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A B S T R A C T

A concurrent multiscale method, namely the direct FE2, is developed to analyse the mechanical response of
fibre-reinforced composites with several void fractions in a nested manner, one at the macro and another one
at the microscale. The FE2 is developed through the finite element (FE) mesh at the macro scale, wherein there
is a representative volume element (RVE) at every Gauss point where the strains and stresses are evaluated.
The RVEs, located at macroscopic FE mesh, with linear boundary conditions applied to the boundary nodes,
are linked to macro-scale nodes via Multi-Point Constraints (MPCs). This procedure enables solving a single
equilibrium problem, with boundary conditions and loadings at the macro scale and provides data for all
defined RVEs. The methodology is applied to a composite laminate under transverse tension. Initially, the
method is evaluated to compare the results from the FE2 with those from analyses where the entire domain is
discretised (conventional FE full-scale modelling). The stresses obtained from the FE2 method match traditional
FE analyses but utilise a significantly lower number of finite elements, resulting in substantial computational
cost savings. It follows a parametric study of void distribution effects within the RVE. Afterwards, the stress
distribution within the RVE is assessed and then failure of the composites is predicted at the macro scale
through the stresses and strains concurrently calculated at the micro-scale.
1. Introduction

The mechanical performance of heterogeneous structures is often
challenging to model since considering microscopic features in the
macroscopic model through homogenisation techniques e.g., asymp-
totic homogenisation method [1], and several analytical and semi-
analytical methods [2] is computationally exhaustive. Multiscale meth-
ods are usually a class of approaches used to overcome this issue, where
the mechanical response of the system at the macroscale can be derived
from the microscale, which is often formulated using a representative
unit cell (RUC) or a representative volume element (RVE) [3,4]. These
can provide sufficient information about the level of heterogeneity in
the media once they consider the various constituents of the solid and
their associated mechanical behaviour [5]. Then, mechanical behaviour
can be exported or used concomitantly with the model on a larger scale,
for example, on the meso scale, where the different phases of the solid
are homogenised [6].

∗ Corresponding author.
E-mail addresses: humberto.almeida@qub.ac.uk, humberto.almeida@lut.fi (J.H.S. Almeida Jr.).

Multiscale methods to model fibre-reinforced composites can be
subdivided into two categories: sequential (hierarchical) and concur-
rent methods. In a nutshell, in sequential approaches [7], information
about the interaction between the phases (e.g., fibre, matrix) is lost
when moving from the constituent (micro) to the homogenised (macro)
level [8]. The main issue is when the interaction between phases
needs to be carefully considered, given that it can greatly influence the
damage processes of the composite system [9], especially when strain
localisation is established. Concurrent methods, nonetheless, continu-
ously store information regarding both micro and macro levels in the
same ‘‘global’’ model since they exchange information with each other
at every step of the global analysis. The key advantage of concurrent
methods is the ‘live’ consideration of the interaction between the
different phases of the media since every step of the analysis contains
current information from both scales [8,10].
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A suitable concurrent multiscale method to simulate the mechanical
behaviour of fibre-reinforced composites is the FE2, which consists
f two nested continuum models requiring constitutive assumptions
nly at the local level (RVE) [11,12]. The FE2 method requires the
imultaneous computation of the mechanical response of the media
n two scales, that is, the homogenised structure on the macroscale
eceives information from the underlying heterogeneous system on the
icroscale employing an RVE, where strains and stresses are computed

t every Gauss point [10].
The FE2 method is not widely applied to simulate the mechani-

al behaviour of composites, as can be seen in the review by Raju
t al. [13]. For example, Feyel [14] used the FE2 to simulate the elas-
oviscoplastic behaviour of SiC/Ti composites. Nezamabadi et al. [11]
odelled the compressive failure of composites using the FE2 method.
ezamabadi et al. [15] also used the FE2 method to simulate the

nstability phenomena in composite materials, allowing buckling to
ccur at both macroscopic and microscopic length scales. Tan et al. [16]
howed how the separate FE models from the two scales that are typical
f FE2 analyses can be merged into one global approach. Tikarrouchine
t al. [17] proposed a FE2 methodology to predict the non-linear
acroscopic response of composite structures with a time-dependent

esponse. Herwig and Wagner [18] applied the FE2 method to model
elamination in composites. Zhi et al. [19] solved dynamic problems
n composites through the Direct FE2 method. Later, Zhi et al. [20] ex-
ended their framework toward a micromorphic continuum capable of
apturing the deformation of composites with soft inclusions. They [21]
lso used the same approach to solve the thermo-viscoelastic behaviour
f the curing kinetics of laminated composites. Koyanagi et al. [22]
sed the same method to simulate the strain-rate dependence of com-
osite cylinders in compression. Raju et al. [23] analysed the nonlinear
hear and damage behaviour of angle-ply composite laminates using a
irect FE2 approach. This state-of-the-art reveals that the FE2 method

s effective in the modelling of composite structures. However, none of
hese studies considers defects in the composite system in their models.

In this context, this paper aims to bridge the macro and micro scales
n fibre-reinforced composites through the Direct FE2 as an alternative

to both mono-scale and sequential multiscale models. For the first
time, both the type and the content of voids are assessed at the micro
level through RVEs, in which their kinematics (stresses and strains) are
locally evaluated at every Gauss point (GP) of the macro FE mesh, and
are concurrently exchanged with the homogenised model at the macro
scale, where the loads (transverse tension) and boundary conditions
(BCs) are applied. The RVEs are located at every GP of the macro finite
element (FE) mesh, thus characterising the FE2 global model.

