
A Validation Study of Vascular Cognitive Impairment Genetics Meta-
Analysis Findings in an Independent Collaborative Cohort

Skrobot, O. A., McKnight, A. J., Passmore, P. A., Seripa, D., Mecocci, P., Panza, F., Kalaria, R., Wilcock, G.,
Munafò, M., Erkinjuntti, T., Karhunen, P., Pessi, T., Martiskainen, M., Love, S., Kehoe, P. G., & Genetic and
Environmental Risk for Alzheimer’s disease Consortium (GERAD1) (2016). A Validation Study of Vascular
Cognitive Impairment Genetics Meta-Analysis Findings in an Independent Collaborative Cohort. JAD: Journal of
Alzheimer's Disease. Advance online publication. https://doi.org/10.3233/JAD-150862
Published in:
JAD: Journal of Alzheimer's Disease

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2016 The Authors
The final publication is available at IOS Press through http://dx.doi.org/10.3233/JAD-150862

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:27. Jun. 2024

https://doi.org/10.3233/JAD-150862
https://pure.qub.ac.uk/en/publications/40ae4bf3-13f8-4e2b-98cc-4c0cfe9e58b6


1 
 

A validation study of Vascular Cognitive Impairment genetics meta-analysis findings in an 

independent collaborative cohort 

 

Olivia Anna Skrobota, Amy Jayne McKnightb, Peter Anthony Passmorec, Davide Seripad, Patrizia 

Mecoccie, Francesco Panzad,f, Rajesh Kalariag, Gordon Wilcockh, Marcus Munafòi, Timo Erkinjunttij, 

Pekka Karhunenk,l, Tanja Pessik,l, Mika Martiskainenk,l, Seth Lovea , the Genetic and Environmental 

Risk for Alzheimer’s disease Consortium (GERAD1)#, Patrick Gavin Kehoea* 

aDementia Research Group, University of Bristol, Level 1, Learning & Research, Southmead Hospital, 

Bristol, BS10 5NB UK; bCentre for Public Health, Queen’s University of Belfast, c/o Regional Genetics 

Centre, Level A, Tower Block, Belfast City Hospital, BT9 7AB; cInstitute of Clinical Sciences, Block B, 

Queens University Belfast, Royal Victoria Hospital, Belfast, BT12 6BA; dGeriatric Unit & Gerontology-

Geriatrics Research Laboratory, Department of Medical Sciences, I.R.C.C.S. "Casa Sollievo della 

Sofferenza", Viale Cappuccini 1, 71013 San Giovanni Rotondo (FG), Italy; e Institute of Gerontology 

and Geriatrics, University of Perugia, Ospedale S.M. della Misericordia, 06156 Perugia, Italy; 

fNeurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, 

University of Bari Aldo Moro, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy; gInstitute of 

Neuroscience, NIHR Biomedical Research Building, Campus for Ageing & Vitality Newcastle upon 

Tyne, NE4 5PL, United Kingdom; h Nuffield Department of Clinical Neurosciences, University of 

Oxford, Level 6, West Wing, John Radcliffe Hospital, Headington, Oxford, UK OX3 9DU; iMRC 

Integrative Epidemiology Unit, UK Centre for Tobacco and Alcohol Studies, School of Experimental 

Psychology, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK; jDepartment of Neurology 

and Memory Research Unit, Helsinki University Central Hospital, POB 300, FIN-00029 HUS, Finland; 

kSchool of Medicine, University of Tampere, Finland; lFimlab Laboratories Ltd, Tampere University 

Hospital region, Finland; # Data used in the preparation of this article were obtained from the 

Genetic and Environmental Risk for Alzheimer’s disease (GERAD1) consortium. As such, the 



2 
 

investigators within the GERAD1 consortia contributed to the design and implementation of GERAD1 

and/or provided data but did not participate in analysis or writing of this report.  

* Corresponding author:Patrick.Kehoe@bristol.ac.uk, Tel: +44 (0)117 4147821, Fax: +44 (0) 117 

4147822 

 

Keywords: Association, gene, dementia, vascular, meta-analysis, cognitive impairment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:Patrick.Kehoe@bristol.ac.uk


3 
 

Abstract 

Vascular cognitive impairment (VCI), including its severe form vascular dementia (VaD), is the second 

most common form of dementia. The genetic aetiology of sporadic VCI remains largely unknown. 

