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BACKGROUND: Existing colorectal cancer subtyping methods were generated without much consideration of potential differences
in expression profiles between colon and rectal tissues. Moreover, locally advanced rectal cancers at resection often have received
neoadjuvant chemoradiotherapy which likely has a significant impact on gene expression.

METHODS: We collected mRNA expression profiles for rectal and colon cancer samples (n =2121). We observed that (i) Consensus
Molecular Subtyping (CMS) had a different prognosis in treatment-naive rectal vs. colon cancers, and (ii) that neoadjuvant
chemoradiotherapy exposure produced a strong shift in CMS subtypes in rectal cancers. We therefore clustered 182 untreated

rectal cancers to find rectal cancer-specific subtypes (RSSs).

RESULTS: We identified three robust subtypes. We observed that RSS1 had better, and RSS2 had worse disease-free survival. RSS1
showed high expression of MYC target genes and low activity of angiogenesis genes. RSS2 exhibited low regulatory T cell
abundance, strong EMT and angiogenesis signalling, and high activation of TGF-, NF-kB, and TNF-a signalling. RSS3 was
characterised by the deactivation of EGFR, MAPK and WNT pathways.

CONCLUSIONS: We conclude that RSS subtyping allows for more accurate prognosis predictions in rectal cancers than CMS
subtyping and provides new insight into targetable disease pathways within these subtypes.

British Journal of Cancer; https://doi.org/10.1038/s41416-024-02656-0

BACKGROUND

Colorectal cancer is the third most common cancer worldwide.
When considered separately colon cancer is the fourth and rectal
cancer is the eighth most common cancer [1]. Rectal and colon
cancers exhibit histological and anatomical differences which
have been associated with different clinical outcomes [2, 3]. While
stage lll and high-risk stage Il colon cancer patients are treated
with adjuvant chemotherapy post-resection [4], locally advanced
rectal cancers are routinely treated both in neoadjuvant and
adjuvant settings. Neoadjuvant chemoradiotherapy (CRT) is
performed in stage 3 and high-risk stage 2 rectal cancers to
shrink the tumour and improve the effectiveness of surgical
resection [5].

Unsupervised, transcriptome-based molecular subtyping of
colorectal cancers has revealed new insights into the hetero-
geneity of colorectal cancer and the underlying disease biology
within subtypes [6]. ‘Consensus molecular subtypes’ (CMS) defined
by Guinney et al. [7] were established subsequent to several
previous subtyping studies [8-13] and employed Markov cluster-
ing on the similarity network of the previously identified clusters
to define four CMS. However, colon cancer samples comprised the
vast majority (85%) of the study samples [14]. Moreover, rectal
cancers at resection may have already been subjected to

neoadjuvant CRT, which is likely to induce significant alterations
in gene expression profiles [5].

Systematic and specific subtyping of treatment-naive rectal
cancers has so far not been performed. Therefore, by focusing on
untreated rectal cancer samples, we refined previous subtyping
efforts and identified three robust RSS, RSS1/2/3. These subtypes
displayed promising results regarding their prognostic power in
rectal cancer. We demonstrated differences in disease biology
between RSS subtypes using an in-house cohort of rectal cancers
analysed by a multiplex imaging platform. Our findings shed light
on the molecular features of rectal cancers and suggest novel
subtyping could benefit cancer prognosis.

METHODS

Samples

In total, we gathered 2121 microarray samples from 18 different studies in
the GEO platform and 608 RNA-sequencing samples from TCGA. However,
microarray samples contained duplicate entries which were submitted in
separate studies under different IDs. These duplicate samples were
detected using the md5 checksum values of the raw files of each sample
and single entries were kept after removing the duplicates (n= 1820,
Supplementary Table 1A-D).
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Fig. 1 The overall workflow of the analyses and colon vs rectum comparison. a Workflow of the data processing steps. Raw files (.CEL) were
downloaded from 16 different colorectal studies in the Gene Expression Omnibus (GEO) database. 10 datasets were processed following the
same steps. After pre-processing, they were merged and batch effect correction was applied. Hierarchical clustering in rectal samples (n = 182)
in these datasets was calculated to define rectal-specific subtypes (RSS). Then, by generating gene co-expression networks and identifying
gene modules, we developed a classifier to predict RSSs in different datasets. 6 microarray datasets and TCGA RNA-seq samples were
separated initially due to the different technology platforms there were originated from. RSSs were calculated in these datasets separately
after the classifier was developed. Volcano plots of differential expression analysis show that top differentially expressed genes between the
colon and rectum in microarray (b) and RNA-Seq (c) datasets are similar. HOXB13, HOXC6 and CLDN8 were among the most DEGs in both
cohorts. Different thresholds (p-value and fold-change) were used to demonstrate the differential expression in microarray and RNA-Seq due
to the unbalanced distribution of colon/rectal ratio and lower sensitivity in microarray datasets.