2. The formulation

2.1. The approach

The concept of RVE is used to describe the heterogeneous media.
A periodic elastic body is considered, and the problem is formulated
in the bounded subset 𝛺 ∈ 𝑅2. Two scales are used to represent the
media, one at the micro level (RVE) and one at the macro level. The
nomenclature adopted follows [1,4,24]. The micro and macro domains
are defined by

𝒀 = {𝒚 =
(

𝑦1, 𝑦2
)

∈ R2 ∶ 0 < 𝑦𝑖 < 𝑙𝑖, 𝑖 = 1, 2}, (1)

and

𝛺 = {𝒙 =
(

𝑥1, 𝑥2
)

∈ R2 ∶ 0 < 𝑥𝑖 < 𝐿𝑖, 𝑖 = 1, 2}, (2)

where 𝒚 and 𝒙 represent the coordinates at the microscale and macro-
scale, respectively (𝒍 and 𝑳 are positive numbers). Both the microscale
and macroscale domains are discretised by finite elements, such that

𝑌 =
𝑛𝑒
⨄

𝑌 (𝑒), (3)
2

𝑒=1
and

𝛺 =
𝑁𝑒
⨄

𝑒=1
𝛺(𝑒), (4)

where 𝑛𝑒 and 𝑁𝑒 are the number of elements used to discretise the RVE
nd the macroscopic domain, respectively.

Ideally, in multiscale problems, there is a clear separation between
he scales defined for the domains, such that

= 𝒙
𝜀
, (5)

where 𝜀 ≪ 1 means that the microscopic domain is significantly smaller
than the macroscopic one. However, achieving a distinct separation
between these scales is not always feasible. Here, the microscale is
regarded as a single point within the macroscale domain. The effective
average properties, determined through analyses on RVEs, are applied
to the Gauss points of the FE mesh within the macroscale domain. This
becomes true in a limit analysis [25]. For cases where this limit does
not apply, we can consider multiscale methods as approximations.

In the approach herein considered, loads and boundary conditions
are directly applied to the macroscopic domain. Fig. 1 presents a
schematic representation of the virtual tensile test under consideration.

For the macroscopic domain 𝛺, the Dirichlet and Neumann bound-
ary conditions are applied [26] on the boundaries 𝜕𝛺𝑢 and 𝜕𝛺𝑓 ,
espectively, where

= 𝜕𝛺𝑢𝑖 ∪ 𝜕𝛺𝑓𝑖 ; 𝜕𝛺𝑢𝑖 ∩ 𝜕𝛺𝑓𝑖 = ∅ 𝑖 = 1, 2. (6)

For the microscopic domain 𝑌 , we employ an idealised model in
hich the medium is represented by an RVE consisting of a centrally
ositioned fibre surrounded by the matrix. In the analyses, we also
onsider defects within the RVE, which will be represented by voids
ithin the matrix.

The direct FE2 model is constructed with the assumption that the
VEs are positioned at all Gauss points of the macroscopic FE mesh,
nder prescribed BCs and considering the energy balance between
xternal and internal work within the medium. The macroscopic FE
esh serves as a reference for placing the RVEs and applying BCs. The

esulting equilibrium outcomes will show the fields of interest across all
he RVEs defined within the direct FE2 model. Therefore, this approach
nvolves performing a multiscale concurrent analysis in a single step,
here both the macroscopic and microscopic domains are integrated

nto a unified analysis.

.2. The direct FE2 formulation

Let 𝛿𝒖 be a kinematically admissible virtual displacement. The
rinciple of virtual work asserts that an elastic body is in equilibrium if
nd only if the external virtual work equals the internal virtual work,
s

𝑒𝑥𝑡 = 𝑊𝑖𝑛𝑡. (7)

The external virtual work is defined as

𝑒𝑥𝑡 = ∫𝛺
𝑏𝑖𝛿𝑢𝑖𝑑𝛺 + ∫𝛤

𝑡𝑖𝛿𝑢𝑖𝑑𝛤 , (8)

here 𝝈 is the stress tensor, 𝒃 are the body forces, and 𝒕 is the traction
ector. The internal virtual work is defined as

𝑖𝑛𝑡 = ∫𝛺
𝜎𝑖𝑗𝛿𝑢𝑖,𝑗𝑑𝛺. (9)

Considering a quadrature scheme for evaluating the integrals, one
an write the expression for the internal virtual work, Eq. (9), as

𝑖𝑛𝑡 =
𝑁𝑒
∑

𝑒=1

𝑃
∑

𝑚=1

(

𝜎(𝑒)(𝑚)𝑖𝑗 𝛿𝑢(𝑒)(𝑚)𝑖,𝑗

)

𝑊𝑚𝐽𝑚, (10)

here 𝑃 is the number of quadrature points used in the integration; 𝑊𝑚
nd 𝐽 are, respectively, the quadrature weight and the determinant
𝑚
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Fig. 1. Virtual transverse tensile test on a fibre-reinforced laminate, with the adopted
definition of both macroscopic and microscopic domains under consideration.

of the Jacobian matrix, which are associated with the 𝑚th quadrature
point.

