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Abstract 

Background and aims: Machine learning techniques for the text mining of cancer-related clinical 

documents have not been sufficiently explored. Here some techniques are presented for the pre-

processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of 

information relevant to cancer staging. 

Materials and methods: The first technique was implemented using the freely available software 

RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and 

‘unstructured’. The second technique was developed using the open source language engineering 

framework GATE and aimed at the prediction of chunks of the report text containing information 

pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number 

of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 

manually classified or annotated reports, from the Northern Ireland Cancer Registry. 

Results: The best result of 99.4% accuracy – which included only one semi-structured report 

predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using 

the binary term occurrence word vector type with stopword filter and pruning. For chunk 

recognition, the best results were found using the PAUM algorithm with the same parameters for all 

cases, except for the prediction of chunks containing cancer morphology. For semi-structured 

reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, 

while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in 

precision and recall. Poor results were found when the classifier was trained on semi-structured 

reports but tested on unstructured. 
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Conclusions: These results show that it is possible and beneficial to predict the layout of reports and 

that the accuracy of prediction of which segments of a report may contain certain information is 

sensitive to the report layout and the type of information sought. 

Keywords 

Natural language processing; information extraction; supervised machine learning; surgical 
pathology report; cancer staging. 
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1 Introduction 

In a recent review, I. Spasić et al. [1] have analysed published efforts for the text mining of cancer-

related information from a range of clinical documents. From their analysis, they conclude that 

machine learning (ML) techniques should be more widely investigated as an alternative to the 

commonly used rule-based methods. This paradigm shift, they argue, might help resolve the many 

difficulties faced by traditional methods in dealing with unconventional or erroneous spelling and 

grammar of clinical documents. A recent natural language processing (NLP) challenge for clinical 

records [2] has also shown that, while rule-based systems appear to dominate for clinical 

information extraction tasks, hybrid systems [3] combining ML algorithms and rule-based engines 

may outperform them. While rule-based approaches do achieve high levels of performance [4] and 

are usually adopted by commercial tools (such as AutoCode1), their application may be less 

successful in some contexts [5, 6]. More recent projects and contests have consistently shown that 

ML is a promising methodology in the context of text mining of clinical narratives [7]. In the cancer 

domain, this is especially true for both for the detection of reportable cases [8, 9] and the actual 

extraction of relevant information [10, 11].  Those studies also seem to confirm that ML techniques 

are best deployed alongside rule-based methodologies. 

In this study, the performance of off-the-shelf freely available ML tools and techniques which may 

be used as an aid to the tasks of information extraction from breast cancer pathology reports was 

explored. Pathology reports are produced by trained clinicians after the macroscopic and 

microscopic examination of surgically resected tissue specimens and are considered the most 

authoritative source of cancer diagnosis information. The underlying idea, here, is that the reports 

can be classified into different types according to their overall structure and that, depending on their 

classification, fragments of the reports can be identified. These fragments most likely contain the 

information to be found. The isolation of relevant fragments may both reduce the complexity and 

                                                           
1 http://www.aim.on.ca/products/autoCode.jsp (Accessed: 6 August 2008). 
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improve the performance of subsequent rule-based techniques for the actual extraction of 

information.2 Document structure and chunk recognition are active areas of research in several 

fields of application. However, their application to surgical pathology reports has never been 

explored. In particular, the value of automatically recognising the structure and relevant sections of 

reports in the context of information extraction has been neglected.  

The remainder of this introduction will provide some background to the problem. The following 

section 2 will outline the methods for the two main tasks – layout classification and chunk 

recognition. Section 3  illustrates the various tests and evaluation tasks performed for layout 

classification (3.1) and chunk recognition (3.2), followed by a discussion (section 4). Finally, a brief 

summary and some reflections on further research that might follow from this work are provided in 

section 5. Further details of the software tools used, of the textual features of the corpus and the 

pre-processing operations that were required on it are collected in the Supplementary Materials, 

together with a Glossary of medical terms, sample documents and novel source code. 

