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Abstract: A grid-connected DFIG for wind power generation can affect power system small-signal 

angular stability in two ways: by changing the system load flow condition and dynamically interacting 

with synchronous generators (SGs). This paper presents the application of conventional method of 

damping torque analysis (DTA) to examine the effect of DFIG’s dynamic interactions with SGs on the 

small-signal angular stability. It shows that the effect is due to the dynamic variation of power exchange 

between the DFIG and power system and can be estimated approximately by the DTA. Consequently, if 

the DFIG is modelled as a constant power source when the effect of zero dynamic interactions is assumed, 

the impact of change of load flow brought about by the DFIG can be determined. Thus the total effect of 

DFIG can be estimated from the result of DTA added on that of constant power source model. 

Applications of the DTA method proposed in the paper are discussed. An example of multi-machine 

power systems with grid-connected DFIGs are presented to demonstrate and validate the DTA method 

proposed and conclusions obtained in the paper. 

 

Key words: Power system small-signal angular stability, the DFIG, Heffron-Phillips model, damping 

torque analysis (DTA). 

 

Nomenclature 

p
   

Laplace operator or d dt . 


   

Small increment or dynamic variation of a variable. 

0   Subscript denotes the value of a variable at steady state 


   

Upper bar indicates a phasor or complex number. 

,d q
   

Subscript indicates d  or q  component of a phasor under machine’s reference 

coordinate. 

,x y
   

Subscript indicates x  or y  component of a phasor under system common reference 

coordinate. 

s
   

Slip of DFIG generator. 

wE
   

Rotor transient EMF
 
of a DFIG generator. 

rV
   

Rotor voltage of a DFIG generator. 

 

1. Introduction 

Variable speed wind generators, such as DFIGs, are connected to a power system through power 

electronics based converters. Their dynamic interactions with the power system are different to that of 

conventional synchronous generators (SGs). Grid connection of wind generators may either displace 

conventional synchronous machines to retire or simply to meet system load increase without displacing 
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any SGs. In both cases, large-scale grid integration of variable speed wind generators may pose a threat to 

the security of power system operation. One particular concern is the damping of power system low-

frequency oscillations as affected by grid-connected wind generators. This important issue can be studied 

by examining the system small-signal angular stability, which has been a subject of investigation in many 

recent publications [1]-[8]. 

Authors of [1] have thoughtfully summarized three main factors that a grid-connected DFIG may 

affect the damping of power system oscillations: (1) displacing a synchronous generator; (2) changing 

system load flow; (3) dynamically interacting with synchronous generators. Each of those factors can 

influence power system small-signal angular stability differently. Earlier work presented in [2] and [3] has 

adopted an approach of displacing synchronous machines by the DFIGs to investigate the impact of wind 

penetration on power system small-signal angular stability. [4] and [5] further extend the strategy of 

displacement to investigate the effect of supplementary reactive power/voltage control of DFIGs on power 

system small-signal angular stability. Useful conclusions are presented in [4] and [5] for guiding how 

increased wind penetration can safely replace conventional generation in the power system. The case of 

increased wind penetration to meet the load requirement without displacing any SGs has been investigated 

in [6]-[8]. Grid integration of a DFIG changes system load flow and introduces dynamic interactions with 

SGs at the same time. It will be useful if a method can be developed to individually examine the impact of 

each of those two affecting factors of the DFIG on power system small-signal angular stability.  

This paper considers grid connection of DFIGs to meet the load increase without displacing any 

conventional SGs. Main contribution of the paper is the application of conventional method of damping 

torque analysis (DTA) to estimate the impact of DFIG’s dynamic interactions with the SGs on power 

system electromechanical oscillation modes. In order to clearly demonstrate the procedure of applying the 

DTA method, Heffron-Phillips model of a multi-machine power system [9]-[13] with a grid-connected 

DFIG is established. In the established model, DFIG is treated as a feedback controller expressed by its 

transfer functions. Thus the impact of DFIG’s dynamic interactions with the SGs can be estimated to be its 

damping torque contributions to affect the system oscillation modes. It is demonstrated in the paper that 

when the dynamic interactions are assumed to be zero, the DFIG is degraded into a constant power source 

to affect power system load flow only. Thus it is concluded that the DFIG’s impact due to the change of 

load flow can be estimated by modelling it as the constant power source. Separate examination of two 

affecting factors of DFIG on power system small-signal angular stability is achieved. This provides a way 

for gaining better understanding and deeper insight into the mechanism on how grid-connected DFIGs 

affect the power system small-signal angular stability. 
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2. Damping torque analysis for a grid-connected DFIG 
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Fig. 1. A DFIG connected to a multi-machine power system 