In multiscale problems, it is considered that the stresses at indi-
vidual Gauss points within the macroscopic domain are obtained as
the averages of the stresses calculated within the corresponding RVEs.
Consequently, we assume that Eq. (10) can be formulated as

𝑊𝑖𝑛𝑡 =
𝑁𝑒
∑

𝑒=1

𝑃
∑

𝑚=1
⟨𝜎̃𝑖𝑗⟩

(𝑒)(𝑚)
⟨𝛿𝑢̃𝑖,𝑗⟩

(𝑒)(𝑚)𝑊𝑚𝐽𝑚, (11)

where ∙̃ represents a field dependent on the microscopic scale, and the
average operator ⟨∙⟩ is defined as

⟨∙⟩ = 1
|𝑌 | ∫𝑌

∙ 𝑑𝑌 , (12)

where |𝑌 | is the volume of the RVE.
Considering the Hill–Mandel condition for homogenisation given by

⟨𝜎̃𝑖𝑗⟩⟨𝛿𝑢̃𝑖,𝑗⟩ = ⟨𝛿𝜎̃𝑖𝑗 𝑢̃𝑖,𝑗⟩ (13)

one can write Eq. (11), considering Eq. (12), as

𝑊𝑖𝑛𝑡 =
𝑁𝑒
∑

𝑒=1

𝑃
∑

𝑚=1

𝑊𝑚𝐽𝑚
|𝑌 | ∫𝑌

𝜎̃(𝑒)(𝑚)𝑖𝑗 𝛿𝑢̃(𝑒)(𝑚)𝑖,𝑗 𝑑𝑌 , (14)

which is an expression for the virtual internal work within the macro-
scopic domain, expressed concerning the fields within the microscopic
domain.

It is worth noting that if we directly sum the internal work of all
the RVEs, we get

𝑊̃𝑖𝑛𝑡 =
𝑁𝑒
∑

𝑒=1

𝑃
∑

𝑚=1

(

∫𝑌
𝜎̃(𝑒)(𝑚)𝑖𝑗 𝛿𝑢̃(𝑒)(𝑚)𝑖,𝑗 𝑑𝑌

)

. (15)

By comparing Eqs. (14) and (15), we can see that the virtual internal
work in the macroscopic domain and the virtual internal work in the
microscopic domain differ by a scale factor equal to

𝑊̃ =
𝑊𝑚𝐽𝑚 (16)
3

|𝑌 |
which can be seen as a scaling factor to the problem. On a closer
examination of Eq. (16), one can observe that it represents a connection
between the volume of the macroscale (associated with the Gauss Point
of a specific element of the FE mesh) and the volume of the correspond-
ing RVE. For 2D problems, this relation is satisfied by multiplying the
thickness of the RVE by the factor 𝑊̃ . Therefore, the energy balance
given in Eq. (7) with the external work Eq. (8) and the internal work
Eq. (14), can be written as

∫𝛺
𝑏𝑖𝛿𝑢𝑖𝑑𝛺 + ∫𝛤

𝑡𝑖𝛿𝑢𝑖𝑑𝛤 =
𝑁𝑒
∑

𝑒=1

𝑃
∑

𝑚=1

𝑊𝑚𝐽𝑚
|𝑌 | ∫𝑌

𝜎̃(𝑒)(𝑚)𝑖𝑗 𝛿𝑢̃(𝑒)(𝑚)𝑖,𝑗 𝑑𝑌 . (17)

Noteworthy, the left-hand side (LHS) of Eq. (17) depends exclusively
on the macroscale domain, while the right-hand side (RHS) depends
only on the microscale domain. This equation deduced from the the-
ory provides a clear connection between the external work in the
macroscopic mesh and the internal work within the RVEs.

The Eq. (17) can be reformulated in the standard finite element
form. After some algebraic manipulations, and considering no body
forces, it can be expressed as

𝐾̃𝑖𝑗𝑑𝑗𝛿𝑑𝑖 = 𝑓𝑘𝛿𝑑𝑘, (18)

where 𝒅̃ represents the nodal displacement field within the RVEs, 𝛿𝒅̃
and 𝛿𝒅 are the virtual displacement fields at the microscopic and
macroscopic scales, respectively. Moreover, 𝑲̃ is the stiffness matrix,
which is constructed by assembling the contributions from all the RVEs
within the FE2 model.

In Eq. (18), both macroscopic and microscopic fields are depicted.
In first-order homogenisation problems, it is possible to establish a
linear relationship between the nodal macroscopic and microscopic
displacement fields, as

𝑑𝑘 = 𝐿𝑖𝑘𝑑𝑖, (19)

where 𝑳 is a linear operator that establishes a linear relationship
between the displacement field at the boundaries of the RVE and the
nodal displacement field of the macroscopic element.

Taking into account Eq. (19) and recognising that virtual displace-
ments can be arbitrary, we can rewrite the equilibrium problem of
Eq. (18) as

𝐾̃𝑖𝑗𝑑𝑖 = 𝐿𝑖𝑘𝑓𝑘. (20)

The Eq. (20) demonstrates how both scales are merged into a single
simulation using the direct FE2 method. The stiffness matrix of the
RVEs is scaled by a factor 𝑊̃ (as per Eq. (16)), and the nodal forces of
the problem are mapped between the micro and macro fields through
the matrix 𝑳, Eq. (19). The explicit derivation of the matrix 𝑳 is
unnecessary because most finite element software, such as Abaqus,
supports linear Multiple-point constraints (MPCs), which enable linear
constraints between nodes. In this context, the displacement fields
on the boundary of every RVE are interpolated with the macroscale
displacement fields using macroscale shape functions. This BC applied
to the RVE is referred to as the Voigt-Taylor model.

