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Abstract 

Background: Lung clearance index (LCI) has good clinimetric properties and an acceptable 

feasibility profile as a surrogate endpoint in Cystic Fibrosis (CF). Although most studies to 

date have been in children, increasing numbers of adults with CF also have normal spirometry. 

Further study of LCI as an endpoint in CF adults is required. Therefore, the purpose of this 

study was to determine the clinimetric properties of LCI over the complete age range of people 

with CF. 

Methods: Clinically stable adults and children with CF and age matched healthy controls were 

recruited.  

Results: LCI and spirometry data for 110 CF subjects and 61 controls were collected at a stable 

visit. CF Questionnaire-Revised (CFQ-R) was completed by 80/110 CF subjects. Fifty-six CF 

subjects completed a second stable visit. The LCI CV% was 4.1% in adults and 6.3% in 

children with CF. The coefficient of repeatability of LCI was 1.2 in adults and 1.3 in children. 

In both adults and children, LCI (AUCROC=0.93 and 0.84) had greater combined sensitivity 

and specificity to discriminate between people with CF and controls compared to FEV1 

(AUCROC=0.88 and 0.60) and FEF25-75 (AUCROC=0.87 and 0.68).  LCI correlated significantly 

with the CFQ-R treatment burden in adults (r=-0.37; p<0.01) and children (r=-0.50; p<0.01). 

Washout tests were successful in 90% of CF subjects and were perceived as comfortable and 

easy to perform in both adults and children. 

Conclusions: These data support the use of LCI as a surrogate outcome measure in CF clinical 

trials in adults as well as children.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Lung clearance index (LCI), a measure of ventilation inhomogeneity derived from multiple 

breath washout (MBW), has good clinimetric properties and an acceptable feasibility profile 

as a surrogate endpoint in CF1, 2. The majority of studies have been in children2 where it has 

most potential as a useful marker to detect early changes in lung disease. These studies have 

shown good short- and medium-term repeatability of LCI in health and disease3-6 and 

correlation with parameters of chest Computed Tomography (CT)7-9, body plethysmography10,  

spirometry (forced expiratory volume in 1 second [FEV1], forced expiratory flow25-75 [FEF25-

75])11, 12 and markers of pulmonary inflammation and infection3. LCI has also been shown to 

be more sensitive than FEV1 in predicting11 and detecting4, 13, 14 early lung disease. In addition, 

LCI predicts pulmonary exacerbations and correlates with respiratory symptoms as measured 

by the CF Questionnaire-Revised (CFQ-R)15. The responsiveness of LCI in children with CF 

has also been demonstrated post intervention with hypertonic saline6, 16, DNase17 and in 

children and adults receiving ivacaftor18. Furthermore, MBW testing is considered feasible in 

an outpatient setting5. 

Studies of LCI involving adults with CF have also demonstrated encouraging results but 

are fewer in number8, 19-22. As increasing numbers of adult patients with CF also have normal 

FEV1, more sensitive endpoints are required to assess new therapies in this age group23. 

Improved survival means that adults are beginning to outnumber children in most developed 

countries24 and a large proportion of clinical trials are aimed at adults where efficacy must be 

demonstrated prior to testing treatments in younger patients. A recent workshop report has 

highlighted the potential use for LCI in older subjects with normal FEV1
25 however gaps in the 

current evidence remain concerning inter-visit reliability, correlation with patient reported 

outcomes and patient acceptability. Furthermore, only one study has directly compared adults 

and children with CF26. Further research is required to validate LCI as outcome measure across 

the age range in CF. 

In this study we determined the intra-visit repeatability, sensitivity and specificity and inter-

visit repeatability of LCI compared with FEV1 and FEF25-75. We also assessed the correlations 

between LCI, FEV1, FEF25-75 and CFQ-R domain scores and determined the feasibility and 

acceptability of LCI. Results were reported separately for adults and children with CF. Some 

results of this work have been presented in abstract format27-29. 

 

Methods 



Adults and children with CF were recruited as part of a larger study investigating the prevalence 

and potential pathogenicity of anaerobic bacteria in CF lung disease. CF subjects were recruited 

during routine outpatient appointments at the adult and paediatric CF Centres, Belfast Health 

and Social Care Trust (Belfast City Hospital and Royal Belfast Hospital for Sick Children). All 

subjects were enrolled for the first study visit when clinically stable (cross-sectional arm). 

