
. (4.28)

This equation can be resolved with respect to c0
y
using the method of characteristics

(a similar case was treated in Zhigun and Surulescu (2022)). The solution reads

c0
y = c0qξ1, (4.29)

where

ξ1(v) =
{

d
da−1

(
|v|−d+ 1

a − 1
)

for a �= 1
d ,

− d
a ln |v| for a = 1

d .
(4.30)

Altogether, combining (4.26) and (4.29), we obtain a formula for c0 in terms of some
of its macroscopic moments:

c0(·, ·, ·, y) = c0qξ1δYr [S]
(
c0,yc0

)(y). (4.31)

Next, we multiply (4.28) by v and vvT , respectively, and integrate by parts over V
using (4.18) to obtain formulas for macroscopic moments of order one,

avc0 = d

d + 1
E[q]c0 − vc0

⇔ vc0 = 1

a + 1

d

d + 1
E[q]c0, (4.32)

and two,

2avvT c0 = dvvT q c0 − vvT c0

⇔ vvT c0 = 1

2a + 1

d

d + 2
D[q]c0. (4.33)

Passing formally to the limit in (4.14) and using (4.32) we arrive at the CTE

(a + 1)∂t c0 + d

d + 1
∇x ·

(
c0E[q]

)
= 0 if κ = 1. (4.34)
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This is typical for hyperbolic scaling. Now we address the case of parabolic scaling.
Passing formally to the limit in (4.17), using (4.33), and recalling (4.27), we arrive at

(a + 1)∂t c0 = 1

2a + 1

d

d + 2
∇x∇T

x :
(
D[q]c0

)
− ∇x ·

(
χ yc0∇x Hr � c0

)
, (4.35a)

yc0 = c0Yr [S]
(
c0, yc0

)

if κ = 2 and E[q] ≡ 0. (4.35b)

Similar to (3.18), Eq. (4.35) for the macroscopic cell density, c0, includes myopic
diffusion and non-local adhesion. This time, however, the sensitivity to the adhesion
force acting on the cells is proportional to the amount of bounded CAMs, yc0, and,
thus, to that of the adhesion bonds formed by the cells.

Equation (4.35b) appears to be of a new type. In general, it is non-local and non-
linear and cannot be explicitly resolved for yc0. Our next Example deals with a special
case where the equation is local and easy to solve.

Example 4.5 Let us assume that k±’s are singular measures rather than functions and
of the form

k±(S, ρ) := K±(S)δ0(ρ). (4.36)

This choice would correspond to the impossible situation where binding would only
occur locally. For k± from (4.36), operators G±

r [S], as defined by (4.22b) and (4.4c),
turn into local multiplication operators:

G±
r [S]u = K±(S)u,

and equation (4.35b) can be easily resolved:

yc0 = (K+)
1
2

(K−)
1
2 + (K+)

1
2

(S)c0. (4.37)

Remark 4.6 (Solvability of (4.35)) System (4.35) is strongly coupled. The presence of
the non-linear non-local Eq. (4.35b) of a new type as well as of a potentially degenerate
myopic diffusion makes its analysis challenging. We establish a result on local well-
posedness for a variant of this systemwhich includes a quasilinear degenerate diffusion
in divergence form rather than a myopic one in a coming paper. We expect that our
analysis there will indicate a reliable approach to a numerical treatment of (4.35).

Remark 4.7 (Rigorous upscaling of (4.9)) As in the case of (3.9), the upscaling pro-
vided above for (4.9) is just formal, see Remark 3.7 for the comparison with the case
we studied earlier in Zhigun and Surulescu (2022).
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5 Simulations

In this Section, we present some simulation results for equation (3.20) and its
non-myopic modification on a one-dimensional interval. Several options have been
considered in the literature regarding appropriate boundary conditions and treatment
of the integrand of Ar in the area where the argument falls outside a bounded spatial
domain (Hillen and Buttenschön 2020). Here we assume no-flux boundary conditions
and extend the integrand in Ar by zero. Denoting u := c0, we solve numerically the
IBVP

2∂t u(t, x) = 1

9
∂x ((D0 + δx)∂x u(t, x))

+ ∂x

(
u(t, x)