2.3. The procedure

Fig. 2 shows a flowchart of the developed procedure to solve the
equilibrium problem. The FE software Abaqus® is utilised for pre-
processing, post-processing, and solving the equilibrium problem, while
Python language is employed to position the RVEs and automate the
application of BCs at the microscale.

The procedure starts with the definition of the macroscale model,
discretising the geometry and generation of the FE mesh for the
macroscale model by using quadrilateral (S4 in Abaqus reference) finite
elements. After the element type is defined, it then determines the
number of Gauss points within a single macroscopic element and,
consequently, the number of RVEs within the direct FE2 model. When
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Fig. 2. Flowchart of the entire procedure.
nodes within the macroscopic elements are linearly interpolated with
reduced integration, a single Gauss point is located at the natural
coordinates 𝜉 = 0.0 and 𝜂 = 0.0. In contrast, if the same element is
fully integrated, there are four Gauss points at the natural coordinates
𝜉 = ±

√

3∕3 and 𝜂 = ±
√

3∕3.
That information is exported as an input file. Using the information

egarding the macroscale FE mesh, a Python script is developed to
ssign reference points (RP) to all nodal points of the macroscale. In
ddition, a set of coordinates is generated to place the RVEs within the
irect FE2 model. The centre of the RVE coincides with the Gauss points
f the macroscale model. It is worth mentioning that the thickness of
he RVE is multiplied by a scaling factor to satisfy Eq. (16).

To run the direct FE2 model, a Python script is executed, which
consists of placing one RVE at every Gauss point (GP) of the macroscale
FE mesh. Fig. 3 illustrates an example of how a macroscale finite
element is represented in its direct FE2 RVE. In this instance, the
macroscale element employs linear interpolation and is fully integrated,
resulting in four GPs, as shown in Fig. 3(a). In the microscale model,
the centres of the RVEs are positioned on the GPs of the macroscale
element, as depicted schematically in Fig. 3(b). The size, geometry, and
materials of the RVEs can be adjusted based on the specific problem
under consideration.

Another Python script is developed to apply BCs to the micro
model. This involves the application of MPCs, which interpolate the
4

Fig. 3. (a) Representation of a single finite element at the macro scale with its
associated Gauss points (GP) and (b) the direct FE2 scheme showing the RP and the
placement of RVEs on the Gauss points of a macro scale finite element.

displacement field at the nodes on the boundaries of the RVEs with
the displacement field of the macro scale model (Eq. (19)). Finally, the
solution procedure is carried out by considering the loads and boundary
conditions at the macroscale, resulting in the fields of interest in each
RVE defined in the model. After assembling the FE2 model, the problem
can be approached as a standard FE problem. Thus, if a nonlinear
problem is considered, the convergence is addressed in the same way
as in a typical finite element analysis.

Lastly, the direct scale transition through the application of MPCs
enables a unified analysis that incorporates both micro and macro
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Fig. 4. Domains considered for the comparison between the methods: (a) Full domain,
(b) direct FE2 domain and RVEs for (c) homogeneous and (d) fibre-reinforced domains.

scales within a single model. This approach allows for the application
of different load cases and boundary conditions directly to the macro
mesh. Simultaneously, different material models can be defined and
applied directly to the RVEs.

3. Results and discussion

This section is divided into three parts:

• In Section 3.1, we validate the herein implemented direct FE2

method (see Fig. 2) against a full FE analysis, analysing both
homogeneous (Section 3.1.1) and heterogeneous (Section 3.1.2)
mediums.

• In Section 3.2, we focus on the heterogeneous medium and
demonstrate how the direct FE2 method can be applied to analyse
specific regions within the macroscale domain, assuming known
BCs.

• In Section 3.3, we analyse a virtual transverse tensile test to assess
the influence of void fractions on the microscale.

In all cases, a linear elastic regime is adopted, and both the macro
and micro domains are discretised by shell elements with linear inter-
polation. Additionally, the base materials in the analyses are considered
homogeneous and isotropic.

3.1. The validation

For the validation of the implemented method, we consider a simple
square plate with unitary dimensions, clamped on one side and sub-
jected to a prescribed unitary displacement field on the other side, as
shown in Fig. 4(a), which represents a portion of the coupon to be
tested. For illustration purposes, we assume the macroscopic domain
(Fig. 4(a)) to be discretised by a single element with linear interpo-
lation and fully integrated. In this case, four GPs represent the entire
macroscopic domain, and consequently, four RVEs are used to represent
the direct FE2 model, as depicted in Fig. 4(b). If a reduced integration
scheme is adopted for the macro scale element, only one single GP is
used per element, and thus only a single RVE is used to depict the part
related to the direct FE2 model. Additionally, we consider an isotropic
and homogeneous RVE, as shown in Fig. 4(c), and a heterogeneous one,
as shown in Fig. 4(d), representing a fibre-reinforced composite.

In all cases, linear-elastic behaviour is assumed, and the base materi-
als are considered homogeneous. The interpolation between the macro
scale nodal displacements (RP in the direct FE2 model) and the RVE
boundary nodal displacements is linear, and shell elements are used in
all analyses.
5

Table 1
Nomenclature adopted in the analyses for the homogeneous case, macro scale
discretisation and geometrical parameters for the RVEs.