Subjects were aged ≥ 6 years, had a confirmed diagnosis of CF30 and were clinically stable 

(with no pulmonary exacerbation requiring intravenous antibiotics in the previous 4 weeks). A 

subgroup of subjects’ (≥12 years) were recruited to a longitudinal arm in which repeat stable 

visits were performed at 3 monthly intervals. Due to the difficulties of collecting sputum 

samples from subjects < 12 years old, these subjects participated in the cross-sectional study 

only. The current study reports on MBW, spirometry and questionnaire data only. 

An exclusion criterion for MBW testing specifically was infection with Burkholderia 

cepacia complex infection (due to equipment infection control issues). On obtaining written 

informed consent, subjects were enrolled for a study visit and completed a CFQ-R, a MBW 

test, 2 Visual Analogue Scales (VAS) for evaluating the ease and comfort with MBW testing 

and spirometry. For the second stable visit, procedures were completed in the same order.   

 Adult and child healthy control (HC) subjects were invited to attend a single study visit 

by means of email circulation amongst work colleagues at Queen’s University Belfast and 

Belfast Health and Social Care Trust. Subjects were aged ≥ 6 years, had no history of a 

respiratory condition or use of antibiotics in the previous 4 weeks. On obtaining written 

informed consent, subjects completed spirometry and a MBW test.  

 All subjects were recruited during a 32-month period (October 2010-June 2013). This 

study was approved by the Office for Research Ethics Committees Northern Ireland (reference 

number: 10/NIR01/41). 

Participants individually completed an age-appropriate version of the CFQ-R before 

any other procedure. Children aged 6-11 years old completed the questionnaire with the 

assistance of the researcher or a parent if necessary. Adolescent and adult data for subjects aged 

≥ 14 years old was collected in 1 version of the questionnaire and child data for subjects aged 

6-13 years old in another version. 

The MBW test to measure LCI was performed using the modified InnocorTM device as 

previously validated19 (e-Appendix 1). The test was performed either before or at least 30 

minutes after performing spirometry to try to avoid any effects of a forced manoeuvre on LCI. 

Analysis of MBW data was performed using the Simple Washout programme. Three tests were 

attempted and the mean LCI was calculated from a minimum of 2 technically valid and 



repeatable tests (e-Appendix 1). The upper limit of normal (ULN) for LCI was calculated from 

the cohort of healthy controls (mean LCI + 1.96 SD). Z-scores were also calculated from HC 

group values. An LCI z-score of >2 was considered abnormal. Feasibility of MBW was 

assessed as the number of successful test sessions/attempted test sessions. 

Two VAS were completed at the first stable visit to score perceived comfort and ease 

in carrying out the MBW test. The VAS consisted of a scale from 0 to 10 cm with zero 

representing not comfortable/not easy and 10 representing extremely comfortable/extremely 

easy (e-Appendix 2).  

Spirometry was measured according to ATS/ERS guidelines31 using a Microlab 

(ML3500 MK8) spirometer (CareFusion, Kent, UK). Predicted values were calculated from 

reference ranges for all ages32. The lower limit of normal of 80% for FEV1 and FEF25-75 was 

used, as this is the level that is historically used in clinical practice. Z-scores were also 

calculated from HC group values. A FEV1 and FEF25-75 z-score of <-2 was considered 

abnormal.  

 

Statistical analysis 

Data were analysed using PASW Statistics (version 18, IBM software, USA) and Prism 

(Version 5.01 GraphPad Software Inc.). Intra-visit repeatability was assessed using the 

coefficient of variation (CV %) (i.e. within subject SD/mean) of triplicate LCI readings. In 

addition, Bland-Altman plots (i.e. the 95% limits of agreement between the first and third 

washout tests) were inspected. A learned effect if present, would most likely be apparent 

between the 1st and 3rd test. Finally, the coefficient of repeatability (CoR) (i.e. 1.96 x SD of 

the differences) was calculated and compared to CoR and within subject differences 

(considered to represent a significant change)  reported in the literature (0.96 to 1.30 in children 

and adults with CF5, 33, 34. Subjects with only 2 washout repeats were excluded from intra-visit 

repeatability analysis. The sensitivity (proportion of true positives who are test positive) and 

specificity (the proportion of true negatives who are test positive) of LCI, FEV1 and FEF25-75 

to the presence of CF, was assessed in the adult and child groups. Receiver-operator 

characteristic (ROC) curves (Area under the Curve [AUCROC] and Standard Error [SE]) for 