1.1 Background 

One of the available routes to reducing years of life lost due to cancer illness, at the point of care, is 

to ensure that epidemiological research is based upon high quality data on the incidence, prevalence 

and survival rates of cancer: high quality data on cancer episodes constitutes vital support for 

epidemiological cancer research, cancer care auditing and assessment [12]. In particular, improved 

completeness of staging information at diagnosis (i.e. the extent of spread of the cancer) allows for 

improved treatment planning and assessment of treatment effectiveness [13] and provides data for 

survival analysis closer to the true outcomes of the diseases [14]. 

The present study was conducted in the Northern Ireland Cancer Registry (NICR), which has received 

in electronic format all cancer-related pathology reports from all laboratories in Northern Ireland 

                                                           
2 In some cases, information extraction precision may increase by up to 19% (11%) for structured 
(unstructured) reports (publication in preparation). 
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since 1993.3 We concentrated on the reports stored in the NICR for breast cancers diagnosed in 

2006.4  Although the cancer registration dataset in the UK has been approved [15] and hopefully a 

higher level of integration of IT systems within the National Health Service [16] will be achieved, 

currently the values of many clinical test results, staging information and other pathology-related 

data items are not captured automatically by the main database system of the registry. Because 

such information is not recorded at the source (laboratory computer systems), it is not received 

from the data providers as a specific item of the dataset. As a result, all such data are either not 

available or have to be obtained by human inspection of the free text pathology reports or by the 

application of ad-hoc techniques. The aim of the NICR is to achieve 70% completeness in staging 

information. In other words, 70% of all cancer registrations should eventually be associated with 

some acceptable form of staging information in the NICR database. This is in alignment with the 

same target agreed by the UK and Ireland Association of Cancer Registries for all their registries [17]. 

At the same time, particular emphasis has also been placed on the importance of collecting data on 

some specific hormone receptor protein expression for breast cancer. In some cases the data 

provided from the employment of these biomarkers can indicate the effectiveness of particular 

treatment strategies [18] and can be used to achieve accurate patient stratification and deliver 

personalised medicine [19]. For these reasons, it was decided to focus the study on breast cancer 

reporting and on this specific information contained in the pathology reports, in addition to another 

essential piece of information about cancer, namely its morphology [20]: 

• TNM staging [21]. This is the most commonly used cancer staging classification system. It 

includes information on the extent of the primary tumour (T), the absence or presence of 

lymph node metastasis (N) and the absence or presence of distant metastasis (M). 

• Cancer morphology, which is the type of cancer cells and affects the behaviour of the 

disease [22]. 
                                                           
3 U.S. cancer registries also have increasing access to full text pathology reports, with several of them achieving 
> 90% population-based coverage (Eric Durbin, personal communication, June 2015). 

4 From now on these will simply be referred to as “the reports”. 
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• Hormone receptors (oestrogen, herceptin, progesterone). 

1.2 Previous work 

Document classification is a vast topic. Automatic document classification systems have already been 

developed as layers within more complex systems, for example aiming at information filtering [23].  

However, in the domain of document layout classification, available research is usually devoted to 

the classification of documents under one of a number of already known, strictly well-defined semi-

structured layouts. Tresch et al. [24], for instance, show how vector space classification can be used 

to determine the type of semi-structured documents (e.g. LaTeX document or XML) on the basis of 

features of their content. However, we are not aware of research exploring the possibility to detect 

the presence of structure per se. 

Similarly, chunk recognition has already been used as an intermediate step towards the extraction of 

information, by isolating the phrases or arbitrary sections of text which may contain the information 

sought [25]. This, however, has never been applied to surgical pathology reports or in combination 

with layout classification. 

2 Materials and methods 

2.1 Pathology report general layout and content 

Preliminary analysis showed that the reports could be roughly classified into two main categories, 

referred to here as semi-structured and unstructured. Semi-structured reports display several 

sections, each with a heading comprising one or more paragraphs. These headings originate from 

document templates that the clerical staff in the laboratories use to write down the dictated reports. 