(
θ
1

9
δ − 1

2
χ0

∫
(−1,1)∩(−x,−x+6)

u(t, x + ξ) sign(ξ) dξ

))
in (0, 25] × (0, 6),

(5.1a)

no-flux boundary conditions on (0, 25]×{0, 6},
(5.1b)

u0 = 5 in {0} × (0, 6). (5.1c)

Our setting here could mimic a hypothetical in vitro experiment that starts with
loss of strong cohesion in a piece of epithelium where cells undergo a partial EMT
associated with cancer progression. Such cells acquire increased migratory properties
while retaining some cell-cell adhesiveness. This scenario leads to enhanced migra-
tion, partly coordinated by cell-cell adhesion, and may result in formation of cell
aggregates. In the present experiment, we assume the extracellular matrix (ECM) to
be mildly heterogeneous and not very dense. This is comparable with ECM found
in healthy epithelium prior to tissue remodelling by cancer cells. Therefore, a one-
dimensional numerical set-up, as discussed below, provides a suitable description of
an early stage of cancer invasion under uncomplicated ECM topology. Simplifying
spatial complexity and thus reducing the number of key parameters helps elucidate the
interplay between myopic diffusion and cell-cell adhesion components of migration
at this stage.

All parameter values used are collected in Table 2. Their selection has been made
for illustrative purposes and is not guided by any particular application. The obtained
results are discussed in Sect. 5.1 and the simulation approach is explained in Sect. 5.2.

5.1 Results

We singled out the following test parameters: the minimum value of the diffusion
coefficient, D0, a diffusion perturbation parameter, δ, the constant adhesion sensitivity,
χ0, and a binary parameter θ that if set to be zero renders the diffusion non-myopic.
These variables allow us to adjust the magnitudes of three distinct flux components:
the canonical diffusion along the spatial density gradient with diffusion coefficient
1
2·9 (D0 + δx), the advection to the left with a constant speed θ 1

2·9δ, and the non-local
adhesionwith strength 1

2·2χ0 and the distance-independent adhesion forcewith F ≡ 1.
The goal of our numerical study here is to understand how the combination of the three
motion effects can unfold.
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Table 2 Parameters used in
simulations of (3.20) (a) Fixed model parameters.

Final time 25

d 1

Spatial domain (0, 6)

r 1

a 1

F(x) 1

D[q](x) D0 + δx

χ(x) χ0

u0(x) 5

(b) Varying model parameters.

D0 {0.15, 3, 5, 8}
δ {0, 1}
χ0 {0.5, 1}
θ {0, 1}
(c) Mesh sizes

Size of time integration interval 0.01

Size of time mesh for pdepe 0.01 · 1
41

Size of spatial mesh for pdepe 0.01

Since initially the population is homogeneously distributed over the spatial domain,
it would have remained so in the absence of adhesion. In our simulations, the adhesion
strength χ0 is strictly positive, so that adhesion is always present and, as expected, it
promotes the formation of aggregates.

In our first series of simulations we take θ = 1, meaning that diffusion is myopic.
The scenario involving a constant diffusion coefficient, i.e. δ = 0, was previously
examined in Hillen and Buttenschön (2020), and we regard it as the control case. The
results are shown in the first two columns of Fig. 1. In addition to a single aggregate
or a pair of aggregates displayed in Hillen and Buttenschön (2020) we also found, for
a weak diffusion corresponding to D0 = 0.15 that three very tight aggregates can be
observed for χ0 = 0.5 in Fig. 1(m). For χ0 = 1, they are about twice as dense, see
Fig. 1(n). Comparing the plots in the first column of Fig. 1, we see that substantially
increasing the diffusion coefficient diminishes the density of the aggregates, slows
down their formation, and reduces their number. The latter can occur early on or later
in time, as, e.g. Fig. 1(f) and (j) respectively convey. The aggregates are eventually
spaced more than one unit apart, as could be expected for r = 1. Considering that the
adhesion effect increases with growing density inside the sensing region, the impact
of a density-independent diffusion is most noticeable during the initial accumulation
phase. If diffusion brings density accumulations close enough, adhesion will cause
them to merge, as shown, e.g. in Fig. 1(a).

Next, we introduce a linear perturbation into the diffusion coefficient by taking
δ = 1. The results are shown in the last two columns of Fig. 1. This symmetry-
breaking effect both increases diffusion, most notably on the right half of the spatial
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domain, and adds advection to the left. Already for small D = 0.15, three aggregates
can no longer be sustained, with the accumulations in the middle and to the right
merging into a single aggregate, see, e.g. Fig. 1(p). Depending on D0 and χ0, we
observe either two aggregates with the left one now being tighter than the right one,
compare, e.g. Fig. 1(h) with (f), or a single aggregate emerging sooner or later in the
left half of the domain, as can be observed, e.g. in Fig. 1(c).