We previously conducted a systematic review and meta-analysis (MA) of all published genetic 

association studies of sporadic VCI prior to 6 July 2012, which demonstrated that APOE (ε4, ε2) and 

MTHFR (rs1801133) variants were associated with susceptibility for VCI. De novo genotyping was 

conducted in a new independent relatively large collaborative European cohort of VaD (nmax= 549) 

and elderly non-demented samples (nmax= 552). Where available, genotype data derived from 

Illumina’s 610-quad array for 1210 GERAD1 control samples were also included in analyses of genes 

examined. Associations were tested using the Cochran-Armitage trend test: MTHFR rs1801133 (OR= 

1.36, 95% CI 1.16-1.58, p= <0.0001), APOE rs7412 (OR= 0.62, 95% CI 0.42-0.90, p= 0.01), and APOE 

rs429358 (OR= 1.59, 95% CI 1.17-2.16, p= 0.003). Association was also observed with APOE epsilon 

alleles; ε4 (OR= 1.85, 95% CI 1.35-2.52, p= <0.0001); and APOE ε2, (OR= 0.67, 95% CI 0.46-0.98, p= 

0.03). Logistic Regression and Bonferroni correction in a subgroup of the cohort adjusted for gender, 

age and population maintained the association of APOE rs429358 and ε4 allele. 

 

Introduction  

Vascular Cognitive Impairment (VCI) represents a heterogeneous group of related conditions 

involving cognitive decline resulting from cerebrovascular disease or systemic disease that leads to 

inadequate cerebrovascular supply. Vascular dementia (VaD), an older and more commonly used 

term to describe more severe forms of VCI, is widely accepted to represent less than a fifth of all 

dementias and is arguably the second most common form of dementia after Alzheimer’s disease 

(AD). However, there is ongoing debate regarding the validity and utility of distinguishing between 

AD and VaD given the very high presence of cerebrovascular disease in AD [1, 2]. Indeed, it has been 

proposed that VCI will become the foremost cause of dementia given the ageing demographics and 

escalating rates of stroke and ischaemic heart disease [3, 4]. 
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Risk factors for common non-autosomal dominant inherited forms of VCI (i.e. sporadic VCI) strongly 

overlap with risk factors for those associated with AD. These include hypertension, diabetes mellitus, 

smoking, atrial fibrillation, positive family history, age and hypercholesterolaemia[5, 6]. However, as 

yet, little is still known about the extent to which genetic variation contributes to risk of VCI, which 

as is the case in AD, is likely to interact with various environmental influences. 

 

Despite the extensive overlap between risk factors for AD, stroke and VCI, there has not been as 

much research into the molecular and genetic basis of VCI. This contrasts markedly with the volume 

of similar activity that has occurred, and proven beneficial in terms of AD research for over two 

decades[7]. The slower emergence of studies in VaD and VCI is most likely due to the lower 

prevalence and highly heterogeneous nature of VCI, both of which are factors that have also served 

to frustrate development of universally accepted means of VCI classification. This is highlighted by 

the numerous diagnostic and other research-based criteria and guidelines for VCI that have been 

developed to provide constructs for the classification of forms of VCI to facilitate research [4, 8-10] 

but in reality have been used to varying extents. Thus large-scale collaborative endeavours that are 

ordinarily needed to properly study diseases of lower prevalence such as VCI have not yet been 

regularly realised. Furthermore there are issues on the level of interpretation and inference that can 

be made across different smaller-scale studies. As a consequence of these factors, thus far, 

susceptibility genes of VCI, particularly those of small effect most likely remain undiscovered.  