LCI, FEV1 and FEF25-75 were used to assess combined sensitivity and specificity. ROC curves 

were compared using a Venkatraman's test35. In a subgroup, the long-term inter-visit 

repeatability across 2 stable visits was assessed using Bland-Altman plots and the interclass 

correlation coefficient (ICC) and 95% confidence intervals (CI). Correlations were assessed 



using Pearson’s correlation coefficient. Differences between means were assessed using paired 

t-tests. A p-value of <0.05 was considered statistically significant. 

 

Results 

Participants and data collected 

e-Figure 1 describes study recruitment for subjects with CF. 122 subjects with CF were enrolled 

and completed the first stable visit. LCI results from 6 subjects were not repeatable and 6 

subjects were unable to complete the MBW procedure; one experienced discomfort with the 

mouthpiece, 5 did not have time to complete a minimum of 2 tests. Therefore, data from 110 

subjects with CF (n=43 children) was used for analysis. Fifty-six subjects (n=12 children) 

completed a second stable visit (≥ 3 months later).  

e-Figure 2 describes study recruitment for healthy subjects. Data from 61 subjects 

(n=31 children) were included in the analysis. Adult and child results were analysed and 

presented separately. All subject characteristics are displayed in Table 1.  

 
Intra-visit repeatability  

In the adult group, the LCI CV% was not significantly different between CF and HC groups. 

However, the LCI CV% was significantly different between children with CF and HC and was 

higher in children with CF compared with adults with CF (Table 1). The Bland-Altman plots 

(Figures 1a and b) show that there was no evidence of greater variability in subjects with more 

advanced disease in the CF adult or child group. The CoR (1.2 in CF adults and 1.3 in CF 

children) was equivalent to 12% of the mean LCI value in CF adults and 17% of the mean LCI 

value in CF children (Table 2). The age, gender and spirometry of patients included in this 

analysis (3 washout repeats) did not differ significantly from those excluded from the analysis 

(2 washout repeats) (e-Table 1). 

 
Sensitivity and specificity  

The ULN of LCI (mean LCI plus 1.96 SD) for adults was 7.5 and 7.3 for children. All control 

subjects had an LCI < the ULN. Whilst LCI had a narrow range in healthy controls, LCI 

increased with declining FEV1 % predicted in both CF adult (r=-0.68, p<0.0001) (e-Figure 3) 

and CF child (r=-0.66, p<0.0001) subjects (e-Figure 4). LCI also increased with declining 

FEF25-75% predicted in both CF adult (r=-0.59, p<0.0001) (e-Figure 5) and CF child (r=-0.48, 

p<0.0001) subjects (e-Figure 6).  



 In adult subjects the sensitivity and specificity of LCI to CF was 81% and 100%, 

respectively compared to 63% and 100% for FEV1 % predicted and 80% and 63% for FEF25-

75 % predicted. Considering CF subjects only, 14/67 (21%) CF adults had an abnormal LCI and 

a normal FEV1 % predicted. Two CF adults (3%) had a normal LCI and an abnormal FEV1 % 

(e-Figure 3). Seven (12%) CF adults had an abnormal LCI and a normal FEF25-75 % predicted. 

Four CF adults (7%) had a normal LCI and an abnormal FEF25-75 % predicted (e-Figure 5). 

Overall, in adults LCI (AUCROC=0.93; SE=0.03; p<0.0001) had greater combined sensitivity 

and specificity to discriminate between CF and controls compared to FEV1% predicted 

(AUCROC=0.88; SE=0.03; p<0.0001) and FEF25-75 % predicted (AUCROC=0.87; SE=0.04; 

p<0.0001) (Figure 2a). Comparison of the ROC curves showed that LCI AUCROC was only 

significantly better than FEF25-75 AUCROC (p=0.02) but not FEV1 AUCROC (p=0.12). LCI had 

significant sensitivity and specificity to detect abnormal FEV1 (AUCROC=0.91; SE=0.03; 

p<0.0001) and FEF25-75 % predicted (AUCROC=0.81; SE=0.05; p<0.0001) in adults (e-Figure 7 

and 8). 