These templates, however, can be fully edited while typing, making them unreliable for information 

http://dx.doi.org/10.1016/j.artmed.2016.06.001
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extraction.5 Each section is homogenous regarding the nature of the information contained, and is 

usually telegraphic with only some sections containing some narrative explanation. Unstructured 

reports only present a few headings for the main sections, while the corpus of the report with the 

most relevant information (e.g. nodal status, tumour size and final diagnosis) is a narrative of 

variable length. Examples of unstructured and semi-structured reports are shown in the 

Supplementary Materials.  

2.2 Methods 

Documents and sentences were represented as vectors in a vector space model [26], each 

dimension corresponding to a term and measured along a number of metrics: term occurrence (TO, 

the number of occurrences of the term in the document); binary term occurrence (BTO, set to 1 only 

if TO>0, set to 0 otherwise); term frequency (TF, given by the TO divided by the total number of 

terms in the document) and term frequency-inverse document frequency (TF-IDF, given by the TF 

divided by the frequency of the term in the whole corpus).  

Supervised ML [27] was used for both tasks, with 5-fold cross-validation employed for both 

parameter optimisation (on the training set) and evaluation (on the test set). In this study 

experiments with three classification algorithms were conducted: k nearest neighbours (K-NN), 

Naïve Bayes classification (NB) and Perceptron Algorithm with Uneven Margins (PAUM). Evaluation 

was based on the standard metrics of accuracy, recall, precision and F1 [28]. 

Layout classification, that is the labelling of a report as semi-structured or unstructured, was used to 

provide the subsequent chunk recognition module with two sets of documents which may benefit 

from distinct processing techniques. The RapidMiner software [29] was employed for the core ML 

tasks of layout classification. 

                                                           
5 In the U.S., while pathology labs follow template guidelines according to the College of American 
Pathologists, most do not capture that data using electronic checklists, but still capture checklist elements 
within their narrative reports (Eric Durbin, personal communication, June 2015). 
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Chunk recognition [30] here refers to the automatic identification of those portions of a report 

where the information sought is most likely to be found. The main aim of this identification would be 

to provide a NLP module with selected portions of text of interest, the hypothesis being that the 

reduction of background noise would allow for more effective extraction of the information. The ML 

facilities provided by the GATE framework [31] were used for all ML operations of this task: manual 

annotation, preliminary assessments, training and evaluation.  

 

2.3 Document pre-processing and initial analysis 
The initial set of reports was pre-processed by Perl routines, shown in the Supplementary Materials. 

Perl routines were used to remove spurious lines inserted in the body of the reports by the 

laboratory information systems, and (on the training set) to extract all text fragments that may be 

the heading of report sections. This latter process was intended as a method to suggest which 

laboratories may have produced semi-structured reports, although the classification of reports as 

either semi-structured or unstructured for the supervised learning was manual. The identification of 

potential headings was also used to assess whether section names could be used to firmly identify 

portions of reports mentioning information of interest. From this preliminary analysis it could be 

concluded that information extraction could not be reliably guided by the literal content of section 

headings only, not even for semi-structured reports. As a result, a rule-based approach was 

dismissed and the need for exploring more complex statistical methods to aid the identification of 

relevant sections of pathology reports was confirmed. 

Additional automated tools and procedures were also used to help identify reports referring to non-

breast cancers. All reports were eventually manually reviewed; the test set was pre-processed and 

reviewed only after all training sessions had concluded. 

http://dx.doi.org/10.1016/j.artmed.2016.06.001
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3 Results 

3.1 Classification of semi-structured and unstructured pathology reports  

3.1.1 Pre-processing and manual classification 

As already explained in the previous section, the structure that is found in some reports is the result 

of the use of predefined, standard document templates in the laboratories. The structure of these 

templates guides both the pathologist’s style of dictation and the secretary’s typing of the report. 