Training and validation datasets

We designed a large cohort for our clustering analysis by merging the
microarray datasets. However, since these datasets were generated in
different laboratories using different technologies, we needed to address
and solve the batch effect problem in the merging process. Each probe set
has unique identifiers on different technologies. Moreover, the number of
gene measurements varies depending on the microarray platform.
Therefore, pre-processing and merging in these steps were done on only
10 GEO datasets which all used the same technology (Affymetrix) and
similar platform versions (Human Genome U133A Array or Human Genome
U133 Plus 2.0 Array). Raw CEL files were downloaded from GEO and
processed with standard RMA normalisation for these 10 datasets. After
removing the duplicate values in the training cohort we pooled
1291 samples (Colon = 1109 and Rectal = 182, Supplementary Table 1A).
Clinical information regarding the training datasets can be found in
Supplementary Table 2A. In the rest of the analysis, rectal samples
(n=182) of this cohort were used as training for rectal-specific subtyping.
The rest of the microarray samples (Supplementary Table 1B, C) and TCGA-
COAD-READ RNA-Seq samples (Supplementary Table 1D) were used as a
validation/exploration cohort (Fig. 1). TCGA-COAD-READ RNA-Seq samples
also were used as a validation for colon vs rectal comparison. Finally,
Supplementary Table 3 provides information on the datasets utilised for
specific types of analyses along with the total number of samples analysed.

Gene Co-expression networks

Since the number of genes targeted in each microarray study was
different, building a model using the gene expressions as features was not
feasible. Therefore, we developed a gene co-expression network and
further categorised genes into modules.

To narrow down which genes were affecting these clusters, we ran an
ANOVA on RSS1 vs RSS2, RSS2 vs RSS3 and RSS1 vs RSS3, and then gathered
genes that had statistical significance (FDR < 0.05) on any of the pairwise
comparisons (5989 genes in total). A gene co-expression network was
created on the filtered 5989 genes following the approach detailed in Song
et al.[15]. For this purpose, the Spearman correlation for each pair in selected
genes was calculated and modified from our similarity matrix into an
adjacency matrix. Based on the adjacency matrix, we calculated connectivity
scores for each gene. Median connectivity was found as 0.1 and we restricted
the analysis by only using genes showing high connectivity (>0.1).

Then, we calculated topological overlap matrix dissimilarity based on
our restricted adjacency matrix. After finalising the gene expression
network, we calculated hierarchical clustering on genes with dynamic tree
cutting. Similar to the method used by Budinska et al. [9], we ran dynamic
tree clustering from k=5 to k=101 and assigned genes to their largest
cluster.

Lastly, we identified 88 gene modules comprising a total of 3200 genes.
To identify pathways with each gene module, we applied the topGO [16]
tool on each gene module. We eliminated genes that were not in any
significant pathways and removed modules if they fell below the minimum
5 genes after filtering. At this last step, we gathered 54 gene modules with
1599 genes.

Building a classifier

We built a classifier to explore RSS in other datasets. The classifier used
log2 normalised gene expression counts and aggregated them into 54 pre-
defined gene modules. Using the median values of 54 gene modules it
classified the RSSs. XgBoost classifier algorithm was used with 5-fold cross-
validation in the training dataset using median values for genes in
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Fig.2 Effect of chemoradiotherapy on subtyping and survival patterns. a Sankey plots of the CMS shift after radiotherapy (GSE56699 study,
upper plot) and after chemotherapy (GSE94104, lower Sankey plot) point to a significant shift in subtypes after CRT. Neoadjuvant therapy in
rectal cancers causes a mesenchymal transition in molecular subtypes. Tumour regression grades in the GSE94104 study represent: ‘Minimal’:
“TRG1 - Minor Regression”; ‘Moderate”: “Significant Regression”; NearTotal: “Small Tumour Left” TRG classes in the GSE56699 study were: ‘Total”:
“TRG 1 (Mandard): Complete Response, No tumour”; ‘Minimal: “TRG 4 (Mandard): Residual Tumour > Fibrosis”; ‘Moderate”: “TRG 3 (Mandard):
Fibrosis > Residual Tumour. b Kaplan-Meier plots for colon vs pre-treatment naive rectal cancer samples in different CMS subgroups show a
significant difference between colon and rectal cancers in the CMS4 subtype. Overall rectal cancers have better disease-free survival than

colons except for CMS3.

modules. 90 + % accuracies were achieved in each cross-validation fold.
We found the optimal number of clusters as three in our cohort using the
‘deltak’ method described by Monti et al. [17]. Silhouette plots and
principal component analysis were done to demonstrate the robustness of
the clustering. We successfully reproduced RSS in validation and test
cohorts regardless of the gene coverage of the datasets.