In the child subjects, the sensitivity and specificity of LCI to CF was 46% and 100% 

respectively compared to 31% and 81% for FEV1 % predicted and 70% and 55% for FEF25-75. 

Considering CF subjects only, 8/43 (19%) children had an abnormal LCI in the presence of a 

normal FEV1 % predicted. Four (9%) children had a normal LCI and an abnormal FEV1 % 

predicted (e-Figure 4). Three (7%) CF children had an abnormal LCI and a normal FEF25-75 % 

predicted. Twelve CF children (28%) had a normal LCI and an abnormal FEF25-75 % predicted 

(e-Figure 6). Overall, in children LCI (AUCROC=0.84; SE=0.05; p<0.0001) had greater 

combined sensitivity and specificity to discriminate between CF and controls compared to 

FEF25-75 % predicted (AUCROC=0.68; SE=0.07; p=0.02). FEV1 % predicted (AUCROC=0.60; 

SE=0.07; p=0.15) was not statistically significant in discriminating between CF and HC child 

subjects (Figure 2b). Comparison of the ROC curves showed that LCI AUCROC was 

significantly better than FEV1 AUCROC (p=0.0002) and FEF25-75 AUCROC (p=0.03).

LCI also had significant sensitivity and specificity to detect abnormal FEV1 (AUCROC=0.77; 

SE=0.07; p<0.0001) and FEF25-75 % predicted (AUCROC=0.69; SE=0.06; p<0.007) (e-Figure 9 

and 10) in children. 

 

Inter-visit repeatability  

Fifty-six CF subjects (n=12 children) completed a second stable visit that included MBW 

testing (Table 1). Due to smaller numbers completing 2 stable visits, data from adults and 



 
 

 
 

children were combined for analysis. Visits were on average (SD) [range] 213 (114) [67-614] 

days apart.  

There was no significant difference between repeat measurements across an average 

period of 8 months (e-Table 2). The ICC (95% CI) for LCI (0.96; 0.94 to 0.98; p<0.0001), 

FEV1 % predicted (0.91; 0.84 to 0.94; p<0.0001) and FEF25-75 % predicted (0.91; 0.85 to 0.95; 

p<0.0001) all demonstrated excellent agreement with statistical significance.  

 

Correlations with CFQ-R domain scores 

Of the 110 CF subjects, 80 completed the CFQ-R at their first stable visit consisting of 55 

adolescents/adults (≥14 years old) and 25 children (6-13 years). Domain scores for CFQ-R 

adolescent/adult (≥14 years), CFQ-R child (6-13 years) are summarised in e-Table 3. Table 3 

summarises the correlation coefficients between the CFQ-R domains scores, LCI, FEV1 and 

FEF25-75. Significant correlations were observed with CFQ-R treatment burden only (e-Figure 

11 and e-Figure 12). The relationship between CFQ-R respiratory symptoms and LCI and 

between CFQ-R respiratory symptoms and spirometry were not significant.  

 

Feasibility and acceptability 

Of the 122 CF subjects recruited, 110 (90%) of MBW tests were successful with a minimum 

of 2 technically valid and repeatable tests obtained.  

All but 1 of the 110 CF subjects completed both VAS (child aged 6 years unable to 

understand the instructions). Both adults and children reported high levels of comfort (mean 

VAS score [SD] 8.0 [1.5] Vs. 8.2 [1.8]; p=0.39) and ease (mean VAS score [SD] 9.0 [1.3] Vs. 

9.0 [1.7]; p=0.94) with the MBW test and there was no significant difference between scores 

in the 2 age groups.   

 

Discussion 

This study demonstrates that LCI has good clinimetric properties over a wide age range in CF 

subjects from school age to older adulthood. Considering intra-visit repeatability of LCI, the 

within-visit CV% for CF subjects was better in the adult group (4.1%) compared with the child 

group (6.3%). Both results were comparable to within-visit CV% of 4-8% reported in recent 

studies3, 5, 12 and in a study using the same MBW device19. Adult and child CF subjects had 

similar intra-visit variability in LCI compared with their HC counterparts, with no significant 

difference in the mean differences between the first and third tests. The CoR (1.2 in CF adults 

and 1.3 in CF children) was similar to levels considered to represent significant change in recent 