 

Figure 1 shows the configuration of a DFIG connected to a multi-machine power system. In Fig. 1, 

w wP jQ  is the injection of complex power from the DFIG into power system which is the physical cause 

of existence of interactions between the DFIG and power system for the DFIG to affect system small-

signal angular stability. w wP jQ  can be written as 

0 0    w w w w w wP jQ P jQ P j Q           (1) 

where w wP j Q   is the dynamic variation of the complex power when the system is subject to small 

disturbances. w wP j Q   exists as the result of dynamic interactions between the DFIG and power system. 

It is the key element to determine how the DFIG’s dynamic interactions with power system affect system 

small-signal angular stability. In this section, the DTA is applied to estimate how much the effect of 

w wP j Q   is on power system electromechanical oscillation modes. In the assumed case that DFIG’s 

dynamic interactions do not exist, 0 w wP j Q  . Eq.(1) indicates that in this case the DFIG becomes a 

constant power source 
0 0w wP jQ . This is when the DFIG affects system small-signal angular stability by 

changing the system load flow only. Hence the impact of load flow change introduced by the DFIG on 

oscillation modes can be individually estimated by modelling the DFIG as the constant power source. 

In order to demonstrate in details how the strategy outlined above can be implemented to separately 

examine the impact of dynamic interactions and load flow change brought about by the DFIG, in this 

section, firstly the Heffron-Phillips dynamic model of the power system of Fig. 1 is established. Secondly 

the DTA is applied to give the estimation of the impact of DFIG’s dynamic interactions with power 
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system. Finally, potential applications of examining the impact of load flow change introduced by the 

DFIG are discussed. 

 

2.1. Heffron-Phillips model 

 

The linearized model of a multi-machine power system with a grid-connected DFIG can be 

established to be 

      
      
         
      
      
         

w

d
P

dt

o

-1-1 -1 -1 -1

PQ1 2 PP

-1-1 -1 -1 -1

q q d0 EQd0 4 d0 3 d0 d0 EP

-1 -1 -1 -1

fd fdA 5 A A 6 A A A A VP

Δδ Δδ 00 ω I 0 0 0

Δω Δω -M k-M K -M D -M K 0 -M k

ΔE ' ΔE ' -T k-T K 0 -T K T -T k

ΔE ' ΔE '-T K K 0 -T K K -T T K k

 
 
  
 
 
  

wQ

-1

A A VQ
T K k

     (2) 

which can be written as 

  w w

d
P Q

dt
   

g g g P Q
X A X b b

          
 (3) 

where state variables and elements of state matrix are as same as those defined in the conventional 

Heffron-Phillips model of a multi-machine power system [9]-[14]. 

Denote 
sV  the magnitude of voltage at the node in the power system to which the DFIG is connected 

(PCC). It can have 

1 2s g w g wV d P d Q     
g g

C ΔX
           

 (4) 

In Eq.(4),   g g1 g3
C = c 0 c 0 , where 

g1
c  and 

3g
c  is the coefficient vector corresponding to Δδ  and 

q
ΔE ' , respectively. 

Linearized model of the DFIG is 

1 2 3

4 5 6

7 8

' ' '

' ' '

' '

        

          

      

wd w wd w wq w q rq

wq w wd w wq w qV s d rd

w wd w wq sV s

d
E K E K E K s K V

dt

d
E K E K E K s K V K V

dt

d
s K E K E K V

dt

        (5) 

where 

1 2 3 4

1 2 3 4

( ) ' ( ) ' ( )

( ) ' ( ) ' ( )

       

        

rd d wd d wq d d s

rq q wd q wq q q s

V K p E K p E K s K p V

V K p E K p E K s K p V
         (6) 

In matrix form, Eq.(5) and (6) can be written together as 

( ) ( )     s

d
p p V

dt
w w w w

X A X b            (7) 

Linearization of power output from the DFIG can be obtained to be 
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PVw Pw

s

QVw Qw

cP
V

cQ

    
      

      

T

wT

c
ΔX

c
           (8) 

Detailed derivation of Eq.(2) and (4) is given in Appendix A. That of Eq.(5) , (6) and (8) is given in 

Appendix B.  