Survival analysis

250 rectal and 520 colon samples were used for disease-free survival
analysis from multiple microarray datasets (Fig. 2 and Supplementary
Table 3) for CMS comparison. 271 Rectal samples were available with DFS
information and RSS classification (Fig. 3). Kaplan-Meier (KM) plots and Cox
regression models are generated using the ‘survminer’ package in R. If the
“Stage” (and “T stage”) had missing values in the clinical files the patient
was classified as Stage 3 as long as “N stage’ >0" and “M stage'=0".

CMS and CRIS classifications
We classified CMS molecular subtypes with CMSCaller [18] and CRIS with
CRISClassifier [19].

Master regulators

To identify master regulators in defined subtypes, we treated each subtype
as a separate disease and compared them to normal samples. Only the
GSE87211 dataset was used for this analysis, as it had the most normal
tissues and rectal samples. This cohort was not a part of the exploration
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cohort where clustering was performed. We used GeneXplain's TRANS-
PATH [20, 21] database to search master regulators by identifying global
signal transduction networks. After finding the differentially expressed
genes on clusters against normal tissues, we filtered genes with FDR < 10~°
and |FoldChange|> 2. Supplementary Table 5 shows the number of
master regulators in each cluster.

Immune cell analysis

CIBERSORT [22] and MCPcounter [23] analytical tools were used to infer
immune cell fractions. Estimations were done on the training dataset
(batch effect corrected 182 treatment-naive rectal samples), TCGA and 6
validation microarray datasets from GEO separately. Leukocyte gene
signature matrix (LM22) was used for CIBERSORT analysis. This gene
signature matrix includes 547 genes which CIBERSORT uses for deconvolu-
tion and identifies 22 different immune cell populations including 7
different types of T cells, naive and memory B cell, plasma cells and
myeloid. Similar to CIBERSORT, the MCPcounter algorithm estimates the
population abundance of immune and stromal cells. Additionally, we
gathered fibroblasts and endothelial cell populations using the MCPcoun-
ter algorithm. Tumour purity, stromal and immune scores were also
generated using the ESTIMATE [24] algorithm.

PROGENy and GSVA

Pathway activity scores were calculated with the PROGENy [25] tool.
PROGENy model weights each gene to 14 curated pathways. Depending
on the z-score of gene expressions, it calculates the pathway response
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scores. We separately estimated the activity scores of 14 pathways using
PROGENy on the microarray and RNA-Seq datasets. Gene Set Variation
Analysis (GSVA) was also done on the rectal samples using the GSVA
package in R [26]. Colon cancer stem cells [27] and other selected gene
sets can be found in Supplementary Table 5.

Time (months)

CELL DIVE

Multiplexed immunofluorescence (MxIF) staining was performed on 18
rectal tumour tissue microarrays using Cell DIVE technology. The protocols
regarding the staining and the imaging are described in detail by Gerdes
et al. [28, 29]. The FFPE slides were deparaffinized, underwent a two-step
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Fig. 3 Identification and molecular characteristics of RSS. a Delta plots to select the optimal number of clusters. 3 clusters were found to be
the optimum number of clusters. b Silhouette plots of the hierarchical clusters on the exploration dataset (n = 182). ¢ PCA plot of the
hierarchical clusters on the exploration dataset. d 5-Fold validation and ROC Curve plots of the RSS classifier model on the exploration dataset.
Accuracies were calculated based on the one-vs-all approach for each group. In each fold, 90 + % accuracies were achieved. e Heatmap of the
gene modules and distribution of RSS, CMS, CRIS, MSI and age. Rows represent the patients, RSS groups on the left and their clinical
information on the right. Columns represent the median value of each gene module. The top of the column shows the biological/molecular
characteristics of the modules. Heatmap representation based on all the rectal samples (n =870, Supplementary Table 3) after the RSS
classification is applied to the rest of the microarray and RNA-Seq samples. f Kaplan-Meier survival plots of the rectal specific subtypes when
classification derived from pre-treatment samples. RSS1 represents the best disease-free survival group while RSS2 has the worst disease-free

survival. The p-value (0.022) is based on the log-rank test.