Nomenclature Macro
Elements

RVE
area [mm2]

RVE
thickness [mm]

RVE_1
1 0.3 × 0.3
4 0.15 × 0.15 2.776
16 0.075 × 0.075

RVE_2
1 0.1 × 0.1
4 0.05 × 0.05 25
16 0.025 × 0.025

RVE_3
1 0.05 × 0.05
4 0.025 × 0.25 100
16 0.0125 × 0.0125

3.1.1. Homogeneous medium
For the homogeneous medium, the macroscopic domain is dis-

cretised by one, four, and sixteen quadrilateral elements with full
integration. The thickness of the macroscopic domain is unity, and a
unitary prescribed displacement in the 𝑥1 direction is applied to the
right end of the domain. Additionally, three different RVE areas are
considered in the analyses. The nomenclature adopted is shown in
Table 1, alongside the macroscopic discretisation and the RVE areas
and associated thicknesses. For each macroscopic element, four RVEs
are used in the direct FE2 model, and in every case, the RVEs are
discretised by 10 × 10 shell finite elements (S4 element - Abaqus
nomenclature). The elastic properties adopted in the analyses are E =
200 GPa and 𝜈 = 0.3.

Fig. 5 shows the comparison for the displacement field (absolute)
and Fig. 6 shows the comparison for the von Mises stress field for all
cases in Table 1. In the displacement field, both the macro scale models
and their direct FE2 equivalents yield identical values when considering
the same physical region within the domain. Similar observations apply
to the stress field, although some numerical oscillations are noticeable
in the direct FE2 models. These oscillations are negligible and may
be attributed to the increased computational load resulting from the
greater number of elements in the direct FE2 mesh and also due to
the additional equations in the model resulting from the application of
MPCs. A crucial aspect to highlight is that the scaling factor applied
to the thicknesses of the RVEs ensures consistent responses for all
analyses. Hence, this aspect of the method can be strategically used
to show and analyse specific regions within the domain, as the RVE
area can be adjusted to suit the characteristics of the macroscopic
domain defined by the physical problem. Then, for this simple case, the
equivalence between a full FE model and the direct FE2 equivalents is
proven to be achieved.

3.1.2. Heterogeneous medium
The same macroscopic model (Fig. 4(a)) is used to analyse a het-

erogeneous medium. The considered RVE is depicted in Fig. 4(d),
representing a fibre-reinforced composite. Our objective is to compare
the resulting fields within the same region of the domain for both a full
FE analysis and its equivalent direct FE2 model.

To facilitate a simplified comparison between the approaches, sev-
eral assumptions are made:

(i) The fibres are regularly distributed within the domain (equally
spaced and face-centred RVE);

(ii) One fibre is positioned in the centre of the macroscopic domain;
and

(iii) Reduced integration is applied to the macroscopic elements
(resulting in only one RVE per macroscopic element positioned
at its centre).

As a result, two scenarios are considered for the macroscopic do-
main:
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Fig. 5. Comparison of displacement fields [mm] between the macro scale models and the direct FE2 considering different geometric parameters of the RVEs.
Fig. 6. Comparison of von Mises stress fields [MPa] between the macro scale models and the FE2 considering different geometrical parameters for the RVEs.
(i) 25 fibres; and
(ii) 81 fibres.

These values were selected to ensure that the physical position and
size of the fibres are the same in both the direct FE2 and the full FE
model. In every case, the direct FE2 model is selected so that the central
fibre in the full model and the direct FE2 models coincide. Therefore,
for the 25-fibre model, two direct FE2 models are considered, contain-
ing 25 and 1 RVEs, respectively. For the 81-fibre model, three direct
FE2 models are considered, containing 81, 9, and 1 RVEs, respectively.
The macroscopic models for the 25- and 81-fibre domains, and the
direct FE2 parts, are shown in Figs. 7 and 8, respectively. For each
case, the analysed region is located in the central fibres of the domain,
specifically R1 for the 25-fibre case and R2 for the 81-fibre case.
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Table 2 summarises the used nomenclature, the number of fibres
and RVEs used in the analyses, and the geometric parameters for the
RVEs. The elastic properties assumed in the analyses are 𝐸𝑚 = 3.35 GPa,
𝜈𝑚 = 0.35 for the matrix and 𝐸𝑓 = 230 GPa, 𝜈𝑓 = 0.2 for the fibres. The
fibre volume fraction is 𝑉𝑓 = 0.55, determined experimentally through
a 𝜇-CT scan. This value represents the lower bound observed in the
experiments. In both Full models and FE2 models, the approximate
element size used is 0.003 mm to ensure that equivalent regions in both
models are discretised similarly.

Figs. 9 and 10 present the results for the cases presented in Table 2,
showing the maximum principal stress and the maximum principal
strain. For the 25-fibre model, we observe maximum relative errors
when comparing the full FE model to the direct FE2 models of 1.46% for
both maximum and minimum stresses, and 4.5% for both the maximum
and minimum strains. In the case of the 81-fibre model, the errors are
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Fig. 7. Depiction of the macroscale model with 25 fibres and the FE2 counterparts with
25 and 1 fibres, along with the region of interest in the central fibre of the domain.

Table 2
Nomenclature adopted in the analyses for the heterogeneous case, total number of
fibres in the macro scale domains, number of RVEs used in the direct FE2 analyses,
and geometrical parameters for the RVEs.