 

A useful, rapid and relatively low cost tool to explore and maximise the amount of information that 

can be extracted from what may be considered to be a number of inadequately powered individual 

studies of VCI is meta-analysis (MA). Recently we used MA to investigate a limited number of 

selected (i.e. most commonly studied) candidate genes, partly suggested by previously reported 

associations with AD, and having cardiovascular properties also relevant to VaD including; 
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Apoliopoprotein (APOE), methylenetetrahydrofolate reductase (MTHFR) and angiotensin converting 

enzyme (ACE) polymorphisms [11-14]. In our previous study [15], we used a combined systematic 

review and MA approach of all published candidate gene studies of sporadic VCI to identify 

potentially important candidate genes for VCI. This allowed us to try and address some of the 

shortcomings of previous studies in terms of statistical power, whilst acknowledging the 

heterogeneous nature of VCI. Associations with increased risk for VCI were found for APOE ε4 (OR= 

1.818, 95% CI 1.611 to 2.053, p= <0.001; N= 3,554 cases, N= 12,277 controls) and MTHFR rs1801133 

(OR= 1.323, 95% CI 1.061 to 1.650, p= 0.013; N= 659 cases, N= 981 controls). There was weak 

evidence of a protective effect for APOE ε2 (OR= 0.885, 95% CI 0.783 to 0.999, p= 0.048; N= 3,320 

cases, N= 10,786 controls). MA of polymorphisms: rs4934 of Alpha-1-antichymotrypsin (ACT, now 

formally referred to as SERPINA3); rs1799752 (intron 16 indel variant) of ACE; rs662 of Paraoxonase 

1 (PON-1); and the rs165932 variant of presenilin-1 (PSEN-1) showed no evidence for association 

[15]. 

 

In general, MA of multiple small studies may also suffer from between-study heterogeneity, or be of 

inferior methodological quality [16], including the use of different clinical diagnostic criteria. Many of 

these factors can give rise to disproportionally larger or small effect sizes for any gene found to be of 

interest. Considering these limitations, we attempted to validate our MA findings by genotyping the 

polymorphisms previously found to be interesting [15], in a uniformly diagnosed unprecedented 

cohort of archival DNA from VaD patients and healthy controls of European decent, thereby 

minimising variation in methodology and interpretation.  

 

Materials and Methods  

The collaborative cohort consists of archival samples from the United Kingdom (UK) (n=278) and 

Italy (n=823). Age and gender was available for a subsection of the cohort: mean age VaD 78.74 ± 

0.32 (n= 509), 232 males/296 females; mean age controls 76.83 ± 0.43, (n= 513), 233 males/316 
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females. VaD cases were clinically diagnosed according to NINDS-AIREN criterion [8]. A sample of 

549 VaD cases and 552 controls were genotyped using Sequenom iPLEX Gold (97.7% success rate) 

for a number of polymorphisms (see Table 1). Polymorphism rs4343 in ACE was genotyped as a 

proxy for the ACE I/D [17]. SERPINA3 (ACT) rs4934 was genotyped using Taqman 

(TaqMan C_2188895_10) and analysed using Sequence Detection Software version 2.4. All SNPs 

were concordant for HWE at P>0.001. SNPs rs429358 and rs7412 were directly genotyped and 

APOE epsilon alleles calculated – in brief the T allele at both APOE SNPs identified the ε2 allele, 

whereas the C allele at both positions constitutes the ε4 allele. The T allele at rs429358 and the C 

allele at rs7412 identify the ε3 allele, which is the most common allele in the general population[18]. 

Genotype data from an additional 1210 non-demented elderly individuals (451 males/759 females), 

from UK (n= 830), Northern Ireland (n= 110), Germany (n= 37) and United States (n= 233) that were 

collected as part of the GERAD1 consortium [19] that were used in AD Genome Wide Association 

Studies (GWAS) genotyped on the Illumina 610-quad chip (as described [19]), was available for 

inclusion in the analysis for MTHFR rs1801133 and PON-1 rs662. Age was available for 1133 

individuals; mean 76.34 ± 0.20. Genetic association of susceptibility to VaD were independently 

evaluated using the test for trend implemented in PLINK [20], with logistic regression (LR) analysis 

for age, gender, and population. A p-value <0.05 was considered nominal evidence for statistical 

significance and supportive of our previous findings [15]. SNP-SNP interactions were also analysed in 

426 cases and 1730 controls using PLINK ALL x ALL epistasis mode with the odds ratio calculated for 

interaction and p values adjusted for the multiple tests performed.  