antigen retrieval procedure, were stained with DAPI, and images were
taken in each of the interest channels to gather background tissue
autofluorescence. Segmentation in the epithelial and stromal content was
done using antibody stains against DAPI, pan-cytokeratin (PCK-26), S6
ribosomal protein, and Na*/K*-ATPase (Sodium-potassium). Then, single
cell-level expressions of proteins with spatial coordinates on the images
were generated. CD3, CD4, CD8, CD20, FOXP1 and PD1 expressions were
used to identify immune cells in the images. We analysed the expression
levels of 56 markers (Supplementary Table 4) with 162,296 cells from 52
TMA cores and 18 pre-treatment naive rectal cancer patients. Image
processing, quality control, and antibodies used on these samples are
described by Lindner et al. [30] in depth. Virtual HE images were generated
as described by Gerdes et al. [28, 29].

RESULTS

Colon and rectal cancers differ in their gene expression
profiles

The first aim of our study was to identify differences in gene
expression levels between colon and rectal cancer samples.
Differential expression (DE) analysis results on the merged
(training, n =1291) microarray datasets were also compared to
TCGA RNA-sequencing (RNA-Seq) data of colon and rectal samples
(validation, n = 608). Although the number of significant DE genes
was higher in RNA-Seq samples than in batch-effect corrected
microarray datasets, the top differentially expressed genes (DEG)
were similar in both analyses (Fig. 1). The top two genes identified
to be differentially expressed between rectal and colon cancers
were HOX family genes: HOXB13 was upregulated and HOXC6
downregulated in the rectal cancer samples.

Differences in the prognosis of CMS subtyping performed on
colon and pre-treatment-naive rectal cancer tissue

From the outset of our study, we hypothesised that neoadjuvant
CRT changes gene expression in rectal cancer tissues and that this
may impact the CMS subtype assigned. We therefore next
investigated how CMS subtypes changed after neoadjuvant
therapy in rectal cancers. Four separate gene expression datasets
were analysed (Supplementary Table 3). We compared CMS status
in matching pre-treatment biopsy and post-treatment resection
samples. Of note, we observed that more than half of the samples
shifted to CMS4 after patients received chemoradiotherapy or
radiotherapy in all four separate studies (Fig. 2a and Supplemen-
tary Fig. 1). Samples that changed to CMS4 also showed a
significant increase in gene expression profiles of fibroblasts
(Supplementary Fig. 2A).

We next investigated possible prognostic differences of CMS
subtyping between colon and rectal cancers when the CMS
classification was only derived from pre-treatment naive rectal
cancer samples (n =770, Fig. 2b, Supplementary Table 1A-D,
Supplementary Table 3). We observed a significant difference
between colon and rectal CMS4 tumours in prognosis. Rectal
cancers showed a better prognosis in CMS4 compared to colon
cancers (p-value: 0.022, Fig. 2b). We discovered a similar trend in
CMS2 where rectal tumours tended to have a better prognosis (p-
value: 0.07, Fig. 2b). We observed the same better rectal tumour
prognosis in overall survival analysis as well (Supplementary Fig. 2B).

British Journal of Cancer

Isella et al. [19] developed colorectal cancer intrinsic subtype (CRIS)
signatures that were derived solely from cancer cell-related genes.
We therefore also performed a separate analysis by CRIS subtyping
of pre-treatment naive rectal cancer samples. Kaplan—Meier analysis
between the colon and rectal cancers indicated that CRIS-B and
CRIS-E subtypes had better DFS in rectal cancers compared to colon
cancers. CRIS-D tumours showed better overall survival in the rectal
compared to colon cancers (Supplementary Fig. 3). In the two other
CRIS subtypes (A and C), rectal cancers had a similar prognosis when
compared to colon cancers.

Identification of three rectal-specific molecular subtypes in
rectal cancer with prognostic information
Above, we demonstrated that CMS and CRIS subtypes in rectal
cancers had different prognostic patterns than in colon cancers,
suggesting differences in disease biology that were not captured by
the existing subtypes. We, therefore, extended our analysis to
devise a rectal-specific subtyping method, again focusing only on
pre-treatment naive samples. Using a curated microarray of 182
rectal cancer samples (Supplementary Table 1A), we identified three
major subtypes in the treatment-naive rectal cancers. Figure 3a—d
demonstrates the robustness of the clustering and accuracies of the
classifier we built to identify RSS in the different datasets used.
Figure 3e presents how these RSS correspond to existing
subtyping methods as well as other clinical features such as age,
sex, and stage. Almost all of the RSS2 samples were classified as
CMS4 (>99%), but interestingly not all CMS4 samples were
classified as RSS2. RSS3 was mainly composed of CMS3 and
CRIS-A, while RSS1 exhibited a more mixed composition
compared to RSS2 and RSS3. We next examined survival profiles
in these subtypes and found that RSS2 had the worst disease-free
survival among the three groups and RSS1 had the best survival
(Fig. 3f). Similar to a shift to CMS4 after neoadjuvant CRT, we also
observed a change from RSS1 to RSS2 after neoadjuvant therapy
(Supplementary Fig. 4A, B). Degree of differentiation was available
for a subset of the rectal tumours analysed, and correlation with
RSS subtypes is shown in Supplementary Table 2B.

