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Semiclassical charge transfer in gravitational encounters

S. F. C. Shearer, C. J. McGrath and D. S. F. Crothers
Centre for Theoretical Atomic, Molecular and Optical Physics,

Queen’s University Belfast, Belfast, BT7 1NN, UK∗

Semiclassical charge transfer is considered in the context of gravitational encounters. A
Schwarzschild radius is invoked as a constant of integration. The point of closest approach is
greater than the positive Schwarzschild radius. Charge transfer and Newtonian gravity are consid-
ered in an acausal context. In the limit in which the Coulomb potential dominates, the Schrödinger
time-dependent equation is regained.

PACS numbers: 03.65Sq., 34.70.+e, 11.80*, 04.60.-Jb

It is said [1] that quantum mechanics and general rel-
atively are incompatible. Moreover black holes are dis-
cussed in their entirety on Google, Wikipedia. Popular
reading includes ’A brief history of time’ [2] and ’Quan-
tum Gravity’ [3]. However let us consider symmetric res-
onance charge transfer and/or elastic scattering where
the projectile (P ) has a large mass of MP and a charge of
ZP whose centres coincide and the target (T ) has a large
mass of MT and a charge of ZT , whose centres again co-
incide. The electron is initially bound to the target and
the impact velocity of the projectile is v, where v << 1.

Consider the generalized Kohn Lagrangian (den-
sity) [4, 5]

L = Ψ∗ (H − E) Ψ+λ
[

1
1 + f

Ṙ2 +R2Θ̇2 − (1 + f) c2
]

Ψ∗Ψ

(1)
where E is the total constant energy eigenvalue which
may be interpreted as a Langrangian multiplier associ-
ated with the normalization of the wave function Ψ (see
eqn.(19) below) and where λ is a Lagrange multiplier, f
is given by

−1 < f(R) = −2m
R

< 0 (2)

where 2m is the freely adjustable constant of integra-
tion and the possibly negative Schwarzschild radius [6] in
which case we have a bound state, and where azimuthal
symmetry is assumed. For m > 0 the heavy-particle col-
lision occurs in the collision plane. The (·) means time
differentiation and

R ≡ (R,Θ) = ~TP (3)

where Θ is the polar angle with v as polar axis. The
Hamiltonian is given by

H = −1
2
∇2

r−
1

2µ
∇2

R+
(e2ZPZT −GMPMT )

R
−ZT e

2

rT
−ZP e

2

rP
(4)
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including the Newtonian-gravity potential which is the
limit of general-relativity, and where rT , rP and r, are
the position vectors of the electron relative to respectively
the target and the projectile and their midpoint and G
is the universal gravitational constant. The gravitational
and electromagnetic potentials in eqn.(4) are treated on
an equal footing. This is equivalent to adding both the
electromagnetic and gravitational forces. The reduced
mass µ is MPMT /me(MP + MT ) and the energy E is
1
2µk

2
0 where k0 = µv, neglecting the internal quantum

energy of − 1
2Z

2
T . We normalize (2) to be consistent with

(4) so that

−2mµ2c2

R
= −2µ

(
e2ZPZT −GMPMT

R

)
. (5)

Thus we have an effective Schwarzschild radius given by

2m = −2
m2
e

c2
G

(
MP

me
+
MT

me

)
+

2e2ZPZT
c2µ

> 0 (6)

where c is the speed of light in vacuum, e and me are the
charge and mass respectively of the electron [7] and G is
given by

G = 6.673 × 5.273−2 x 10−42 ≈ 0.24 x 10−42. (7)

Clearly MP and MT must be exceedingly large, of the
order of 1042 me for the electromagnetic and New-
tonian gravitational potentials/forces to be commensu-
rable. Clearly m must be non-negative for a collision,
negative for a bound state. In order to consider symmet-
ric resonance and/or elastic scattering (α > 0 (eqn. 13)),
for simplicity, we assume identical “particles” so that

ZP = ZT and MP = MT . (8)

We apply an Euler-Jacobi second-order variational prin-
ciple [4] to the Lagrangian of eqn.(1) so that we have [8]
an elastic cross section

Q00 = 2πa2
0

∞∫
0

ρdρ
[
2 sin2 η+

ρ + 2 sin2 η−ρ − sin2
(
η+
ρ − η−ρ

)]
(9)
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and a symmetric charge transfer cross section

Q01 = 2πa2
0

∞∫
0

ρdρ sin2
(
η+
ρ − η−ρ

)
. (10)

Here the impact parameter ρ is related semiclassically to
the azimuthal quantum number by

ρk0 = l +
1
2

(11)

and η±ρ are the gerade/ungerade phase shifts, given semi-
classically in the LCAO (linear combination of atomic
orbitals) approximation by

η±ρ = lim
R→∞

[
ρπ + α ln(2k0R)− arg Γ(ρk0 +

1
2

+ iα)

+

R∫
R0

dR̃

{(
k2
0 − 2µ (V00 ± V01)− ρ2k2

o

R̃2

)1/2

− k0

}
(12)

where R0 is the classical turning point and

α =
(
ZPZT e

2 −GMPMT

)
/(2v2) > 0 (13)

V00(R) =
α

R
(14)

V01(R) = 2ZT (1 + ZTR) e−ZTR (15)

the latter being for the 1s-1s transition. It follows semi-
classically (in two senses) and rationalising the numerator
that

η+
ρ − η−ρ ≈ −2µ

∞∫
R0

V01(R) dR√
k2
0 − 2µV00(R)− ρ2k2

0
R2

(16)

since (15) is negligible compared to (14). Since we have
v << 1 and are dealing with the ultimate symmetric
resonant noncrossing collision [9] we can safely ignore
any Stokes constant effects in the Stueckelberg oscil-
lations. We may also neglect electron translation fac-
tors (exp (±iv · r/2)) and special relativity effects such
as time dilation and mass contraction (

√
1− v2/c2 ≈ 1).