From Eq.(7) and (8) it can have 

1

1

{ [ ( )] ( ) } ( )

{ [ ( )] ( ) } ( )

w PV s wP s

w QV s wQ s

P p p p c V G p V

Q p p p c V G p V

  

  





  

  

T

Pw W w

T

Qw W w

c I - A b

c I - A b
         (9) 

Equation (3), (4) and (9) together form the Heffron-Phillips model of the multi-machine power 

system with the grid-connected DFIG, which can be shown by Fig. 2 and 3. In the model, Eq.(3) is the 

“open-loop” state equation and (4) the output equation. The DFIG is treated as a one-input two-output 

“feedback controller” shown by Eq.(9), Fig. 2 and 3. Hence Eq. (3) and (4) form the “closed-loop” system 

model together with Eq.(9). 

1
K

4
K 5

K
2

K

q
ΔE '

fd
ΔE '

6
K

p -1

3 d0
(K + T ) p -1

A A
(I + T ) K

[ , ]w wP Q 

, T

PP PQ
[k k ]

, T

EP EQ
[k k ]

, T

VP VQ
[k k ]

Δω
p

o
ω Ip -1

( M + D )
Δδ

DFIG






 





w
ΔT

 
Fig. 2. Heffron-Phillips model of a multi-machine power system with the grid-connected DFIG–part of the power system 

 

g1
c

g3
c

Δδ

q
ΔE '

( )wPG p

( )wQG p

sV

wP

wQ

1gd

2gd









 
Fig. 3. Heffron-Phillips model of a multi-machine power system with the grid-connected DFIG–part of the DFIG 
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Heffron-Phillips model has been used for examining the damping torque contribution from a power 

system controller, such as a power system stabilizer (PSS), to affect power system electromechanical 

oscillation modes [9]-[13]. The model shown by Fig. 2 and 3 for the grid-connected DFIG is derived, 

aiming at the estimation of impact of DFIG’s dynamic interactions with the power system. Hence 
wP  and 

wQ  are selected as the output signals from the DFIG. The novelty of derived model, firstly, is the 

demonstration that the DFIG can be treated as feedback controller such that its impact can be estimated by 

use of the damping torque analysis, which will be presented in the next subsection. Secondly, the 

derivation of the model indicates that 
wP  and 

wQ  only respond to the variation of magnitude of DFIG’s 

terminal voltage, 
sV , as shown by Eq.(9) and Fig. 3. This result is meaningful because in the small-signal 

analysis using linearized model, error of phase tracking of voltage 
sV  by the phase-locked loop (PLL) is 

not considered at all. The only error signal “seen” by the DFIG is the deviation of voltage magnitude at the 

PCC. Normally 
sV  is small, 

wP  and 
wQ  are limited. Hence it is expected that the impact of DFIG’s 

dynamic interactions with power system on system small-signal angular stability normally should be small. 

This is quite similar to the voltage control function of a static Var compensator (SVC) or static 

synchronous compensator (STATCOM). Previous study has confirmed that the voltage control function of 

the SVC and STATCOM has little effect on the damping of power system oscillations [15]-[18]. 

 

2.2. Damping torque analysis 

 

Transfer function matrix from the DFIG outputs, 
wP  and 

wQ , to its electric torque contribution to 

the electromechanical oscillation loop of synchronous generators can be obtained from Fig. 2 to be 

( ) ( ) [( ) ]

( ) ( ) [( ) ]

w

w

p p p
P

p p p
Q





-1P
P PP A EP A VP

Q -1

Q PQ A EQ A VQ

ΔT
= G = k + K I + T k + K k

ΔT
= G = k + K I + T k + K k

          (10) 

where ( ) [( )( ) ]p p p
2 A 3 d0 A 6

K = K I + T K + T + K K . Hence the electric torque contribution from the DFIG is 

[ ( ) ( ) ( ) ( )]wP wQ sp G p p G p V  
w P Q P Q

ΔT = ΔT + ΔT G G          (11) 

The electric torque provided by the DFIG to the kth synchronous generator is 

[ ( ) ( ) ( ) ( )]wk Pk wP Qk wQ sT g p G p g p G p V              (12) 

where ( )Pkg p

 

and ( )Qkg p is the kth element of ( )pPG

 

and ( )p
Q

G  respectively. 
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Denote 
i i ij      the ith electromechanical oscillation mode of the power system of Fig. 1. It is 

one of the eigenvalues of state matrix of the closed-loop system model including the DFIG’s dynamics of 

Eq.(9) (not that of open-loop state matrix 
g

A ). If 
i

v  is the right eigenvector associated with 
i i ij     , it 

can be proved that at 
ip   (see Appendix C) 