Molecular characterisation of the three rectal-specific
molecular subtypes

Tumour purity and stromal/immune scores, calculated with
ESTIMATE, of the RSSs revealed that RSS1 had high tumour purity
and low immune score. RSS2/RSS3 were associated with high
immune scores and RSS2 with a high stromal score (Fig. 4a). We
further investigated the tumour infiltrating immune cells with
CIBERSORT and MCPcounter. CIBERSORT results show that RSS1
had a lower mast cell and macrophage (M2) frequency than the
other two groups. RSS2 exhibits low plasma cells and regulatory
T cells compared to RSS1. RSS3 displayed a high prevalence of
CD8+T cells and B cell lineage, and lower abundance in
CD4 +T cells, neutrophils and eosinophils (Fig. 4a, b and
Supplementary Fig. 5A). MCPcounter results also suggested high
fibroblasts and endothelial cells in RSS2. Moreover, high NK and B
lineage levels were observed in RSS3 and low T cell, cytotoxic
lymphocytes, and monocytic lineages were related to RSS1. Lastly,
one of the characteristics of RSS3 was microsatellite instability.
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Immune landscape, pathway, and gene set analysis of RSS. a Boxplots of immune, stroma and tumour purity scores by ESTIMATE are

in the first column. CIBERSORT results are shown in the second and third columns. Significant differences are observed in tumour purity,
immune score, and stromal scores between subtypes in ESTIMATE results. The CIBERSORT algorithm demonstrates the immune cell
infiltrations in different subtypes. Plasma cells, CD4 + T cells, CD8 + T cells, regulatory T cells (Tregs), M2 macrophages, and neutrophils are
among the most distinguished immune cell signatures between RSSs. Star annotations regarding the p-values are as follows: “****"p < 0.0001;
“**%'n < 0.001; “**"'p < 0.01; “*"p < 0.05; “ns”: P> 0.05. b MCPcounter immune signatures are shown in the first heatmap coloured with z-scores
PROGENy pathway activity scores are in the second heatmap, coloured with z-scores (Blue- lower enrichment/activation and Red- higher
enrichment/activation). High fibroblast and endothelial cell enrichments in RSS2 can be seen in the first heatmap. TGFf, NFkB and TNFa
activities in RSS2, and MAPK, WNT and EGFR deactivations in RSS3 are the most apparent results. ¢ GSVA dot-plots of selected genesets,
colours represent the fold-change, and the sizes of the dots represent the p-value (inversely). EMT and angiogenesis-related genes are highly
expressed in RSS2 compared to the others. Whereas expressions of immune and inflammatory response genes are found to be lower in RSS1.
All three graphs are based on all rectal samples, microarray and RNA-Seq together (n =870, Supplementary Table 3).

Next, we determined which cancer-associated signalling path-
ways dominated in our three rectal subtypes. To examine the
potential cancer-related pathways within our subtypes, we
investigated pathway-response signatures using PROGENy. PRO-
GENy calculates an activity score for 14 cancer-related pathways
based on gene expressions. Results suggested that TGFB, NFkB,
TNFa, JAK-STAT, hypoxia, and oestrogen pathways were activated
in RSS2, whereas MAPK, WNT and EGFR pathways were inactivated
in RSS3 (Fig. 4b and Supplementary Fig. 5A). We observed low
TRAIL signalling, p53 and androgen enrichment in RSS1. Moreover,
GSVA revealed low expression of the immune response, angio-
genesis, inflammatory response, EMT and KRAS signalling path-
ways in RSS1 (Fig. 4c and Supplementary Fig. 5A). We also
observed high activation of MYC targets, cell cycle, G2M
checkpoint, translation and proliferation on colonic crypt gene
sets in RSS1. High expressions in EPHB2 and LGR5 signature
cancer stem cells and low expressions on late transit amplifying
colonic crypt genes were detected in RSS2. GSVA also showed
high angiogenesis and EMT activity and low fatty acid degradation
in RSS2, and high expression of fatty acid degradation and late
transit amplifying genes in RSS3 (Fig. 4c). Since RSS2 carries CMS4
characteristics and appeared to be a subgroup within CMS4, we
also analyzed the molecular differences between CMS4/RSS2
tumours and CMS4/non-RSS2 tumours. Our results suggested that
the RSS2 subgroup has higher cytotoxic lymphocytes, monocytic
lineage, myeloid dendritic cells, endothelial cells and fibroblasts.
Moreover, WNT, TRAIL, TNFa, TGF(, p53, NFkB, estrogen, andro-
gen, hypoxia and Jak-STAT pathways were all expressed more in
RSS2 (Supplementary Fig. 5B)