 

Results  

Associations were identified using the Cochran-Armitage trend test for MTHFR rs1801133 (OR= 1.36, 

95% CI 1.16 to 1.58, p= 0.000095), APOE rs7412 (OR= 0.62, 95% CI 0.42 to 0.90, p= 0.01), and APOE 

rs429358 (OR= 1.59, 95% CI 1.17 to 2.16, p= 0.003) (Table 1). Association was also observed with 
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APOE epsilon alleles (ε4: OR= 1.85, 95% Cl 1.35 to 2.52, p= 0.00005; ε2: OR= 0.67, 95% CI 0.46 to 

0.98, p= 0.03); allelic distributions are provided in Table 2. 

 

APOE and MTHFR associations were robust to Bonferroni correction, although logistic regression 

analysis in a subgroup of the cohort adjusted for gender, age and population reduced the strength of 

all associations (Table 1). However, associations for APOE rs429358 (OR= 1.66, 95% CI 1.19 to 2.32, 

p= 0.003) and ε4 allele (OR= 1.61, 95% CI 1.52 to 1.72, p= 0.0001) were robust to these adjustments.  

 

There was no evidence of association between VCI risk and variants in a number of other genes that 

were included in our previous MA study and which here also showed lack of association: rs4934 of 

ACT; rs1799752 of ACE; rs662 of PON-1; and rs165932 of PSEN-1 (Table 1).  

 

Epistasis, defined typically as the interaction between different genes, has revealed many novel 

biological insights for complex disease genetics in recent years. The presence of an allele at one SNP 

loci may interact with alleles at other loci to exert a complementary or specific effect on gene 

expression and / or function.  For example, genes involved may be part of multi-component 

proteins, the same biological pathway, or disease mechanism and exert modifier effects on 

phenotypes. As the genes investigated in this study have been suggested to contribute to VCI, we 

evaluated if SNPs demonstrated independent effects. Using the integrated epistasis approach 

implemented in PLINK (All x ALL command) we tested pairwise combinations of all SNPs across all 

genes for 426 case and 1730 control individuals; no SNP-SNP interaction was statistically significant 

following Bonferroni correction for multiple testing (data not shown). 

 

Discussion 

This study provides supportive evidence, in an independent European cohort of VaD patients and 

non-demented elderly, of association between variants in APOE and MTHFR and susceptibility for 
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VaD, that validate previous findings for these genes demonstrated by MA [15]. In agreement, we 

found no association for PON-1 rs662, SERPINA3 (ACT) rs4934; PSEN-1 rs165932 or ACE rs1799752 as 

investigated in our previous MA [15]. This supports the utility of MA as a method to maximise the 

amount of information that can be extracted from a series of published unrelated and small case-

control association studies, which individually only allow for limited interpretation because of low 

statistical power.  In a subsequently published MA, the same findings for these SNPs were reported, 

albeit with the inclusion of varying studies[14]. 

 

APOE  

Apoliopoprotein (APOE) plays a key role in lipid metabolism of cholesterol and triglycerides used to 

support synaptogenesis and the maintenance of synaptic connections [21]. APOE has also been 

associated with increased risk of cerebral amyloid angiopathy [22, 23] as well as cardiovascular and 

cerebrovascular atherosclerosis, coronary heart disease, and high total serum cholesterol. 

Collectively the role of APOE in a number of vascular conditions, each of which could contribute to 

VCI, clearly makes APOE a strong candidate gene for VCI risk. There have also been numerous 

studies exploring possible association of APOE ε4 with ischaemic stroke, as recently reviewed by 

Stankovic and Majkic-Singh, however, results on this thus far are conflicting [24].  

 

Our published MA of 63 cohorts totalling 3,554 cases and 12,277 controls showed that APOE ε4 was 

associated with increased risk of VCI[15]. Separate MA of people who were classified against specific 

definitions of VaD (OR= 1.913, 95% CI 1.683 to 2.173, p= <0.001; N= 2,422cases, N= 9,722 controls) 

also showed evidence of association. Stratification of APOE ε4 data by ethnicity also showed 

evidence of association with Asian, and European groups (OR= 1.939, 95% CI 1.576 to 2.386, p= 

<0.001; N= 1,268 cases, N= 4,078 controls). The association we previously identified by MA with 

susceptibility for VaD in Europeans was further supported in this study that comprised a large 
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European cohort; of particular note, the odds ratio in this study (OR= 1.85) is strikingly similar to that 

previously reported (OR= 1.82) for VCI. 