1 2

1
( )

1 ( ) ( )

g

s k ik i k
ikg wP i g wQ i

V
vd G d G

    
 

 
 

g iC v
       (13) 

where 
giv  is the vector consisted of elements of 

i
v  corresponding to 

g
ΔX , ikv  is the element of 

i
v

corresponding to state variable k , the deviation of rotor speed of the kth synchronous generator in the 

system. Hence at the complex oscillation frequency 
i i ij     , the damping torque provided by the 

DFIG to the kth generator can be obtained from Eq.(12) and (13) to be 

Re{[ ( ) ( ) ( ) ( )] ( )}     wDk Pk i wP i Qk i wQ i ik i k wk kT g G g G D               (14) 

where Re{}  denotes the real part of a complex number. Let the sensitivity of the electromechanical 

oscillation mode to the damping torque coefficient of the kth generator be 

i
ik

wk

S
D





             (15) 

Equation (14) and (15) together gives the estimation of impact of the damping torque contribution 

from the DFIG on the oscillation mode to be 

1

N

i ik wk

k

S D


              (16) 

 

2.3. Separate examination of the impact of grid-connected DFIG on power system small-signal 
angular stability 

 

Equation (16) can estimate the impact of DFIG’s dynamic interactions with power system on the 

electromechanical oscillation mode. The impact is due to the dynamic variation of power injection from 

the DFIG into the power system, 
wP  and 

wQ , or equivalently the inclusion of DFIG’s dynamics 

expressed by its transfer function of Eq.(9). In an assumed case that 0w wP Q    , the DFIG provides no 

damping torque to SGs and there exist no dynamic interactions between the DFIG and power system 

( 0i  ). As pointed out previously, in this case the DFIG is degraded into a constant power injection into 

the power system, 
0 0w wP jQ . From Eq.(3) it can be seen that the system model becomes 


d

dt
 

g g g
X A X

            
 (17) 
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Hence the eigenvalues of open-loop state matrix 
g

A  (denoted as 
0i ) are the indications of system 

small-signal angular stability when the DFIG is modelled as a constant power injection. This means how 

much the load flow change brought about by the DFIG affects the system small-signal angular stability 

can be determined by computing 
0i . 

With the DFIG’s dynamics being considered, 0wP   or/and 0wQ  . Eigenvalues of state matrix of 

the closed-loop system model is 
i . Difference between 

0i  and 
i  is 

i  which is caused by dynamic 

interactions between the DFIG and power system and can be estimated by the DTA of Eq.(16). Therefore, 

the power system small-signal angular stability as affected by the DFIG can be examined separately in two 

steps. Firstly, the DFIG is modelled as a constant power injection and 
0i  is calculated from open-loop 

state matrix 
g

A  to check how much the load flow change introduced by the DFIG influences system 

stability. Secondly, 
i  is calculated by using the DTA of Eq.(16) to see how much the effect of the 

dynamic interactions between the DFIG and synchronous generators is. 

Estimation of dynamic interactions of the DFIGs with the SGs is important to understand the change 

of behavior of the power system when the DFIGs get involved. In [5] and [8], it was proposed that the 

participation factors of state variables of the DFIGs are calculated to estimate the scale of involvement of 

the DFIGs in power system electromechanical oscillation modes. However, the participation factors can 

only examine the scale of DFIG’s involvement in a particular electromechanical oscillation mode of 

interests. 
i  by applying the DTA as proposed in this paper can give the estimation of not only the scale, 

but also the direction of DFIG’s dynamic engagement in the oscillation mode, i.e., positive to enhance or 

negative to reduce the damping of oscillation mode of interests. 

As pointed out and discussed previously in this section, Eq.(9) indicates that dynamic interactions of 

DFIG’s with power system should normally be limited as in power systems, 
sV  usually is small. Hence 

the impact of dynamic interactions as measured by 
i  is small. This means that if the impact of grid 

connection of DFIG on power system small-signal angular stability is significant, it normally should be 

due to the change of load flow brought about by the DFIG. This conclusion is useful in planning the grid 

connection of wind farms when their dynamic models are normally not available. By modelling wind 

farms as constant power sources and computing the oscillation modes from system open-loop state matrix 

g
A , the most dangerous scenarios of connections of wind farms can be found. 
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3. An Example 

Configuration of a 16-machine 68-bus test power system is shown by Fig. 4. In this example, the 

7th-order model of SG, 2nd-order model of the AVR and 2nd-order model of the PSS were used. The 

loads were modelled as constant impedance. Parameters of the system and synchronous generators are 

given in [20]. There are four inter-area oscillation modes in the power system crucial to the small-signal 

angular stability of example system, which are listed in Table 1. 