However, it has also been observed that the use of these templates may vary even within a single 

laboratory, depending on the individual clinician’s preferences. Additionally, even when a template 

is used, consistent structure is not guaranteed: the template can be edited while typing, with 

alterations ranging from the change or removal of headings to the insertion of narrative paragraphs 

anywhere in the report. Conversely, and as a source of even more confusion for any potential 

classifier, some very short unstructured reports may resemble semi-structured reports, an example 

of which is given in the Supplementary Materials. 

As a result, the distinction between semi-structured and unstructured reports is not clear-cut but a 

matter of judgement. Here, it was decided to classify as ‘semi-structured’ those reports showing 

subdivision in several headed sections; with each headed section being homogenous in content and 

mostly written in very telegraphic style and often containing a single value or an array of values (e.g. 

a number, the result of a measure, “yes”, “absent”). The ‘unstructured’ reports were considered as 

those only showing a few headings for the main sections but mainly consisting of a narrative 

segment, mostly written in full sentences with an acceptable grammatical style. Two annotators 

(both members of the IT group of the NICR and familiar with the layout variations of the reports) 

created the gold standard for this task; a task with no conflictual outcomes. The final distribution of 

the reports is shown in Table 1. 
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Classification No. of reports 

  Training Test 

Semi-structured 423 112 

Unstructured 212 51 

Total 635 163 

 

Table 1 – Number of reports by type 
 

3.1.2 Evaluation 

After parameter optimisation on the training set (see the Supplemental Materials for details), the 

chosen algorithms were trained on the whole training set and tested on the test set of reports. 

Narrow ranges of parameter values, close to those that had produced best performance at the 

optimisation stage, were used. The best result of 99.4% accuracy, with only one semi-structured 

report predicted as unstructured, was produced by the k-NN algorithm using the BTO word vector 

type with stopword filter and pruning. The single report wrongly classified as unstructured was 

visually inspected and resulted in a very short report with few headings (see the Supplementary 

Materials). This conciseness probably accounts for its classification among the unstructured reports, 

which are more often shorter than the semi-structured ones.  

 

3.2 Chunk recognition of pathology reports 

3.2.1 Pre-processing and manual annotation 

All the reports were manually reviewed and all relevant sections annotated with the labels 

“Diagnosis”, “Size”, “Nodes” or “Receptors” (more details in the Supplementary Materials). These 

values were used, respectively, to label those sections of the reports which contained the 

information relevant to the morphology of the tumour, its size, the number of nodes found positive 

(the latter two are required for TNM staging) and the results of ER, PR or HER2 receptor status 

investigations. 
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These feature values were also selected in order to experiment with a variety of cases. The number 

of nodes found positive is expressed in the reports in many different ways. In particular, in semi-

structured reports it may be expressed in up to three short lines of text (one per each level of axillary 

nodes), where it is encoded in short strings of digits, like the following: 

Level 2110 

This indicates that 11 axillary nodes from level 2 were examined and none were showing metastatic 

cells. The same information, however, may be found expressed more clearly as in the following line: 

Level II: Number 11, Involved 0 

The receptors status is also variable in the ways it may be expressed, but its format is substantially 

different from the node positivity, varying from plain English only (e.g. “The tumour tested positive 

for Estrogen Receptor overexpression”) to numeric/symbolic only (e.g. “ER+” or “ER 8/8”). The size 

of the tumour is a numerical value which is potentially easy to confuse with other numerical values 

mentioned in the reports, especially other linear dimensions such as the specimen size(s) or the 

lesion distance from the resection margins. Finally, the diagnosis (i.e. the tumour morphology) is 

usually expressed very clearly by mentioning one of a few standard terms; as such, the chunk of text 

containing it was judged a potentially unproblematic section to be automatically classified and the 

ML performance on it was meant to be a ’benchmark’ for its performance.  