 

Our previously published MA of APOE ε2 revealed a protective effect against VaD and in the analysis 

of all cohorts under a broader VCI term.  The protective effect of APOE ε2 against VaD (OR= 0.812 

95% CI 0.698 to 0.945, p= 0.007; N= 2,247 cases, N= 8,967 controls) was further supported in the 

current case-control study although statistical evidence was only weak (OR= 0.67, 95% CI 0.46 to 

0.98, p= 0.03). APOE ε2 may have a protective effect in coronary artery disease, a disease mediated 

by altered lipoprotein levels, inflammatory and immune activities [25]. 

 

MTHFR rs1801133  

Methylenetetrahydrofolate reductase (MTHFR) is a key rate-limiting enzyme in the metabolism of 

homocysteine (Hcy). The rs1801133 (also known as C677T) polymorphism of MTHFR has been 

associated with reduced enzyme activity and increase serum Hcy levels [26]. It has also been linked 

to several vascular diseases including risk of coronary heart disease and hypertension [27], as well as 

with cognitive impairment [28]. One of the largest MA of 32 published articles (6110 cases/8760 

controls) that investigated this polymorphism in relation to risk of ischaemic stroke/TIA, found that 

the T allele was associated with increased risk of stroke in a graded, dose-dependent manner (T 

allele pooled OR= 1.17; 95% CI 0.09–1.26; TT genotype pooled OR= 1.37; 95% CI 1.15–1.64)[29].  

 

There have been conflicting findings regarding the association between this MTHFR polymorphism 

with stroke, however seven out of 11 MA of stroke that have been previously  undertaken have 

shown an association for C677T [24]. The discrepancies may relate to the fact that the C677T 

polymorphism varies in different ethnic populations, ranging from less than 1% to 21% [30]. 

Furthermore, an association of MTHFR rs1801133 with AD was only found when the co-occurrence 

of APOE ε4 was also included in the analysis [31] suggesting an epistatic interaction. Indeed a similar 
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observation was also found for IL-6 rs1800795 in both AD and VaD [32]. Of particular interest is that 

analysis of the MTHFR rs1801133 by HaploReg version 2 [33] reveals multiple epigenetic effects for 

this SNP in a European population. Characterising the downstream effects of genetic mutations 

associated with disease is challenging.  One approach is to evaluate associations between disease-

associated SNPs and the expression levels of local genes (cis effects) and downstream consequences 

that are more distant from the target SNP (trans effects). Westra and colleagues [34] performed a 

systematic evaluation of expression quantitative trait loci (eQTLs) using next generation sequencing 

in >8,000 individuals; their results were published in Nature Genetics and made publicly available, 

thus providing a rich resource for researchers.  We interrogated this valuable dataset for putative 

functionality of top-ranked SNPs in this study and presented relevant results in Table 3 to support 

biological insights for MTHFR.  Rs1801133 has an impact on both epigenetics and the expression of 

several genes, with this association exceeding traditional genome-wide significance values (Table 3). 

The cis-eQTl links for blood are strongest for Mitofusin 2 gene (MFN2) central to mitochondrial 

fusion and important in the regulation of vascular smooth muscle cell proliferation[35], with defects 

associated with disorders of PNS [36], early events in ischaemic stroke and neurodegeneration [37-

39]. 

 

The results of our MA for MTHFR rs1801133 in VCI also showed an association of the T allele and 

increased risk of VCI and in the smaller MA of VaD cases we also found association (OR= 1.309, 95% 

CI 1.121 to 1.528, p= 0.001; N= 616 cases, N= 981 controls). However, the majority of studies that 

were included in this MA were Asian and only 2 studies were Caucasian, with stratified analysis 

showing that Asian but not Caucasian cohorts (OR= 1.644, 95% CI 0.597 to 4.528), p= 0.336; N= 136 

cases, N= 125 controls) were associated. The current European case-control study, which is larger 

than the combined sample size in the original MA, supported the presence of association with VaD 

and now provides evidence of association in Caucasians (OR= 1.36, 95% CI 1.16 to 1.58, p= 0.0001). 

The odds ratio in this study (OR= 1.36) is similar to the VCI association (OR= 1.32) previously 
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reported, suggesting a similar effect size for both phenotypes, however it should be noted that the 

LR model accounting for age, gender and population in a subsection of the cohort did not show 

evidence of association in the current collection.  