 
 

 
 

trials (0.96-1.30) 5, 11, 34. The CoR statistic is useful to indicate the degree of variability above 

which a treatment effect would be expected to be observed36; however caution is required with 

respect to the direct interpretation of CoR as the level of treatment effect. This statistic 

confounds individual level changes, only measuring within-subject variation. In order to obtain 

a more meaningful threshold for treatment effect, an assessment of how much change is 

required for the patient to report benefit may be more informative. Importantly, the Bland-

Altman plots demonstrate that there is no evidence of increased variation within washouts in 

subjects with more severely impaired lung function (i.e. a higher LCI) across both the adult 

and child CF groups. However, as the analysis protocol applied its own repeatability criteria 

(excluding those subjects who had an FRC > 10% and/or an LCI of >20% across ≥ 2 tests), 

this cohort of CF subjects represent the “best” subjects in terms of intra-visit repeatability. 

These criteria may inadvertently exclude subjects with more severe lung function and therefore 

a more variable LCI. Nevertheless, these data suggest that levels of variation in LCI are 

relatively stable in subjects with an LCI of up to 17.2 lung turnovers. A potential limitation of 

the study relates to the timing of MBW during the study visit which was performed before or 

30 minutes after spirometry. This schedule was in place to minimise disruption for the patient 

and to ensure that data collection for the study could take place during a routine outpatient 

appointment. However, previous studies have shown little to no short term impact on LCI as a 

result of forced manoeuvres37, 38. 

This was the first study to investigate the longer term stability (˃ three months) of LCI 

in those with stable disease. Other studies assessing intra-visit repeatability in children 

performed repeat sessions up to a maximum of 12 weeks apart6. The results from this analysis 

indicated good long-term repeatability of LCI with stability of measurements across an average 

period of eight months. This data addresses an important question around the clinimetrics of 

LCI as a surrogate measure of lung function, providing evidence that LCI has low levels of 

variation in a combined adult and child group comparable with spirometry over a long-term 

period. 

This study also demonstrates that LCI has excellent sensitivity and specificity 

(AUCROC) when discriminating between CF and HC subjects across the age range. LCI 

AUCROC was significantly better than FEF25-75 AUCROC in adults and both FEV1 AUCROC
 and 

FEF25-75 AUCROC in children. A proportion of CF subjects in both age groups had an abnormal 

LCI in the presence of normal FEV1 (21% in adults; 19% in children) or a normal FEF25-75 

(12% in adults and 7% in children). FEF25-75 had equal (adults) or better (children) sensitivity 



 
 

 
 

than LCI but was much less specific. In children, FEF25-75 detected a proportion of subjects 

(30%) with an abnormal reading in the presence of a normal LCI. Given that LCI is reflective 

of ventilation distribution in both small and large airways, perhaps normal gas mixing in the 

large airways masked abnormality in the small airways in these patients. However, almost half 

of healthy subjects also had an abnormal FEF25-75 which highlights that this measure was not 

specific to disease in this group and perhaps not reliable. The limitation of FEV1 was 

highlighted specifically in the child group where the values were well preserved and therefore 

did not differentiate well between health and disease. The adult data specifically highlights that 

an abnormal LCI in the presence of a normal FEV1 can range from mildly abnormal to grossly 

increased values, indicating that even advanced ventilation inhomogeneity may not be detected 

by FEV1 or FEF25-75.   

The domain of treatment burden emerged as an important aspect of health related 

quality of life in this study, correlating with LCI and FEV1 in both age groups and with FEF25-

75 in adults. The association between LCI, spirometry and CFQ-R respiratory symptoms were 

not significant in this study, unlike those reported in children by Vermeulen and colleagues15. 

In this study, patients with grossly elevated LCI (>10 z-scores) reported respiratory symptoms 

within the same range as those patients who had moderately elevated LCI z-scores, diminishing 

the association. A possible reason why treatment burden was important in this study may be 

due to the significant treatment demands placed on subjects with CF which may be increasing 

with the emergence of new and more aggressive therapies. Previous studies of patient perceived 

treatment burden have shown it to be independent of disease severity39. In this study it 

significantly correlated with the respiratory symptoms domain in the adult group (r=0.36; 

p=0.006), indicating that a higher treatment burden was associated with more symptoms and 

likely, more severe disease. Overall, the significant correlations observed were of weak to 

moderate strength (r= -0.37 to -0.50) however, they are similar to those reported in the initial 

validation studies of the CFQ-R with FEV1 (r= 0.23 to 0.45)40.  