Master regulator analysis employing the GeneXplain platform
identified 26 unique master regulators (MR) in RSS1. A total of 91
MR genes were identified in RSS2, but none were identified in
RSS3. Additionally, we found master regulator molecules asso-
ciated with subtypes. We observed 62 unique MR molecules in
RSS1, 125 in RSS2 and none in RSS3. Unique master regulatory

genes in RSS2 included MMP, ITGA, ITGB, CCL, and TGF-f gene
families. The most important master molecules in RSS2 were
related to cell surface receptors and cytokines. IL1A, FPR1,
FCGR3A, PTGS2, MMP7, CSF3 and DUSP26 were found to be the
top master molecules in RSS2. Other unique master molecules for
RSS2 included fibronectin, periostin, glutamate, formyl peptide
receptor, chemokine and metalloproteinases families. 27 MR
genes and 36 MR molecules were found in all three subtypes.
(Supplementary Table 5).

Interrogation of RSS subtypes by multiplex analysis. Lastly, we
explored biological signatures in RSSs using tissue microarrays
that were processed with CELL DIVE multiplexed immunofluores-
cence imaging for 56 markers of cell identity and cell signalling
(Supplementary Table 4 shows the 56 markers used). 162,296 cells
from 52 TMA cores and 18 pre-treatment naive rectal cancer
patients (14-RSS1, 3-RSS2, 1-RSS3) were analysed. We identified
lower B-catenin expression in cancer cells specifically in RSS2
(Fig. 5). Cancer cells also showed higher levels of the ER stress
marker GRP78 and lower levels of CDX2 in the RSS2 group. Bcl-xL
expression was significantly higher in non-immune stromal cells in
RSS3. The number of Tregs was found to be lower in RSS1,
corroborating findings in the discovery/exploration cohort (Fig. 4).
Representative virtual H&E images are also shown for the three
subtypes.

DISCUSSION

Molecular subtyping can potentially deliver new prognostic tools
and may direct treatment decisions. Here, we developed and
validated a new subtyping method specifically for rectal cancers,
focusing on the subtyping of pretreatment-naive tissue samples,
which can be readily determined from biopsies or non-pretreated
resection tissue. Our new subtyping method developed, RSS
subtyping, showed promising prognostic importance, where
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Fig. 5 Multiplexed single-cell imaging analysis of RSS. a Highly multiplexed images (first row), virtual H&E images (second row), and cell
type identifications (third row) of one of the RSS2 cancer tumours. All three TMAs belong to one patient, classified as RSS2. Colours of the
multiplexed image: Blue-DAPI, Yellow-PCK26, and Red-GRP78. High GRP78 expression can be seen in epithelium tissues. b Boxplots of the
immune cell percentages (first row) and expression levels of GRP78, p-catenin, CDX2 and Bcl-xI markers (Second and third row respectively).
High expression of CDX2 in RSS3, GRP78 in RSS2, and low expression of B-catenin and Bcl-xl in RSS2 are observed at the single-cell level.
Supporting the transcriptomics findings, higher Tregs infiltration is found in RSS1 and lower in RSS2. p-value annotations are as follows

“x%1 < 0.01; “*'p < 0.05; “ns” p > 0.05.

RSS1 showed better disease-free survival and RSS2 was asso-
ciated with poorer DFS overall and in neoadjuvant-treated rectal
cancers. Transcriptomic signatures of these subtypes associated
RSS1 with low immune response and angiogenesis. Single-cell
multiplexed imaging analysis revealed RSS2 had high stromal
content and low FOXP3-+ Tregs infiltration in the tumour. The
most prominent signatures for RSS3 were microsatellite instabil-
ity, a low CD4 4 /CD8+ ratio along with the deactivation of
MAPK, EGFR and WNT pathways.

