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Abstract—In this paper, the challenge of enhancing the effi-
ciency of computational imaging (CI) at microwave frequencies
is addressed. While CI simplifies the hardware complexity of
conventional microwave imaging techniques, it requires the
knowledge of a sensing matrix that is governed by the aperture
radiated fields. This can be a computationally expensive process.
As a drastic alternative to this conventional approach, a Pix2pix
conditional generative adversarial network (cGAN) is introduced
to learn the intricate relationship between the back-scattered
measurements from the imaging scene and the sensing matrix of
the imaging system. The proposed network yields high-fidelity
estimations with minimized error and achieves a remarkable
reduction in the time required to compute the sensing matrix.
This advancement holds significant potential for improving the
overall efficiency of microwave CI techniques, addressing both
hardware complexity and computational burdens.

Index Terms—Computational imaging, deep learning, sensing
matrix, microwave imaging.

I. INTRODUCTION

IMAGING at microwave frequencies has attracted signif-
icant attention due to its ability to penetrate optically

opaque materials using non-ionizing electromagnetic (EM)
waves. Synthetic aperture radar (SAR) is one of the most
important techniques used in conventional microwave imaging
[1], [2]. Although SAR-based systems can provide good-
quality image reconstructions, such methods still have several
challenges, including a slow data acquisition process and
increased hardware complexity due to the raster scan require-
ment [3]. An alternative technique which can improve the data
acquisition speed is computational imaging (CI), enabled by
the use of coded-apertures [4]–[6]. A major benefit of CI-based
systems is that the volume of data acquisition channels can be
reduced significantly, decreasing the hardware complexity [7].
This is because the coded-aperture-based antennas used in CI
systems are capable of encoding the scene information onto
a series of quasi-random and spatially-incoherent radiation
patterns (or measurement modes) [8], achieving a physical
layer compression. The acquired back-scattered measurements
from the scene can be systematically associated with the
underlying scene information through the transfer function of
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the CI system, referred to as the sensing (or measurement)
matrix [9]. Leveraging the CI concept, although the hardware
complexity can be reduced, this simplification comes at the
cost of an increased burden in the signal processing layer.
This is because, due to the indirect nature of scene information
collection in CI, the image reconstruction from the compressed
measurements demands the processing of large sensing matri-
ces, drastically increasing the computational burden [10], [11].

An alternative solution for computing the sensing matrix
can be considered in the context of employing deep learning
techniques. Previous studies related to sensing matrix estima-
tions through deep learning methodologies used reconstructed
images as inputs, which is potentially a challenging task [12]–
[14]. This is due to the significant amount of time needed
to accomplish the prior reconstructions of the scene as a
prerequisite for sensing matrix prediction. [15] proposed a
solution to circumvent the need to use the reconstructed
images to predict the sensing matrix. Instead, it demonstrated
that the coded-aperture field distribution can directly be used
to predict the corresponding sensing matrices. Whereas this
is a promising idea, having the aperture field distribution
available is not always possible and measuring it requires
a significant time and effort. This is because it requires a
highly-sensitive and time-consuming near-field scan process
[16]. To address these challenges, an alternative technique is
needed. In this work, we propose a new technique to estimate
the sensing matrix directly from back-scattered measurements
acquired with a CI system. Our method exclusively regards
the back-scattered measurement as the input of the proposed
network, eliminating the need for scene reconstruction and
for measuring the radiation patterns by near-field scanning.
To the best of our knowledge, this is the first time that a deep
learning technique is developed to estimate the sensing matrix
directly from the back-scattered microwave CI measurements.
Results show that the sensing matrices can be accurately
learned, enabling the restoration of similar magnitudes and
phases (comparable with those sensing matrices computed
using conventional, computationally expensive methods).