 

In this study of European subjects, there was no evidence of an epistatic interaction between APOE 

and MTHFR polymorphisms, supporting the hypothesis that MTHFR might serve as an independent 

genetic risk factor for VCI. In future studies of VCI, it is worth considering the testing of epistasis in a 

routine manner, where statistical power may allow, to avoid missing clues to risk variants that might 

otherwise be overlooked. 

 

While there was no evidence of association for SERPINA3 (ACT) rs4934 and PSEN-1 rs165932, the 

lack of association with either may relate to the fact most of the biological evidence of the potential 

involvement of both resultant proteins is more related to their roles in aspects of AD and in 

particular that of Aβ peptide pathology [40] that is not part of the main neuropathology of VaD. Yet, 

the function of SERPINA3 might have been more plausible as an acute phase protein that is released 

in response to inflammatory stimuli that have been suggested in early stages of dementia [41].   

 

The PON-1 rs662 and ACE rs1799752 were arguably stronger candidate genes for VCI since 

Paraoxonase 1 (PON-1) has a vascular function as a component of high-density lipoprotein (HDL) but 

is also important for Hcy metabolism while angiotensin converting enzyme (ACE) plays an important 

part in the regulation of systemic blood pressure and fluid electrolyte balance with hypertension one 

of the biggest risk factors for VCI [42]. With respect to PON-1, despite links to Hcy metabolism, 

association with ischemic stroke [43] and synergistic interactions between genes of related 

processes shown in coronary artery disease patients [44], in this study we found no evidence of 

epistatic interactions. In contrast, the D allele of ACE has been suggested, albeit with many 

conflicting studies, to be associated with risk factors for VCI including; myocardial infarction, stroke, 
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cardiovascular disease, essential hypertension, diabetes mellitus and leukoaraiosis in patients with 

ischemic stroke [45]. Yet we found no evidence here, nor in the previous MA study to support any 

association, in agreement with another recent study on VaD [11]. 

 

Study Limitations 

Associations for APOE and MTHFR were robust to Bonferroni correction, although logistic regression 

analysis in a subgroup of the cohort adjusted for gender, age and population reduced the strength of 

all associations (Table 1). However, only a reduced number of cases could be included in this more 

detailed level of analysis, due to the lack of covariate data available for a substantial proportion of 

these archival samples, thus reducing the power to identify such associations. Furthermore, the 

identification of candidate genes by MA is limited and wholly determined by what studies have been 

previously conducted and are suitable for inclusion in the analysis. MA has limitations and biases in 

the same way as any hypothesis-driven approaches towards the discovery of risk genes. More 

recently the use of GWAS has been developed to address this, whilst itself still being limited by the 

amount of gene variants that are included.  

 

Emerging evidence of the genetic aetiology from Genome Wide Associations Studies (GWAS) 

Rs12007229, a single nucleotide variant of no known function located on the X chromosome, which 

is near the androgen receptor gene (OR= 3.7, 95% CI 2.3–5.8, per copy of the minor allele; P= 

1.3×10−8)[46] was identified in 2012 in the first GWAS of VaD. Although a first for this disease it was 

somewhat limited as it involved data from a total of just over 300 incident and prevalent cases of 

VaD that were compared to a Dutch population-based discovery cohort of 5700 subjects. Another 

GWAS reported a novel association with an intronic variant of rs290227 within the spleen tyrosine 

kinase (SYK) gene [47] from a cohort of 87 Korean VaD patients and 200 controls. A comparison of 

these two GWAS could not identify common nucleotide variants[48], yet the potential power of 

GWAS to identify new variants, in relatively small cohorts is highlighted. However, in neither of these 
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GWAS (which are both considerably smaller in sample size to either the original MA or this 

replication study) was there any evidence found to support the involvement of APOE or MTHFR as a 

risk factor. 