Reported success rates for achieving valid and repeatable tests have ranged from 24 - 

100%; however, the majority are >70%, given adequate time to ensure collection of valid data 

(2 to 3 tests) 5, 41. A drawback of the test is that sessions can often take > 30 minutes for each 

individual. Our finding that MBW tests were feasible to perform (90% success rate) and that 

child and adult subjects with CF found the MBW to be equally acceptable adds to the current 

feasibility profile of LCI. 

 



 
 

 
 

Conclusions 

This study shows that the clinimetric properties of LCI (validity reliability, sensitivity, 

specificity, feasibility and acceptability) in adults with CF are comparable to those in children 

with CF. These data support the use of LCI as a surrogate outcome measure in CF clinical trials 

in adults as well as children. 
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Tables  

Table 1: CF and HC subject characteristics 
 Visit 1 Visit 1 CF subjects 

completing 
2 visits 

 Adult CF 
(n=67) 

Adult HC  
(n=30) 

p-value Child CF  
(n=43) 

Child HC 
(n=31) 

p-value CF 
(n=56)f 

Median (IQR) age in 
years 

27.0 (16.0) 27.0 (7.0) 0.82 11.7 (3.4) 10.8 (3.4) 0.32 23.5 (15.8) 

n (%) F508del 
homozygous 

21/67 (31)  n/a n/a 19/43 (44) n/a n/a 20/56 (36) 

n (%) chronic P. 
aeruginosa 
infection42 

33/67 (49) n/a n/a 7/43 (16) n/a n/a 19/56 (34) 

Females: males (n) 28:39 16:14 0.70 19:24 14:17 <0.0001 
 

31:25 

Mean (SD) FEV1 % 
predicted 

71.8 (20.3) 100.5 (11.0) <0.0001 85.2 (16.6) 90.0 (12.2) 0.21 77.3 (18.9) 

Mean (SD) FEV1  
z-score 

-2.3 (1.7) 0.1 (1.0) <0.0001 -1.2 (1.4) -0.8 (1.0) 0.15 -1.9 (1.6) 

Median (IQR) 
FEF25-75 % predicted  

40 (46.7)a 90.9 (33.32) <0.0001 66.0 (27.6) 80.4 (23.2) 0.02 53.8 (52.0)g 

Mean FEF25-75  
z-score 

-2.4 (1.6) a -0.4 (0.8) <0.0001 -1.7 (1.5) -1.0 (1.2) 0.02 -2.0 (1.7)g 

Mean (SD) LCI no. 
turnovers [range] 

10.3 (3.0) 
[5.9-17.2] 

6.5 (0.5) 
[5.6-7.3] 

<0.0001 7.8 (1.8) 
[5.4-12.9] 

6.3 (0.5) 
[5.5-7.3] 

<0.0001 9.4 (2.6) 

Mean (SD) LCI  
z-score 

7.8 (5.8) -0.1 (1.0) <0.0001 2.9 (3.5) -0.3 (1.0) <0.0001 6.0 (5.2) 

Mean (SD) LCI 
intra-visit CV %  

4.1 (2.4)b 4.5 (2.9)c 0.57 6.3 (3.0)d 4.5 (2.3)e 0.01 4.3 (3.0) 

 
 

aFEF25-75 data was recorded for 59/67 of adult subjects with CF. 
bLCI CV% calculated from 49/67 adult CF subject data i.e. those with 3 valid and repeatable 
LCI readings. LCI from n=18 were calculated from two washout readings, therefore CV% not 
calculated. 
cLCI CV% from calculated from 28/30 adult HC subject data. LCI from n=2 were calculated 
from two washout readings. 
dLCI CV% calculated from data from 37/43 child subjects with CF. LCI from n=6 was 
calculated from two washout readings. 
eLCI CV% from 28/31 child HC subjects. LCI from n=3 was calculated from two washout 
readings. 
f Subject demographics at visit 1. 
gFEF25-75 data was recorded for 51/56 CF subjects completing 2 visits. 
 