3.2.2 Evaluation 

Two types of chunk recognition learning were evaluated: sentence-based classification, in which 

each sentence in a document is classified, and chunk-based classification, in which any fragment of 

text in a document may be assigned a class. An initial set of k-fold cross-validation sessions were run 

with the PAUM algorithm on the training sets, in both the sentence-based and chunk-based 

configurations. The results are shown in Table 2, where the values of precision and recall for chunk-

based learning refer to lenient matching, which considers predicted chunks as positive matches even 

when a manually annotated chunk partially overlaps with it. 
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 Semi-structured Unstructured 

Precision Recall Precision Recall 

Sentence 

based 

Diagnosis 0.91 0.83 0.71 0.73 

Receptors 0.93 0.94 0.73 0.55 

Nodes 0.93 0.90 0.33 0.33 

Tumour Size 0.92 0.91 0.20 0.23 

Chunk 

based 

Diagnosis 0.92 0.90 0.79 0.55 

Receptors 0.94 0.91 0.89 0.83 

Nodes 0.97 0.94 0.69 0.42 

Tumour Size 0.98 0.92 0.35 0.11 

Table 2 – K-fold cross-validation (lenient) results, produced with default settings to provide an initial 

assessment of the method capabilities. 

Then the same process of inspecting k-fold cross-validation results was repeated while varying 

algorithm and parameters, as shown in the Supplementary Materials. This was performed with the 

diagnosis and tumour size annotations, because they were expected to provide an insight of how the 

detection of two different types of chunks (one composed by words only, the other composed by 

mostly words with some numeric values) would be affected by those changes. 

Because the chunk-based classification performed consistently better than sentence-based on the 

training sets, it was decided to perform the final evaluation sessions on the test sets with chunk-

based classification only. The precision and recall lenient results of this final evaluation for all 

annotations are shown in Table 3, while Table 4 provides the detailed counts or classifications (exact 

matches, misses, false positive and partially overlapping chunks). With the exception of diagnosis, 

for all cases, the PAUM algorithm was used with full token features (category, orthography, kind and 

root) and range 2. For diagnosis, range 4 was used for the classification of unstructured reports and 

range 1, with no other features than root, was used for the classification of semi-structured reports. 
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 Semi-structured Unstructured 

Precision Recall Precision Recall 

Diagnosis 0.94 ±.03 0.85 ±.05 0.91 ±.06 0.61 ±.09 

Receptors 0.97 ±.03 0.83 ±.06 0.88 ±.10 0.68 ±.14 

Nodes 0.97 ±.02 0.92 ±.04 0.83 ±.14 0.54 ±.18 

Tumour size 0.96 ±.04 0.90 ±.06 0.64 ±.23 0.41 ±.23 

Table 3 – Final evaluation of chunk-based classification, with 95% confidence intervals. These are lenient 

results, which consider predicted chunks as positive matches even when a manually annotated chunk 

partially overlaps with it. 

 

  Strict Lenient 

Match Missed False 

positive 

Overlap Recall Precision F1 Recall Precision F1 

Semi-

structured 

Diagnosis 155 33 12 26 0.72 0.80 0.76 0.85 0.94 0.89 

Receptors 78 27 4 53 0.49 0.58 0.53 0.83 0.97 0.89 

Nodes 168 15 5 16 0.84 0.89 0.87 0.92 0.97 0.95 

Tumour 

size 

89 10 4 6 0.85 0.90 0.87 0.90 0.96 0.93 

Unstructured 

Diagnosis 33 40 6 29 0.32 0.49 0.39 0.61 0.91 0.73 

Receptors 21 13 4 7 0.51 0.66 0.58 0.68 0.88 0.77 

Nodes 5 13 3 10 0.18 0.28 0.22 0.54 0.83 0.65 

Tumour 

size 

7 10 4 0 0.41 0.64 0.50 0.41 0.64 0.50 

Table 4 – Detailed results of final evaluation, with number of chunks that were matching (the predicted 

chunk of text coincides with the manually annotated chunk), overlapping (the two chunks only partially 
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overlap), missing (a manually annotated chunk is not predicted) or spurious (a predicted chunk does not 

correspond to a manual annotation). 