 

Conclusions 

We report that variations in both APOE and MTHFR are associated with increased risk of VaD. While 

the potential involvement of MTHFR in VCI risk is interesting, it still needs further independent 

replication. However, the robust association seen here, and in previous MA for the APOE ε4 variant 

as a risk factor strongly support the validity of using APOE variants as a necessary co-variant in 

analysis of other genetic susceptibility factors of VCI, similar to how it has been widely applied in 

genetic studies of AD. GWAS is likely to serve as the most likely method by which to pursue the 

identification of new candidate genes for VCI in the future. However, future successes are also likely 

to be dependent upon the availability of large numbers of samples that will only come via 

collaboration such as has been seen to generate considerable success in recent years in the AD field 

where approximately 32 genes have now been identified [49].  
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 Cochran-Armitage trend test  
with Bonferroni correction 

Logistic regression 
analysis 

Polymorphism Cases Controls OR (95% CI)  p - value BONF OR (95% CI)  p - value 

APOE rs429358 allele C 104/724 82/910 1.59 
(1.17-2.16)  0.0026 0.018 1.66 

(1.19-2.32)  0.003 

APOE rs7412 allele T 43/779 81/905 0.62 
(0.42-0.90)  0.012 0.084 0.70 

(0.46-1.04)  0.078 

MTHFR rs1801133 allele T 363/467 1252/2186 1.36 
(1.16-1.58)  0.000095 0.0007 1.12 

(0.93-1.34)  0.233 

PON-1 rs662 allele G 252/586 1002/2446 1.05 
(0.89-1.24)  0.563 1 1.12 

(0.92-1.35)  0.255 

ACE rs4343 allele A 339/489 396/600 1.05 
(0.87-1.27)  0.618 1 1.07 

(0.87-1.30)  0.524 

PSEN-1 rs165932 allele C 333/489 385/577 1.02 
(0.84-0.12)  0.833 1 1.04 

(0.85-1.27)  0.706 

ACT rs4934 allele G 378/366 469/471 1.04 
(0.86 – 1.26)  0.710 1 1.01 

(0.83-1.24)  0.917 

 

Table 1: Summary analysis of APOE, MTHFR, PON-1, ACE, PSEN-1 and ACT variants in the European cohort. Cochran-
Armitage trend test: no. of minor alleles in VaD cases; no. minor alleles in controls; Bonferroni corrected p-value 
(BONF). Logistic regression with age, gender and population origin as covariates odds ratio (95% confidence 
intervals) and resulting p-value for each respective analysis as detailed in the first column.  
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Alleles Number of cases Number of controls 

Carries any ε2 allele 58 83 

No ε2 allele 471 454 

Carries any ε4 allele 138 86 

No ε4 allele 391 451 

Table 2: APOE epsilon allelic distributions within case and control groups; epsilon allele calls were derived 
from directly typed genotypes for rs429358 and rs7412 SNPs; APOE ε2, (OR= 0.67, 95% CI 0.46-0.98, p= 
0.03) and APOE ε4 (OR= 1.85, 95% CI 1.35-2.52, p= <0.0001).  
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Trans-eQTLs 

p-value SNP Chromosome Base position Minor allele Gene name 

2.062E-6 rs1801133 1 11778965 A PTPRN2 

5.145E-6 rs1801133 1 11778965 A EXOSC6 

1.393E-5 rs1801133 1 11778965 A HOXD11 

Cis-eQTLs 

6.085E-100 rs1801133 1 11778965 A MFN2 

6.216E-80 rs1801133 1 11778965 A PLOD1 

7.818E-32 rs1801133 1 11778965 A MTHFR, C1orf167 

9.470E-13 rs1801133 1 11778965 A KIAA2013, CLCN6 

7.157E-9 rs1801133 1 11778965 A KIAA2013, NPPA 

0.002 rs1801133 1 11778965 A C1orf187 

Table 3: Blood eQTL browser (http://genenetwork.nl/bloodeqtlbrowser/) reports multiple trans and 
cis expression quantitative trait loci for MTHFR rs1801133: protein tyrosine phosphatase, receptor 
type, N polypeptide 2 (PTPRN2); exosome component 6 (EXOSC6); homeobox D11 (HOXD11); 
Mitofusin 2 (MFN2); procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1); 
methylenetetrahydrofolate reductase (MTHFR), chromosome 1 open reading frame 167; KIAA2013; 
chloride channel, voltage-sensitive 6 (CLCN6); natriuretic peptide A (NPPA); dorsal inhibitory axon 
guidance protein (DRAXIN). 

http://genenetwork.nl/bloodeqtlbrowser/