II. CONVENTIONAL METHOD AND PROPOSED NETWORK

A. Compressive Computational Microwave Imaging
Following the first Born approximation [17]–[19], the scat-

tered field, Escat, contains the reflectivity information of each
pixel of the scene, ρ(r) [20]:

Escat =

∫
S

ρ(r)Einc(r)dS, (1)
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where r indicates the coordinates vector of each pixel of the
scene, S denotes the surface, and Einc is the incident field
from the aperture. We note that, in this work, the bold font is
used to denote the vector-matrix notation.

The transmitter and receiver apertures can be modelled
leveraging a set of equivalent sources, each representing a
radiating element across the aperture [9]. In particular, each
aperture is discretized into Ns equivalent sources, and the
radiated field corresponding to the m-th measurement mode
at a point r of the scene is given by:

E(m, r) =

Ns∑
s=1

αm,s

∥r′s − r∥
e−j 2πf

c ∥r′s−r∥, (2)

where f is the imaging frequency, and c is the speed of light
in free-space. Furthermore, αm,s denotes the aperture field
value of the s-th equivalent source (located at r′s) for the
m-th measurement mode. The sensing matrix, H, is derived
by performing a dot product between the fields radiated by
the transmitter and the receiver apertures, Etx and Erx,
respectively [21], as follows:

H = Etx ·Erx. (3)

The signal measured at the receiver, which is also called the
back-scattered measurement, g, is given by:

g = Hρ. (4)

The back-scattered measurement, g, is a vector of size M×
1, where M is the number of measurement modes, and the
sensing matrix has size M × N , where N is the number of
pixels in the imaging scene. This suggests that the sensing
matrix is not necessarily square, i.e., N ̸= M . To estimate the
reflectivity of the scene, ρrec, it is possible to use different
techniques, such as matched filtering [18]:

ρrec = H†g, (5)

where H† denotes the conjugate transpose of the sensing
matrix. For the studied microwave CI scenario, the main
parameters of the imaging setup are outlined in Table I
whereas the imaging configuration is depicted in Fig. 1.

TABLE I
PARAMETERS OF THE IMAGING SYSTEM AND THE IMAGING SCENE.

Transmitting Aperture Size 10.0 λ × 10.0 λ
Receiving Aperture Size 10.0 λ × 10.0 λ

Number of Equivalent Sources on Each Aperture 400
Gap between Transmitter and Receiver 2.5 λ

Imaging Distance 15.0 λ
Scene Size 5.0 λ × 5.0 λ

Imaging Frequency 18 GHz
Number of Pixels of the Scene 256

B. Data Generation

For the studied CI system depicted in Fig. 1, we consider
scenarios with an upper bound limit of the signal-to-noise-ratio
(SNR) below 30 dB. As a result, the number of measurement
modes is considered to be 64, which is found to be optimal

y
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Fig. 1. Coded-aperture CI setup operating in a bi-static mode that is used for
dataset generation. The target “Q” is the calibration imaging target.
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20 dB

30 dB

0 dB

SN
R

Fig. 2. Singular value spectrum for the imaging system.

utilizing a Singular Value Decomposition (SVD) analysis [22]
as shown in Fig. 2. Thus, the total number of measurement
modes is M = 64, which is significantly smaller than the
number of pixels in the scene, N = 256. Hence, the scene is
undersampled (M < N ).

According to (2) and (3), different radiating element distri-
butions help with the generation of different sensing matrix
samples. Fig. 3 summarizes the process of generating sam-
ples of sensing matrices. Referring to (4), the back-scattered
measurements contain the information of the related sensing
matrix and the scene. Because the reflectivity of the targets has
no relationship with the sensing matrix, to avoid redundant
information from the reflectivity affecting the optimization
of the proposed network, the back-scattered measurements
are considered as the only input in the proposed network.
However, to generate the data for the sensing matrix pre-
diction, a calibration target is necessary. According to (4), a
variation in the back-scattered measurement samples is due to
the changing of the sensing matrix when a single calibration

Different 
Aperture Fields

Different Sensing 
Matrices

Different Distributions for 
Radiating Elements

Eq. (2)

Fig. 3. Different distributions of the radiating elements yield different sensing
matrices.
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Fig. 4. The generator network is composed of a downsampling encoder and an upsampling decoder.

target is utilized. Hence, each training and testing sample
pair consists of a sensing matrix and the corresponding back-
scattered measurement.