 

Finally, the same evaluations as in the previous paragraph were performed, with the difference that 

the algorithm was trained on the semi-structured reports training set but the classifier was then 

tested on the unstructured reports test set (cross-training). The results are shown in Table 5.  

  Strict Lenient 

Match Missed False 

positive 

Overlap Recall Precision F1 Recall Precision F1 

Diagnosis A 6 88 2 8 0.06 0.38 0.1 0.14 0.88 0.2 

Diagnosis B 8 85 2 9 0.08 0.42 0.1 0.17 0.89 0.3 

Receptors 3 24 5 14 0.07 0.14 0.1 0.41 0.77 0.5 

Nodes 2 24 1 2 0.07 0.4 0.1 0.14 0.8 0.2 

Tumour 

size 

0 17 0 0 0 1 0 0 1 0 

Table 5 – Detailed results of cross-training, where the algorithm was trained on semi-structured reports 

and applied to unstructured reports. Diagnosis A and B results were produced using the optimal setting 

for the ML algorithm previously found for semi-structured and unstructured reports, respectively. 

 

 

4 Discussion 

4.1 Layout classification 

The results shown in section 3.1.2 provide evidence that semi-structured and unstructured reports 

can be successfully discriminated by means of ML techniques, using supervised learning. This result 
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is not only promising for the information extraction aims of NLP, but it may also be used as a basis 

for manual processing optimisation. For example, it can be used to provide human coders different 

types of reports depending on their experience or training level. This application, of course, goes 

beyond biomedical reporting and could impact beneficially on the human inspection of any corpus 

which includes documents in a range of layout formats. 

4.2 Chunk recognition 

The results of this task reached a wide variety of accuracy levels, depending on the chunk type, the 

ML algorithm and the corresponding settings. 

The recognition of chunks was consistently more successful in semi-structured reports, with 

precision and recall ranging 0.94 to 0.97 and 0.83 to 0.92 respectively, than the attempt on 

unstructured reports, where precision and recall varied from 0.64 to 0.91 and from 0.41 to 0.68 

respectively (results shown in Table 3 and represented in Figure 1). The differences are particularly 

significant for recall and these results may have been easily expected: chunks with the same type of 

information tend to be more homogeneous in semi-structured reports, so that their vector 

representation is less sparse than that of equivalent chunks in unstructured reports and their 

classification presents fewer ambiguities. In this view, layout classification may be seen as a 

preliminary feature selection layer for the subsequent ML processing steps. As such, our results 

suggest its investigation may be worth in other language processing pipelines involving ML modules, 

beyond the chunk recognition task investigated here. 
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Figure 1 – Graphical representation of the summary results of precision and recall for chunk-based 

classification, values from Table 3. Chunk recognition is always more successful in semi-structured 

reports than in unstructured reports. 

 

 

The results also show that the performance of the chunk recognition in semi-structured reports was 

less dependent on the type of chunk than in unstructured reports, with the lowest F1 scores at 94% 

and 65% of the highest respectively (see Figure 2). In particular, the classification precision of chunks 

containing diagnosis information was better than all others in unstructured reports, but the recall 

rate of receptors chunks was better, so that the F1 score of the classification of receptors chunk was 

the highest. This was partially anticipated in section 3.2.1. 

From the parameter optimisation runs (see the Supplementary Materials) it was also possible to find 

that the classifier performance on extracting diagnosis chunks was less sensitive to variation of 

parameters than that on extracting tumour size, in both sentence-based and chunk-based 

configurations.  
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Figure 2 – F1 score variation in unstructured and semi-structured sets, relative to the top value set to 1 

(nodes for semi-structured reports, receptors for unstructured). Performance of chunk recognition in 

unstructured reports is more variable than in semi-structured reports. 