Total number
of fibres

FE2 number
of RVEs

RVE
area [mm2]

RVE
thickness [mm]

25 fibres 25 0.20 × 0.20 1
1 25

81 fibres
81

0.11 × 0.11
1

9 9
1 81

3.86% for the maximum stress, 3.85% for the minimum stress, 3.2%
for the maximum strain, and 3.0% for the minimum strain.

In all scenarios, both the qualitative and quantitative results closely
align when comparing both approaches, demonstrating the potential
of the method. An interesting aspect of the direct FE2 approach is
that only the RVEs are discretised by finite elements. Consequently,
the number of RVEs employed significantly impacts the total number
of elements in the FE mesh and, hence, the processing time for the
analysis. For the 25-fibre and 81-fibre models, the full FE analyses are
discretised by 50,918 and 303,935 elements, respectively, whereas the
direct FE2 equivalents, with a single RVE, use only 2875 elements. The
substantial difference in the number of used elements highlights the
efficiency of the method, particularly when considering the relative
errors in the stress and strain fields within a specific region of the
domain under investigation.

3.2. The region of interest (RoI)

A virtual tensile test of a fibre-reinforced material is considered. In
this case, we aim to demonstrate the applicability of the direct FE2

method, considering different BCs to analyse specific regions of the
domain. This approach allows for significant time savings in analyses.
Moreover, we explore the impact of varying the RVE area on the results.

The domain considered for the virtual test is depicted in Fig. 11,
where a prescribed displacement field is applied to both ends of the
domain. For direct FE2 analyses, three equivalent macroscopic domains
are considered, as also illustrated in Fig. 11. In these cases, a null pre-
scribed displacement field in the 𝑥1 direction is applied to the left end of
the domain to account for symmetry, while a prescribed displacement
field at the right end of the domain is obtained by linearly interpolating
the displacement field of the complete domain (𝑢0). Table 3 presents the
geometric parameters and the prescribed displacement fields used in
the macroscopic domains. For the macro scale, a reduced integration
scheme is employed, resulting in one RVE per macroscopic element,
placed at its centre. In all cases, a unit thickness is adopted for the
macroscopic domain.

The RVE consists of a fibre-reinforced composite with a centred
fibre. We consider three different RVE sizes, with areas and thicknesses
adopted to satisfy Eq. (16) detailed in Table 4. The same FE mesh is
7

Table 3
Geometrical parameters, finite element mesh, and boundary conditions adopted for the
macro scale domains.

Area [mm2] Discretisation Prescribed
displacement

Domain_1 50 × 10 50 × 10 𝑢1 = 𝑢0
Domain_2 20 × 10 20 × 10 𝑢2 = 2𝑢0∕5
Domain_3 10 × 10 10 × 10 𝑢3 = 𝑢0∕5

Table 4
Geometrical parameters of the RVEs considered in the analyses.

Area [mm2] Thickness [mm]

RVE_1 0.5 × 0.5 4
RVE_2 0.2 × 0.2 25
RVE_3 0.1 × 0.1 100

utilised across all analyses, comprising 191 shell elements with full
integration (S4 element - Abaqus nomenclature) per RVE. The thickness
of the RVE is relative to the thickness of the macro scale domain. The
elastic properties of the matrix are 𝐸𝑚 = 3.35 GPa, 𝜈𝑚 = 0.35, and of
the fibre 𝐸𝑓 = 230 GPa, 𝜈𝑓 = 0.2. The 𝑉𝑓 of 55% remains the same as
in the previous analyses.

The direct FE2 models for each domain are presented in Fig. 12,
illustrating the discretised fibres. The direct FE2 models are discre-
tised (from top to bottom) with 50 ×10, 20× 10, and 10 × 10 RVEs,
respectively. Furthermore, two RoIs, namely R1 and R2, representing
the same physical location on all three models, are selected to analyse
the response.

The maximum principal stress fields for all analysed cases in regions
R1 and R2 are shown in Figs. 13 and 14. By analysing the stress
fields for the three different domains while using the same RVE, both
qualitative and quantitative comparisons among the three domains are
highly similar. The relative error observed for the maximum stress in
RoI 1 is 0.38% for RVE_1, 0.37% for RVE_2, and in RoI 2, it is 0.28%
for RVE_1 and 0.26% for RVE_2. Notably, in both regions, the observed
response for RVE_3 remains identical, regardless of the domain under
consideration.

Since the interpolation of the displacement field on the RVE bound-
ary is linear concerning the nodes of the macroscopic FE mesh, it is
anticipated that as the area of the RVE decreases, and the displacement
field converges more closely to a constant displacement field, the
response within the RVEs tends to a limit. In addition, it is worth noting
that the problem exhibits symmetry in the 𝑦 direction, as no constraints
are applied to the ends of the domain in this dimension.

For RVE_3, this interpolation does not significantly impact either the
results or the symmetry of the results. However, for the other RVEs,
some minor effects on the results and symmetry are observed. Never-
theless, these deviations are minimal and have a negligible impact on
the overall results. In these analyses, due to the utilisation of numerous
macroscopic finite elements, all displacement fields on the boundaries
of the RVEs are relatively close, regardless of their size. Furthermore,
the stress fields between the RVEs exhibit a high degree of similarity,
demonstrating the effectiveness of applying the scaling factor to the
thickness of the RVEs in this scenario.

The analyses demonstrate the feasibility of employing the method
in a computationally efficient manner by replacing a portion of the
domain with equivalent BCs. In the latter case, it becomes possi-
ble to designate specific regions where macroscopic elements with
homogenised mechanical properties could replace areas where the
micromechanical response of the medium is not of interest.