Now we set θ = 0 and δ = 1. This eliminates the constant-speed advection to the
left, rendering the diffusion non-myopic while still retaining the spatial heterogeneity
in the diffusion coefficient. The numerical results for this case are presented in the odd
columns of Fig. 2 next to the corresponding graphs for θ = 1 in the even columns of
the same Figure. The comparison of the plots reveals that advection due to diffusion
being myopic primarily serves to preserve the position of the aggregates. Only for
D0 = 8 and χ0 = 0.5 it is different, see Fig. 2(a) and (b). Here in the absence of the
density-independent advection in the left direction a tight aggregate fails to form. This
might be because the density accumulation fails to reach the left half of the domain
and hence stays under the influence of a strong diffusion that precludes a substantial
aggregation.

5.2 Method

Our solver for (5.1) was written in MATLAB (2023a). In this Subsection, we briefly
describe our numerical scheme. To start, we decomposed the time interval [0, 25] into
intervals of equal size of 0.01. Let tk , k ∈ {0, 1, . . . , 25× 100}, be the corresponding
mesh points. Starting with ũ0 := u0, we successively determined approximations ũk
of u(tk, ·) by solving numerically the IBVP

2∂t ũ(t, x) = 1

9
∂x ((D0 + δx)∂x ũ(t, x))

+ ∂x

(
ũ(t, x)

(
θ
1

9
δ − 1

2
χ0

∫
(−1,1)∩(−x,−x+6)

ũk (x + ξ) sign(ξ) dξ

))
in (0, 0.01] × (0, 6),

(5.2a)

no-flux boundary conditions on (0, 0.01]×{0, 6},
(5.2b)

ũ = ũk in {0} × (0, 6), (5.2c)

and then set

ũk+1 := ũ(0.01, ·).

To solve the implicit-explicit Eq. (5.2), we used MATLAB’s function pdepe (MAT-
LAB 2023c). The sizes of the equidistant meshes that we passed to pdepe were
1/41 · 0.01 for time and 0.01 for space. To apply pdepe in this case, one needs first
to produce the function described by the non-local term, as it is part of the expression
for the flux. We discretised that integral term for the entire spatial domain replacing it
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Fig. 1 Kymographs of numerical solutions of (5.1) for θ = 1 and various values of D0, χ0, and δ

by the right Riemann sums

sm := 0.01
b(m)∑

l=a(m)

ũk (0.01(m + l)) sign (0.01l) , (5.3)

where

a(m) := max{−99,−m}, b(m) := min{100,−m + 100 · 6}, m ∈ {0, . . . , 100 · 6},

and then interpolated these values usingMATLAB’s functiongriddedInterpolant
(MATLAB 2023b) to create a function of x . To compute the sums (5.3), we applied
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Fig. 2 Kymographs of numerical solutions to (5.1) for θ = 1 (odd columns) and θ = 0 (even columns),
δ = 1, and various values of D0 and χ0

MATLAB’s function xcorr (MATLAB 2023d) as follows. Let

ω := (−1, . . . ,−1︸ ︷︷ ︸
(100−1) times

, 0, 1, . . . , 1︸ ︷︷ ︸
100 times

),

u := (ũk(0), ũk(0.01), . . . , ũk(6)),

w := xcorr(u, ω),

then

(s0, . . . , s100·6) = 0.01
(
w(100·6+1)−(100−1), . . . , w2(100·6+1)−100

)
.
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6 Discussion

CCA plays a pivotal role in the development and functioning of multicellular
organisms. Notably, it regulates cell migration, either promoting or inhibiting it.
Macroscopic mathematical models can contribute to a better understanding of adhe-
sion effects because they are amenable to both rigorous mathematical analysis and
in silico studies, and numerical results for these models can be compared to medical
images.

In this paper we aimed at devising a new multiscale approach to modelling cell
migration driven by such effects as CCA and anisotropic diffusion. After reviewing
previously available approaches in Sect. 1.2, we derived in Sect. 3 classes of IPDE
models containing non-local adhesion and myopic diffusion, the classical model in
Armstrong et al. (2006) being their special case. We further extended our approach in
Sect. 4 where we derived a novel model (4.35) that can account for subcellular binding
dynamics of CAMs, molecules responsible for cells sticking to each other.