NYPS
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29 61
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62
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42

66

14

41 4840
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12

15

 
Fig. 4. Configuration of 16-machine 68-bus test power system 

 

In order to demonstrate the application of the proposed method, it is assumed that a wind farm 

represented by a DFIG is to be connected at node 8 of the example power system without displacing any 

synchronous generators. Parameters of the DFIG are given in Appendix D. Load flow change introduced 

by the DFIG is balanced by G13. 

 

Table 1 Inter-area Modes of 16-machine 68-bus Test Power System 

 

Mode i Value 

1 -0.1222 + 3.6351i 

2 -0.3165 + 3.1942i 

3 -0.0941 + 2.7222i 

4 -0.1512 + 2.0486i 

 

Firstly, the DFIG was modelled as a constant power injection
0 0w wP jQ . 

0wP increases from 
0 0wP   to 

0 3wP   consecutively and 
0wQ  changes accordingly with a fixed power factor of 0.95. Changes of four 
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inter-area oscillation modes, 0 , 1,2,3,4i i  , can be calculated from open-loop system state matrix 
g

A  and 

are displayed in Fig. 5 as solid curves, where the arrows show the direction of change of 0 , 1,2,3,4i i   

when 
0wP  increased. 

Secondly, the DTA was applied to calculate the effect of dynamic interactions between the DFIGs 

and synchronous generators. Results of variations of four inter-area oscillation modes as affected by the 

DFIGs are shown as , 1,2,3,4i i   in Fig. 5. Results of 0 , 1,2,3,4i i i    are presented in Fig. 5 as dashed 

curves respectively. 

Finally, to confirm those results, closed-loop system model of Eq.(1), (2) and (8) with DFIGs’ 

dynamics included was used to calculate the oscillation modes of the system. The inter-area oscillation 

modes were calculated to be , 1,2,3,4i i   and displayed as dashed curves with crosses in Fig. 5. 

-0.33 -0.325 -0.32 -0.315 -0.31 -0.305 -0.3 -0.295 -0.29
3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.2

-0.099 -0.097 -0.095 -0.093 -0.091

2.714

2.716

2.718

2.72

2.722
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Fig. 5. Trajectory of inter-area oscillation modes when the level of wind penetration increases with the DFIG being connected 

at node 8 
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From Fig. 5 it can be seen that variation of damping of oscillation modes , 1,2,3,4i i   as affected by 

the DFIGs is approximately equal to that caused by the dynamic interactions between the DFIGs and 

synchronous generators , 1,2,3,4i i   and in addition to that by the load flow change introduced by the 

DFIGs 0 , 1,2,3,4i i  . Hence correctness of the method proposed in the previous section is confirmed. 

From Fig. 5 it can also be seen that the effect of dynamic interactions between the DFIG and 

synchronous generators on the damping of oscillation mode 1 is negative but rather limited; that on the 

damping of mode 2, 3 and 4 is slightly bigger and positive, but still very small. As normally the effect of 

dynamic interactions introduced by the DFIGs on power system small-signal angular stability is small, the 

changes of the oscillation modes are mainly due to the effect of load flow brought about by the DFIGs 

when they are significant. Hence when the impact of wind power connections is examined, the wind 

power generation can be modelled as constant power injection firstly. By changing the amount of wind 

power injection, the most dangerous scenarios of system operation with wind power connections can be 

identified via calculating 
0i . 

To demonstrate this conclusion further, another candidate DFIG connection location, node 16, is 

also considered. When the output power of DFIG is set to 3 pu, the effect of load flow brought about by 

the DFIG at node 8 and node 16 
0i  is listed in Table 2. The accurate results (with DFIG’s dynamics being 

included) of inter-area oscillation modes as effected by DFIG at node 8 and node 16 
i  are also listed in 

Table 3. 