3.3. The influence of voids

We consider a virtual transverse tensile test to investigate the influ-
ence of voids on the composites on the micro scale [27–29]. The macro
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Fig. 8. Depiction of the macroscale model with 81 fibres and the FE2 counterparts with 81, 9, and 1 fibres, along with the region of interest in the central fibre of the domain.
Fig. 9. Comparison of the maximum principal stress and strain fields within the central
fibre of the domain, which is discretised with 25 fibres, considering a full FE model,
direct FE2 model with 25 RVEs, and FE2 model with 1 RVE.

scale domain has an area of 100 × 10 mm2 and is clamped on the left
end, while a distributed load is applied to the right end. The macro
scale domain is discretised using 20 × 2 macro scale finite elements.
Additionally, a reduced integration scheme is adopted for the macro
scale elements, resulting in one RVE associated with each macro scale
element. Therefore, the direct FE2 model consists of a total of 40 RVEs.
While the response is obtained in all RVEs within the domain, we focus
our analysis on two RoI: R1 and R2.

The macro scale domain with the assumed BCs, the macro scale FE
mesh, and the equivalent direct FE2 model, depicting the two RoIs for
the analyses, are shown in Fig. 15. To investigate how voids at the
microscale impact stress distribution, we are considering six distinct
void distributions within the RVEs. In the first and second RVEs,
ellipse-shaped voids are placed in the most and least stressed areas of
intact RVEs analysed in Section 3.2. In the remaining RVEs, random
distributions of four circular voids are considered. Fig. 16 depicts the
six RVEs containing the void pattern distributions.

Within each RVE, we examine four different volume fractions (ex-
perimentally determined using 𝜇-CT scans, with the upper bound set
at approximately the maximum value observed experimentally [30]):
𝑣𝑣 = 1%, 2%, 3%, and 4%. In all scenarios, the damage pattern remains
consistent, meaning its position remains unchanged, and only the 𝑣𝑣
varies. Consequently, the centres of both ellipses and circles remain
in their original positions. The area of the RVEs in all analyses is
8

Fig. 10. Comparison of the maximum principal stress and strain fields within the
central fibre of the domain, which is discretised with 81 fibres, considering a full
FE model, direct FE2 model with 81 RVEs, direct FE2 model with 9 RVEs, and FE2

model with 1 RVE.

1 × 1 mm2, which results in a relative thickness of the RVEs concerning
the macro scale thickness of 25 to satisfy Eq. (16). The approximate
global element size used for the finite element discretisation of the
RVEs is 0.02 mm, resulting in an FE mesh of approximately 3000
elements per RVE in the direct FE2 model. The objective is to maintain
a consistent size for each finite element used in the discretisation to
minimise stress concentration effects between different analyses and
ensure an accurate interpretation of the results.

The elastic properties considered for the fibres are 𝐸𝑓 = 230 GPa
and 𝜈𝑓 = 0.2, whereas for the epoxy matrix are 𝐸𝑚 = 2.57 GPa and 𝜈𝑚 =
0.35. To represent voids, we use finite elements with elastic properties
significantly smaller in magnitude compared to the other components
in such a way that they do not contribute to the mechanical behaviour
of the component.

In addition, we consider a failure criterion for the matrix. As demon-
strated in [31], the epoxy matrix follows a linear elastic behaviour
until it reaches a specific maximum stress threshold, beyond which
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Fig. 11. Virtual tensile test of a fibre-reinforced composite with several boundary conditions and geometric parameters to analyse specific regions of interest within the domain.
Fig. 12. Direct FE2 model depicting the fibre distribution and the regions analysed in
each case.

it undergoes a sudden brittle failure. Consequently, we designate the
maximum admissible stress for the matrix as 𝜎𝑎𝑑𝑚 = 41.4 MPa, and
the maximum stress failure criterion is used in the analyses. The micro
scale stress is computed based on the apparent stress applied in the
macroscopic domain, which we define here as the total force applied
to the macro scale divided by its cross-section.

Figs. 17, 18 show the distribution of the maximum principal stress
for all considered RVEs in the regions of interest R1 and R2, respec-
tively, under apparent stress of 10 MPa. When comparing the different
RVEs, it becomes evident that the voids inserted in RVE_1 have the
most significant impact on the maximum stress observed in the RoIs.
In this case, a maximum stress of 54 MPa is observed in R1, for a
𝑣𝑣 of 4%, which is approximately five times greater than the applied
apparent stress. This behaviour is somewhat expected since the voids
were strategically located in the most stressed areas of the domain,
which are where the highest stresses are observed in the intact RVE.
Similarly, the lowest influence of voids on the maximum stresses is
observed in the RVE_2, with the highest value of 19 MPa in R2 for the
case with a 𝑣𝑣 of 4%. In this case, the behaviour is the opposite of
what was observed in RVE_1, as the voids are placed in the less stressed
regions of an intact RVE.

The remaining analysed RVEs show intermediate responses regard-
ing the impact of voids on the maximum stress. In RVE_3 and RVE_4,
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for example, some voids make contact with either fibres or boundaries
of the RVE. In contrast, in RVE_5 and RVE_6, all voids are fully em-
bedded into the matrix area. Hence, more severe stress concentrations
are observed for RVE_3 and RVE_4 when comparing them to RVE_5
and RVE_6, thus leading to higher maximum stresses in the analysed
regions.