 

 

 

 



 
 

 
 

Table 2: LCI intra-visit repeatability data for CF adults and CF children 

 

 Mean (SD) LCI 
1st washout  

Mean (SD) LCI 
3rd washout  

Mean difference 
(SD) 3rd-1st  

CoR 

CF adults (n=49) 9.8 (2.5) 10.0 (2.6) 0.2 (0.6) 1.2 

CF children (n=37) 7.9 (1.9) 8.0 (1.9) 0.1 (0.7) 1.3 

 

Table 3: Correlations between CFQ-R domain scores, LCI and spirometry in adolescent/adults 

(n=55) and children (n=25). 

CFQ-R domains  LCI z-score FEV1 z-score FEF25-75 z-score 
Adult Child  Adult Child Adult Child 

Physical functioning -0.18 -0.18 0.25 0.03 0.06 0.21 
Role/School functioning^  -0.03 - 0.17 - 0.08 - 
Vitality^ 0.01 - -0.06 - -0.17 - 
Emotion -0.07 -0.23 0.02 0.00 -0.01 -0.08 
Social functioning -0.18 -0.33 0.15 0.16 -0.01 -0.01 
Body image -0.05 -0.26 -0.03 0.11 -0.01 0.04 
Eating disturbances 0.01 -0.25 0.08 0.09 -0.02 0.11 
Treatment burden -0.37** -0.50** 0.43** 0.44* 0.38** 0.19 
Health perceptions^ -0.07 - 0.11 - -0.05 - 
Weight^ 0.20 - -0.12 - -0.12 - 
Respiratory symptoms -0.15 -0.23 0.17 0.07 0.19 -0.01 
Digestion symptoms -0.10 -0.12 -0.07 0.15 -0.07 0.19 

 

Correlation coefficient expressed as an r value 
*p<0.05   **p<0.01 
^ Adolescent/adult CFQ-R domains only 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Figure legends 

 

Figure 1 (a) and (b): Bland-Altman plot for the first and third washout repeats for (a) adult 

(n=49) and (b) child (n=37) CF subjects. 

 

Figure 2 (a): CF vs. HC: Adult ROC curve demonstrating the sensitivity and specificity of LCI, 

FEV1% predicted and FEF25-75% predicted to CF compared with HC subjects. 

 

Figure 2 (b): CF vs. HC: Child ROC Curve demonstrating the sensitivity and specificity of 

LCI, FEV1% predicted and FEF25-75% predicted to CF compared with HC subjects. 

 

e-Figure 1: Flowchart demonstrating recruitment of CF subjects 

 

e-Figure 2: Flowchart demonstrating recruitment of HC subjects   

 

e-Figure 3: LCI vs. FEV1 % predicted in CF adults (triangles) and controls adults (circles). The 

corresponding lines display the regression line for each group. 

 

e-Figure 4: LCI vs. FEV1 % predicted in CF children (triangles) and child controls (circles). 

The corresponding lines display the regression line for each group. 

 

e-Figure 5: LCI vs. FEF25-75 % predicted in CF adults (triangles) and adult controls (circles). 

The corresponding lines display the regression line for each group. 

 

e-Figure 6: LCI vs. FEF25-75 % predicted in CF children (triangles) and child controls (circles). 

The corresponding lines display the regression line for each group. 

 

e-Figure 7: Adult ROC curve demonstrating the sensitivity and specificity of LCI to Normal 

Vs. abnormal FEV1 in CF subjects. 

 

e-Figure 8: Child ROC curve demonstrating the sensitivity and specificity of LCI to Normal 

Vs. abnormal FEV1 in CF subjects. 

 



 
 

 
 

e-Figure 9: Adult ROC curve demonstrating the sensitivity and specificity of LCI to Normal 

Vs. abnormal FEF 25-75 in CF subjects. 

 

e-Figure 10: Child ROC curve demonstrating the sensitivity and specificity of LCI to Normal 

Vs. abnormal FEF 25-75 in CF subjects. 

 

e-Figure 11: Relationship between CFQ-R treatment burden and LCI z-score in adults (open 

circles) and children (closed circles). The vertical dashed line represents the ULN for LCI z-

score.  

e-Figure 12: Relationship between CFQ-R treatment burden and FEV1 z-score in adults (open 

circles) and children (closed circles). The vertical dashed line represents the LLN for FEV1 z-

score. 

 

 

 
 

 

 