Several studies in recent years suggested that colon and rectal
cancers should be considered two different entities [31, 32].
Therefore, we started our analysis by determining molecular
differences between colon and rectal cancer. Our results indicated
there were several genes expressed differently between colon and
rectal cancers, both in RNA-Seq and microarray studies. HOXB13,
HOXC6 and CLDN8 were among the top DEGs. These findings
supported previous studies that identified differentially expressed
genes between the colon and rectal samples [33, 34]. Homeobox
B13 (HOXB13) inhibits immune cell proliferation and promotes
apoptosis through multiple pathways [35]. Specifically, down-
regulation of the HOXB13 gene was reported in right-sided colon
cancers and higher expression is associated with poor prognosis.
Furthermore, upregulation of HOXC6 was observed in right-sided
colon cancers and lower expression in left-sided colons and rectal
cancers was associated with poor prognosis [34]. HOX genes were
also connected to carcinogenesis in colorectal cancer and
studied as prognostic markers [36]. Similarly, CLDN8 was also
associated with colorectal cancer prognosis [37]. These findings
suggest that the differences between rectal cancers and colon
cancers at the molecular level are important for prognosis
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prediction and can be crucial to identify treatment responses to
neoadjuvant therapies.

To demonstrate the effect of neoadjuvant therapy on CMS
subtyping in rectal cancer, we tested for subtyping differences
between matched biopsy and resection samples in rectal cancer
patients who were treated with neoadjuvant CRT. We demon-
strated that CMS subtype distribution pre- and post-treatment
were significantly different in these patients. More than half of the
rectal resection samples were classified as CMS4. CMS4 was
identified as a mesenchymal subtype with a high density of
stroma and immune cells, poor survival and therapy resistance.
Therefore, the CMS ‘switch’ we observed among patients’ findings
could suggest that mostly therapy-resistant parts of the tumour
were left after neoadjuvant treatment, or that profound tissue
remodelling occurred. We also observed a fibroblast gene
expression increase which might imply that CRT might be causing
a wound-healing fibrotic phenotype in rectal tumours. Such
changes are not unique to rectal cancers, for example, several
studies regarding glioblastoma multiforme reported that chemo(r-
adio)therapeutic agents cause a proneural to mesenchymal
transition [38, 39]. Our findings suggest that a similar transition
might be occurring in rectal cancers. Indeed, multiple studies
showed how gene expression profiles of tumours are altered after
CRT [5, 40]. We cannot fully exclude that some of the differences
between pre-treatment biopsies and post-operative resections
may be due to differences in sampling methods as a confounding
factor. However, the strong changes in molecular subtypes we
observed argue that prior exposure to CRT should be taken into
consideration when identifying molecular subtypes in rectal
cancer.
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We, therefore, focused our rectal subtyping on pretreatment-
naive rectal samples. We showed that existing subtyping methods
(CMS and CRIS subtyping) have different prognostic potentials in
rectal cancers compared to colon cancers. In direct comparison,
we observed that rectal cancers had better disease-free survival in
tumours classified as CMS4, CRIS-B and CRIS-E, and colon cancers
had a better prognosis in CMS3 and CRIS-A subtypes. Our findings
also confirmed that within the group of colon cancers, the
CMS4 subtype showed worse disease-free survival similar to
previous studies [7]. However, when focused on rectal samples, we
observed CMS4 and CMS3 had worse DFS than CMS2 but the
multilevel model showed no significant difference between all
CMS groups. One possible reason CMS has different and less
significant prognostic patterns among rectal cancers is that more
than 85% of the samples used in the CMS subtyping study were
colon samples. The potential over-representation of colon samples
in these models along with biological differences between the
tumours and differences in treatment settings might be the
reasons for differences in prognostic patterns of CMS/CRIS
subtyping in rectal samples.

Because of the differences in the prognosis of CMS or CRIS
subtypes in colon and rectal cancers, we performed a separate
subtyping effort and identified and validated three rectal cancer-
specific subtypes (RSS1-3). The training dataset had a good
balance of treatment-naive resection samples (51.6%) and pre-
treatment biopsies (48.4%). Similar to CMS and CRIS, we also
classified RSS subtypes using gene modules. This method helps
researchers to identify subtypes even with a limited number of
gene expressions. Since RSS was trained on microarray rectal
samples with a balanced resection-biopsy ratio, it can be used in
both types of samples. Of note, we demonstrated that RSS
subtypes offer important prognostic value for rectal cancers. Our
results showed that RSS2 had worse, and RSS1 best disease-free
survival (Fig. 3f).