The maximum stresses for RVE_3 and RVE_4 exhibit a notable simi-
larity, where the highest observed stress reaches 31.0 MPa for RVE_3 in
R2 for a 𝑣𝑣 of 4%. Likewise, a similar pattern emerges between RVE_5
and RVE_6, with the maximum stress being of 21.5 MPa for RVE_5 in
R1 for a 𝑣𝑣 of 4%.

When we compare the same RVEs with different void volume frac-
tions, we can see that RVE_1 is the most significantly influenced. There
is a substantial difference of 32.9% (in R2) in the maximum principal
stress when we compare RVEs with void volume fractions of 1% and
4%. In contrast, RVE_2 is the least affected, with a minimal difference of
only 2.42% (in R1) in the maximum principal stress between RVEs with
void fractions of 1% and 4%. For all the other cases, the differences
between RVEs with 1% and 4% of voids range from 8.2% to 12.1%,
respectively.

Fig. 19 provides a summarised overview of the results obtained in
these analyses. The variations in the maximum principal stress across
the entire direct FE2 model are presented, representing the highest
stress observed within every RVE used in the discretisation of the
macroscopic FE model. Fig. 19 illustrates how this maximum stress
changes in response to the apparent stress applied to the macroscopic
domain. Furthermore, the maximum admissible stress adopted for the
material is also shown, enabling us to determine the threshold of
apparent stress applied to the macro domain that leads to the initial
failure in the matrix.

4. Conclusion

In this study, we implemented a concurrent multiscale modelling
method known as the direct FE2 approach to analyse the microme-
chanical behaviour of a heterogeneous medium. The problem considers
domains at the macro and micro scales. By equating the virtual internal
and external works, the equilibrium relationship can be derived based
on the contributions of the stiffnesses from all RVEs within the domain.
To ensure energy balance, a scaling factor is introduced. Furthermore,
the RVEs are positioned at the Gauss points of the macroscopic FE
mesh, with linear BCs applied to the nodes along the RVE boundaries.
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Fig. 13. Comparison of the maximum principal stress field in RoI 1 (R1) across the three considered domains using three different RVEs. All results in MPa.
Fig. 14. Comparison of the maximum principal stress field in RoI 2 (R2) across the three considered domains using three different RVEs. All results in MPa.
Fig. 15. Representation of the macroscopic domain with the boundary conditions,
macroscopic FE mesh, and direct FE2 model showing the RoIs R1 and R2.
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These BCs are linked to the macro scale nodes through MPCs. This
approach allows us to solve only one equilibrium problem, with BCs
and loads applied only at the macro scale.

The validation was performed by comparing the results obtained us-
ing the direct FE2 method with those obtained from a conventional FE
analysis, where all domain heterogeneities are discretised and included
in the calculations. For the initial validation, we analysed a simple
plate made of homogeneous material, varying the geometric parameters
of the RVEs and using different macroscopic FE meshes. The analyses
revealed that both methods yield identical stress and displacement
fields, confirming their equivalence. For the second validation, we
considered a plate with a regular distribution of fibres. In this case,
two macroscopic domains were considered, with the first containing
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Fig. 16. Fibre-centred RVEs with various void patterns within the matrix, highlighted in dark red. In the first two RVEs, ellipse-shaped voids are located in the regions where the
maximum and minimum stresses were observed in the intact model, respectively. For the remaining RVEs, four circular-shaped voids are randomly positioned within the matrix.

Fig. 17. Maximum principal stress distribution on the R1 region of the macroscopic domain, considering the 6 different damage profiles in the RVEs and 4 different volume
fractions of voids. All values in MPa.
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Fig. 18. Maximum principal stress distribution on the R2 region of the macroscopic domain, considering the 6 different profiles in the RVEs for the four different void volume
fractions. All values in MPa.
25 fibres and the second with 81. Several models for the direct FE2

approach were considered and compared with the full FE models.
The relative error between the maximum stresses obtained was 1.46%
for the case with 25 fibres and 3.86% with 81 fibres. Moreover, the
computational cost was significantly lower than the full FE model.

Through a virtual transverse tensile test on a fibre-reinforced com-
posite at several RoIs, we concluded that the direct FE2 method proved
to be a powerful analysis tool because the microscale response can be
obtained directly as a function of the macro scale in a single-step. Fur-
thermore, a parametric study has been conducted to evaluate the effect
of voids within the matrix on the stress distribution in the microscale.
Six different void patterns were investigated, each with four different
volume fractions and distribution of voids. Through these analyses, we
illustrated how the stress within the microstructure changes concerning
the applied apparent stress at the macro scale.

Finally, we concluded the direct FE2 method is a promising tool
in the structural multiscale analysis of heterogeneous media. A key
advantage is the significantly reduced computational cost compared
12
to conventional FE analyses that explicitly account for all domain het-
erogeneities. However, it remains computationally costly compared to
sequential multiscale methods. Considering that the developed method
is integrated into Abaqus FE package, it allows for the utilisation of all
available tools, such as different materials and finite elements. In this
work, the methodology was formulated and implemented to facilitate
its application in nonlinear problems. It also allows for the utilisation
of failure and damage models directly at the microscopic level, thus
eliminating the need for any scale transitioning in the process.
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Fig. 19. Maximum principal stress observed in every RVEs in the FE2 domain as a function of the apparent stress applied to the macroscopic domain for different volume void
ractions compared to the allowable stress for the matrix. The highlighted areas represent the regions where the first finite element of the mesh reaches the maximum admissible
tress.
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