In addition the variational principle gives us the equa-
tions on page 106 of [6] except that his energy-integral
equation (10.27) is amended to

1
1 + f

Ṙ2 +R2Θ̇2 − (1 + f) c2 = v2 − c2 (17)

the difference being the v2 on the right hand side, which
comes from the 1

2µk
2
0 energy of the relative motion of

the heavy particles. Solving (17) for Ṙ we see that the

classical relativistic amendment to equation (16) is given
by

η+
ρ − η−ρ ≈

−2µ

∞∫
max(R0,2m)

V01(R)dR√
1 + f (R)

√
k2
0 − 2µV00(R)− ρ2k2

0
R2

.

(18)

The square root singularity is removable by making the
change of variable x2 = R− 2m.

Thus the expressions (10) and (18) remain causal
whereas expressions (9) and (12) amended as in (18) will
result in acausality [10].

In retrospect we come to the conclusion that consis-
tency requires the Schrödinger time-independent equa-
tion in the modified form:

[
− 1

2me
∇2

r − 1
2µ(1+f)∇

2
R + (e2ZPZT−GMPMT )

R

−ZT e
2

rT
− ZP e

2

rP
− E

]
Ψ = 0 (19)

to be consistent with equations (17) and (18). The effec-
tive heavy-particle reduced mass is R dependent and is
µ(1 + f) = µ(R − 2m)/R; this implies that the point of
closest approach is greater than the Schwarzschild radius,
2m. Eqn.(19) may be solved using travelling molecular
orbital methods ([5] and [11]). Setting in eqn.(19):

Ψ =
∞∑
l=0

il(2l + 1)ψl(R)Pl(cos Θ)
Sl(R)
R

(20)

where the ’travelling’ (v = 0) molecular orbitals ψl are
given by[
− 1

2me
∇2

r −
ZT e

2

rT
− ZP e

2

rP
− εl(R)

]
ψ(R) = 0. (21)

We have (me = 1)

[
d2

dR2
+ 2µ(R−2m)

R {E − εl(R)

−mµc
2

R − (l+ 1
2 )2

R2 }
]
Sl(R) = 0. (22)

In eqn.(20) Θ is the polar angle of R see eqn.(3). The
region

R > 2m (23)

corresponds to the exterior domain of Fiziev [12] and
Matzner and Zamorano [13], the difference being that
our gravitational force is linked to the heavy-particle
electromagnetic forces which as stated above are partly
acausal. Accordingly the potential in eqn.(22) corre-
sponds to s = 1 and the Schwarzchild radius of 2m(6= 1)
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in the potential VS,l(R) [12]. Coupled equations coupling
the Sl are easily derived in the impact-parameter treat-
ment [11] for calculational purposes.

The effective time of the eqn (1) is given to a first-order
approximation by

νt = ±
√
R2 − ρ2 (24)

given the equivalence of the wave and impact param-
eter treatments [14]. We have a consistent semiclassical
treatment of quantum gravity, but bearing in mind
that equations (9) and (19) contain acausality and
noting that in the limit MP = 0 = MT , the normal
time-independent Schrödinger equation obtains. We
have considered a simple problem embracing spherical
symmetry in the bound and collision aspects, given
that these are massive particles with very slow relative
motion. The general relativity of the black hole arises
through our classical simulation. Our conjecture is
that dark matter comprises ions, leptons and black
holes and that dark energy comprises, in part, collisions
between ions, leptons and black holes (cf [15]). In future
papers our semiclassical quantum gravity treatment will
be linked to the interior domain of [12] and possibly
imaginary-frequency interior modes of black holes [13].
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Appendix A

In the normal wave treatment, the wave function is
asymptotically given by:

Ψ ≈R→∞ eik0R +
eik0R

R
F (R̂) (A1)

where F is the scattering amplitude. However in this
paper

k0→R→∞k0(1− m

R
)

so that, given (see eg [5]: equation(4.377))

eik̂.R̂ 'R→∞
2π
ikR

[
eikRδ(k̂ − R̂)− e−ikRδ(k̂ + R̂)

]
,

(A2)
we have:

Ψeimk0 ' 2π
ik0R

[
eik0Rδ(k̂0 − R̂)

− e−ik0Rδ(k̂0 + R̂)e2mik0
]

+
eik0R

R
F (R̂)

(A3)

so that effectively the scattering amplitude is un-
changed as is the impact parameter probability, the ex-
ception being perfect backward scattering.
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