C. Network Architecture and Optimization

The Pix2pix conditional generative adversarial network
(cGAN) consists of two convolutional neural networks (CNNs)
[23]–[25]: one is defined as the generator, while the other one
is defined as the discriminator. The generator generates the
output based on the input information, while the discriminator
is employed to determine whether the predicted output is
similar to the ground truth. In this scenario, the network learns
the mapping between the back-scattered measurements and the
sensing matrices. Hence, the back-scattered measurements are
not only the inputs to the generator but also the input condition
for the proposed discriminator in this paper.

As depicted in Fig. 4, the generator consists of an encoder,
which downsamples the feature maps, and a decoder, which
upsamples the compressed feature maps. The five layers in
the decoder are equipped with 256, 512, 1024, 1024 and 1024
CNN filters, while the encoder has one more layer with 1024
CNN filters, as shown in Fig. 4. The concatenated layer that
connects the encoder with the decoder is called the “skip
connection”, which can enhance the gradient propagation [26],
[27]. The encoder uses a leaky rectified linear unit (ReLU)
[28], [29] as the activation function, while the decoder uses
a ReLU as the activation function. The discriminator has
the same layer architecture as the encoder of the generator.
In addition, to classify the generated image as either real
or fake, the output layer consists of a convolutional layer
with a single filter of size 1 × 1 with a Tanh activation
function [30]–[32]. For the discriminator, the inputs are the
back-scattered measurements and the original or the predicted
sensing matrices, while the output is the probability that the
input sensing matrix is original.

As both the sensing matrices and the back-scattered mea-
surements are complex-valued, the real and the imaginary parts
are separated into two channels in the Pix2pix cGAN [33].
To address the problem of size mismatch between the back-
scattered measurements and the input size, the back-scattered
measurements are formatted to align with the input size of

the generator through the application of zero-padding [34].
The loss functions for the generator and the discriminator are
the same as proposed in [23]. The proposed Pix2pix cGAN
uses the Adam optimizer [35] for the training process and the
weights are initialized using the Xavier uniform initialization
technique [36]. For the training process, a training dataset of
88,000 training sample pairs of back-scattered measurements
and sensing matrices is employed to help the proposed Pix2pix
cGAN to learn the features of the back-scattered measurements
for accurate predictions. For the testing process, the trained
Pix2pix cGAN will be evaluated for its predicting performance
by making use of a testing dataset.

III. NUMERICAL RESULTS AND DISCUSSION

To validate the accuracy of the sensing matrix prediction,
a comparison between the original (ground truth) sensing
matrices and the predicted (learned) sensing matrices is shown
in Fig. 5. For the study presented in Fig. 5, three groups of
different sensing matrices are considered. The NMSE [37] is
also calculated to evaluate the fidelity of the predicted sensing
matrices. Observing Fig. 5, it can be seen that, qualitatively,
the predicted sensing matrices exhibit good agreement with the
original sensing matrices calculated using (2) and (3). Table II
shows a quantitative assessment of this comparison, where the
NMSE is below 0.0228 for all three cases. Moreover, using
the proposed prediction technique, the computation time is
reduced by up to 1.014 s as compared to the conventional
calculation of the sensing matrices. To evaluate the predict-
ing performance of the cGAN, a testing dataset of 1,000
testing sample pairs is leveraged. The above results are also
obtained by three sample pairs randomly chosen from the
testing dataset. With the testing dataset, the average NMSE
of prediction is 0.0230, and the average calculation time is
reduced from 1.315 s (using (2) and (3) to calculate a sensing
matrix) to 0.352 s (using the proposed generator to predict
the sensing matrix when a back-scattered measurement is
presented) on a Python platform running on an Intel (R) Core
(TM) i7-1265U CPU. In addition to the significant advantage
of the proposed technique to eliminate the need for measuring
the aperture fields, these results show a reduction of 73.3%
in the computation time while preserving the fidelity of the
sensing matrices.
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(a) (b)