 

When GATE is used for the application of a trained classifier to a set of annotated test documents, it 

is possible to examine individual documents and the detail of all the annotations. The examination of 

sample reports after the final evaluation test indicated that the results summarised in Table 3 and 

Table 4 should be considered a pessimistic evaluation, due to the subjectivity of the manual 

annotation process and to some limitations of the GATE mechanism for comparing annotations. In 

particular there were:  

• instances of missing annotations in a report containing a second chunk of the same type, 

which was correctly predicted; 

• instances of spurious predictions (false positives) of chunks which, however, contained 

relevant information, but had not been manually annotated because more comprehensive 

information was present elsewhere in the same report; 
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• cases in which a manually annotated chunk was annotated by the classifier with, for 

example, three separate chunks. In this instance one prediction was automatically scored as 

an overlap and the remaining two as spurious because the manually annotated chunk had 

already been ‘consumed’ in the partial match with the first predicted chunk. 

Additionally, we found that the lenient measures were indeed a good measure of performance, as 

the non-matching but overlapping chunks only differed by irrelevant portions, such as trailing spaces 

or full stops. This, again, was due to the slight variability in chunk annotation style even for the same 

annotator over time.  

Finally, the attempt to recognise relevant chunks in unstructured reports by training the algorithm 

on semi-structured reports (cross-training) has shown that this method produces poor results. 

Although the precision does not fall considerably (see Figure 3), the recall falls by values ranging 

from 40% to 100%. This implies that it is not possible to use cross-training to ‘shortcut’ the 

supervised learning process and reduce the required resources. 

 

Figure 3 – With the exclusion of tumour size, cross-training did not affect precision dramatically 

(compare light orange with light blue columns). However, recall was drastically reduced (deep coloured 

columns): tumour size chunks were not found at all and the recall of receptors chunks was almost halved. 
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5 Summary and further work 

Cancer registries rely on discrete coded data from healthcare systems (such as hospital discharge or 

pathology databases), which can be in a state of flux over a period of time while clinical coders 

attempt to determine the most appropriate codes, particularly for diagnosis and staging from source 

documents. The source documents for cancer registration include radiology, pathology, 

haematology reports and clinician notes.  It is reasonable to suppose that cancer registrations made 

on the basis of source documents would be faster, more complete and accurate, if ‘intelligent’ 

techniques were deployed to process the information contained in such documents. 

In this study it was shown that 

1. Machine learning can be used successfully to discriminate between semi-structured and 

unstructured surgical pathology reports. 

2. Machine learning can be used with a variable degree of success to identify named or 

otherwise relevant sections within semi-structured and unstructured reports, depending on 

the information sought in those sections. Overall, better results are produced with semi-

structured reports. Also, it is not possible to train the ML algorithm on semi-structured 

reports only and apply the resulting chunk classifier to both semi-structured and 

unstructured reports. 

Separate results6 that we have obtained when combining these ML layers with the final extraction of 

the actual information of interest, show that information extraction performance may benefit 

considerably from ML pre-processing (we found up to 19% increase in precision for the extraction of 

cancer morphology6). However this depends on the information sought and the extraction 

                                                           
6 Publication in preparation. 
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technique. In particular, while chunk recognition may have high precision in finding fragments that 

do contain relevant information, even in the lenient case (number of false positives is the same as in 

the strict case) in some cases it shows low recall. This low recall may interfere with information 

extraction methods and applications which are less affected by noise (we found 6% decrease in 

recall for the same cancer morphology extraction scenario6). Further work should also be conducted 

to establish, with more certainty, what features of different types of chunks contribute to their 

characterisation in terms of word vectors so that more successful classifiers may be designed. 

Additionally, some tests will be needed to assess the variation of the results found here over time, 

especially for the purpose of establishing how often the classifiers should be re-trained on newly 

annotated reports. Finally, applications of these techniques to aid the extraction of information from 

other healthcare textual sources, such as primary care clinical notes [6], should also be investigated. 
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