We also identified that RSSs had distinct molecular features and
disease pathways activated. RSS2 had high stromal infiltration and
activation of TGFB, NFkB, and TNFa pathways. These results
suggest RSS2 and CMS4 show significant resemblance. 62% of the
CMS4 samples are classified as RSS2 and 99% of the RSS2 samples
are classified as CMS4. This indicates that RSS2 can be described as
a subgroup within CMS4. Moreover, we analysed the prognostic
patterns between samples that identified both CMS4 and RSS2,
and CMS4 and non-RSS2 samples. Our results showed the RSS2/
CMS4 group to have a poorer prognosis than other groups,
although the statistical significance was not reached due to the
small sample size (Supplementary Fig. 6, p-value: 0.09). Biological
characteristics of RSS2/CMS4 compared to non-RSS2/CMS4 also
showed that the main characteristics of CMS4, such as high
fibroblasts and endothelial cells, are more prominent in the
RSS2 subgroup (Supplementary Fig. 5). This result suggests that
RSS2 can be a more reliable subgroup for prognosis within CMS4
for rectal cancers.

RSS2 displayed higher expression of cancer stem cell markers,
angiogenesis, TGF-f3, and WNT signalling pathway activity (Fig. 4).
These findings were also supported by master regulator analysis
where periostin was shown as a unique master regulator for RSS2.
Higher levels of periostin instigate angiogenesis, enhance WNT
signalling and result in a microenvironment propitious for tumour
progression and metastasis [41]. Periostin also contributes to
cancer stem cell or mesenchymal stem cell attributes in the
colorectal mucosa and helps to sustain stemness, which correlates
with poor chemotherapy response [42]. Our results regarding
EPHB2 and LGR5 stem-cell signatures support the importance of
periostin for cancer stem-cell niches at the pericryptal regions for
tumour development. Concerning the immune signatures of the
RSS, both transcriptomics and single-cell multiplexed imaging
analysis confirmed that RSS2 has lower Tregs infiltration in the
tumour. More specifically, we identified low FOXP3+ infiltration in

RSS2. Tregs are involved in suppressing immune responses
through multiple processes and possibly affect the poor therapy
response of this group. Master regulator analyses also showed
immunosuppressive cytokines and chemokines such as CCL28,
TGF-B and interleukin molecules to be among the unique master
regulators for RSS2. It is reported that Tregs are involved in the
production of these cytokines and chemokines [43]. Tumours with
high Tregs were often associated with poor prognosis in many
cancers, however, in colorectal cancer contrary to others the high
abundance of FOXP3+ Tregs was associated with a good
prognosis [44, 45]. Our results regarding RSS2 in rectal tumours
support the concept that low FOXP3+ Treg infiltration in tumours
is associated with poor outcomes in colorectal cancers. RSS3 was
found to be enriched for microsatellite instability. Furthermore,
this group exhibited high CD8 + T cell, low CD4 + T cell activity
and low neutrophils as well as deactivation of MAPK, WNT and
EGFR pathways. Pathway and gene set enrichment analyses
revealed that RSS1 exhibits a low immune score and high tumour
purity. The low expression of angiogenesis and inflammatory
response genes in RSS1 was in line with a better prognosis.
Considering the good prognosis of this group, it can be described
as the group that benefits best from the treatments.

In conclusion, we have found that CMS and CRIS classifications
convey different prognostic information in rectal versus colon
cancers and that neoadjuvant therapy affects molecular subtypes
in rectal cancers. Therefore, we developed RSS derived from
treatment-naive samples which showed promising prognostic
results compared to the existing colorectal molecular subtypes.
Our findings on the biological characterisation of these subtypes
identify RSST as a low immune response group with a good
prognosis, RSS2 as a high stromal and immune infiltration group
with a poor prognosis, and RSS3 as MSI, low CD4+ and high
CD8 + T cell activated group.

DATA AVAILABILITY

Public microarray datasets used in this study can be accessed at the Gene Omnibus
website with the following IDs: GSE12945, GSE14333, GSE17536, GSE18088,
GSE35452, GSE37892, GSE39084, GSE39582, GSE41258, GSE45404, GSE56699,
GSE94104, GSE68204, GSE87211, GSE46862, GSE3493, GSE15781, GSE233517, and
TCGA-COAD-READ. CellDive multiplexed images generated and analysed during the
current study are available from the corresponding author upon reasonable request.

CODE AVAILABILITY
Codes for the RSS classifier are written in Python (version 3.8.10) and can be found at:
github.com/kisakol/RSS_Classifier.
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