Normalized Original Sensing Matrices Normalized Predicted Sensing Matrices

(a) (b)

(i)
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(ii)

Fig. 5. There are three groups of sensing matrices, identified as (i), (ii) and (iii). Comparison between (a) the normalized magnitudes and (b) the normalized
phases of the sensing matrices obtained with conventional method and the predicted sensing matrices retrieved with the proposed generator is shown.

(a) (b) (d)(c)

Fig. 6. Comparison of the reconstructed images. Top row: Images recon-
structed using the predicted sensing matrix. Bottom row: Images reconstructed
using the corresponding original sensing matrix. (a) Imaged target, recon-
structed images with (b) 15 dB SNR, (c) 20 dB SNR and (d) without noise.

TABLE II
NUMERIC RESULTS FOR THREE PREDICTED SENSING MATRICES

Sensing Matrices (i) (ii) (iii)
NSME between Sensing Matrices 0.0228 0.0189 0.0224

Computation Time Reduced 0.979 s 1.014 s 0.983 s

After estimating the sensing matrices, the reconstructed
images can be generated based on (5). For the imaging process,
the parameters listed in Table I and the U-shaped target
shown in Fig. 6 are utilized. The approach’s practicality and
robustness are evaluated through a noise analysis, studying
the learning model’s performance in noisy conditions. To this
end, different levels of Gaussian white noise were added to the
back-scattered measurements, g [38]. Gaussian white noise is
considered in this scenario because it exhibits a close align-
ment with the statistical attributes observed in various noise
typologies encountered within radar systems [39], [40]. Fig. 6
shows the reconstructed images with no noise as well as at 15
dB and 20 dB SNR levels of the back-scattered measurements,
respectively. Analyzing Fig. 6, it can be observed that the

quality of reconstructed images decreases as the SNR level is
reduced. This can be appreciated by analyzing the SVD plot
provided in Fig. 2, where the system provides fewer useful
measurement modes (i.e. the number of measurement modes
that remain above the SNR level) as the SNR level is reduced.
Moreover, the specific values of NMSEs for the reconstructed
images shown in Fig. 6 are given in Table III. Table III shows
that the NMSE values between the image reconstructions and
the target remain comparable regardless of using the predicted
sensing matrix or the original sensing matrix. Hence, these
results suggest that the proposed network can provide similar
results as the conventional method under a noisy environment.

TABLE III
NMSE OF IMAGE RECONSTRUCTIONS BASED ON THE PREDICTED
SENSING MATRIX AND THE ORIGINAL SENSING SHOWN IN FIG. 6.

Noise Level Conventional Method Proposed Method
15 dB 0.4952 0.5063
20 dB 0.4323 0.3899

Without Noise 0.3842 0.3779

IV. CONCLUSION

In this article, a Pix2pix cGAN was developed to improve
the computation efficiency of the sensing matrix for coded-
aperture-based microwave CI systems. The proposed Pix2pix
cGAN accurately predicts the CI system’s sensing matrix
by learning the features of the back-scattered measurements.
On 1,000 testing samples, the average NMSE scores of the
predicted matrices were found to be 0.0230. Furthermore, a
significant reduction in computation time, calculated to be
73.3% on average, was achieved. This development offers
the potential to enhance the overall efficiency of CI at mi-
crowave frequencies, which can be particularly useful for
three-dimensional imaging [41], tackling challenges related to
hardware complexity and computational loads.
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