Our modelling can serve as a starting point for considerably more realistic models
for adhesion-driven motion. One of our simplifying modelling assumptions, (Ai) in
Sect. 4, was that all junctions are cell-cell junctions of one and the same type. Themain
application that we had in mind here were the adherens junctions such as facilitated by
E-cadherins, see Sect. 1.1. In reality, cells form a variety of junctions and, moreover,
subpopulations with distinct adhesion properties can be involved. Our approach could
be extended to accommodate such complexities.

The usefulness of such models as (4.35) hinges on their solvability. As previously
announced in Remark 4.6, we prove local solvability, yet for a quasilinear non-myopic
degenerate diffusion, in a coming paper. We postpone to that work a discussion of
challenges that arise in connection with treatment of Eq. (4.35b). While non-myopic
diffusion is often adopted in modelling cell motion, our simulation results in Sect. 5
underscore the difference that a myopic diffusion can make. We are going to settle the
solvability for (4.35) in a future work.

Acknowledgements The authors thank Christina Surulescu (RPTUKaiserslautern-Landau) for stimulating
discussions. The authors were supported by the Engineering and Physical Sciences Research Council [grant
number EP/T03131X/1]. For the purpose of open access, the authors have applied a Creative Commons
Attribution (CC BY) licence to any Author Accepted Manuscript version arising. All data is provided in
full in Sect. 5 of this paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


   55 Page 32 of 35 A. Zhigun, M.L. Rajendran

Appendix A

The following Lemma extends the result that is well-known for skew-symmetric ker-
nels K , see, e.g. (Golse 2013, Chapter 3 Sect. 2 Theorem 3.2.1(b)). The proof, which
is very similar, is provided for the reader’s convenience.

Lemma A.1 Let m, N ∈ N. Let A ∈ C([0,∞)×R
m;Rm) and K ∈ C([0,∞)×R

m ×
R
m;Rm). Define

Kμ(t, Z) :=
∫
Rm

K (t, Z , Z ′) μ(dZ ′), tr K (t, Z) := K (t, Z , Z), Z ∈ R
m .

(A.1)

Consider the ODE system

dZi

dt
= 1

N

N∑
j=1
j �=i

K (·, Zi , Z j ) + A(·, Zi ). (A.2)

Let (ZT
1 , . . . , ZT

N )T ∈ C1([0, T );RmN ) be a solution to (A.2) for some T ∈ [0,∞].
Then, the empirical measure

μN := 1

N

N∑
i=1

δZi

satisfies

∂tμN + ∇z ·
((

KμN − 1

N
tr K + A

)
μN

)
= 0 (A.3)

on (0, T ) × R
m in the distributional sense.

Proof Throughout the proof, equations are understood to be satisfied in the sense of
distributions on (0, T ) × R

m .
Let i ∈ {1, . . . , N }. From the theory of CTEs it is known that (see, e.g. Golse

(2013)) that

∂tδZi + ∇z ·

⎛
⎜⎜⎝

⎛
⎜⎜⎝ 1

N

N∑
j=1
j �=i

K (·, ·, Z j ) + A

⎞
⎟⎟⎠ δZi

⎞
⎟⎟⎠ = 0. (A.4)

Using (A.1) and the property

ϕδZ̄ = ϕ(Z̄)δZ̄
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which holds for any Z̄ ∈ R
m and continuous function ϕ = ϕ(Z), we can rewrite (A.4)

as follows:

0 = ∂tδZi + ∇z ·

⎛
⎜⎜⎝

⎛
⎜⎜⎝ 1

N

N∑
j=1
j �=i

K (·, ·, Z j ) + A

⎞
⎟⎟⎠ δZi

⎞
⎟⎟⎠

= ∂tδZi + ∇z ·
⎛
⎝

⎛
⎝ 1

N

N∑
j=1

KδZ j − 1

N
tr K + A

⎞
⎠ δZi

⎞
⎠

= ∂tδZi + ∇z ·
((

KμN − 1

N
tr K + A

)
δZi

)
. (A.5)

Computing the arithmetic mean with respect to i on both sides of (A.5) yields (A.3).
��
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