 

Table 2 Effect of Load Flow Brought About by the DFIG Connected at Node 8 and Node 16 

 

 Mode 1 Mode 2 Mode 3 Mode 4 

Node 8 -0.1222 + j3.6342 -0.2970 + j3.1359 -0.0951 + j2.7147 -0.1551 + j2.0364 

Node 16 -0.1221 + j3.6342 -0.2884 + j3.1158 -0.0959 + j2.7127 -0.1564 + j2.0283 

 

Table 3 Inter-area Oscillation Modes with the DFIG Connected at Node 8 and Node 16 

 

 Mode 1 Mode 2 Mode 3 Mode 4 

Node 8 -0.1222 + j3.6342 -0.3156 + j3.1429 -0.0957 + j2.7164 -0.1576 + j2.0410 

Node 16 -0.1222 + j3.6342 -0.3113 + j3.1236 -0.0967 + j2.7145 -0.1616 + j2.0328 

 

 

From Table 3, it can be seen that: (1) Among four inter-area oscillation modes, mode 3 is the most 

dangerous one, crucial to the small-signal angular stability. (2) For mode 3 and 4, DFIG connected at node 

8 is less damped than at node 16, while for mode 2, DFIG at node 16 is less damped. For mode 1, the 
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difference is little. Same conclusions can also be drawn from Table 2 when the DFIG was modelled as 

constant power sources, which demonstrates the changes of the oscillation modes are mainly due to the 

effect of load flow brought about by the DFIGs. 

Table 4 presents the computational results of sum of participation factors of all state variables of 

DFIG when it was connected at node 8 and node 16 respectively. Results of DTA is given in Table 5. 

 

Table 4 Participation Factor of the DFIG Connected at Node 8 and Node 16 

 

 Mode 1 Mode 2 Mode 3 Mode 4 

Node 8 8.6588×10
-7

 0.0043 0.0005 0.0019 

Node 16 1.2376×10
-5

 0.0061 0.0006 0.0030 

 

Table 5 
i  by applying the DTA of the DFIG Connected at Node 8 and Node 16 

 

 Mode 1 Mode 2 Mode 3 Mode 4 

Node 8 -4.1708×10
-6

 - j1.5499×10
-6

 -0.0140 + j0.0109 -0.0011 + j0.0013 -0.0028 + j0.0029 

Node 16 -0.0001 + j0.0000 -0.0181 + j0.0124 -0.0014 + j0.0014 -0.0051 + j0.0030 

 

From Table 4 and Table 5, it can be seen the both the participation factors and the results of 

, 1,2,3,4i i  computation show that (1) for DFIG at node 8 or node 16, DFIG interacts with SGs most for 

mode 2, and least for mode 1, (2) DFIG connected at node 16 interacts with SGs more than connected at 

node 8. Though the calculation of participation factor can give an estimation of dynamic interactions 

between the DFIG and the SGs, estimation by use of , 1,2,3,4i i  is better because , 1,2,3,4i i  can not 

only provide the estimation of the scale of dynamic interactions, but also indicate whether the interactions 

are positive to improve or negative to reduce the damping of the oscillation modes. 

 

4. Conclusions 

Grid connection of wind power can meet load increase without displacing any conventional 

synchronous generators in a power system. This paper investigates how this kind of grid connection of 

wind power affects power system small-signal angular stability. Major contribution of the paper is the 

proposal of applying the damping torque analysis (DTA) to estimate the impact of DFIG’s dynamics on 

power system small-signal angular stability. The application is presented in the paper on the basis of 

establishment of Heffron-Phillips model of a multi-machine power system with a grid-connected DFIG. 

Result of applying the DTA clearly indicates that when the DFIG is modelled as a constant power 

injection, the effect of DFIG’s dynamics is excluded. Thus the effect of load flow change brought about by 
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the DFIG can be identified by modelling the DFIG as a constant power source. The total impact of the 

DFIG is that introduced by the DFIG’s dynamic interactions with SGs, which can be estimated by 

applying the DTA, in addition to that of load flow change brought about by the DFIG. 

An example of multi-machine power system with a grid-connected DFIG is presented in the paper to 

demonstrate and validated the proposed application of the DTA. It is worthwhile to point out that though 

the application of DTA for the grid-connected DFIG is proposed in the paper on the basis of Heffron-

Phillips model, it is easy to demonstrate that it is applicable for a general linearized model of a multi-

machine power system where a higher-order mathematical model of synchronous generators is used. 
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Appendix A: Heffron-Phillips model 

Without loss of generality, it is assumed that a DFIG is connected at a node between node 1 and 2 in 

a multi-machine power system as shown by Fig. A1. From Fig. A1 it can have 
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Matrix form of Eq.(A-1) is 
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Fig. A1. A DFIG connected to a multi-machine power system 

 

Assume the network equation of the N-machine power system without the DFIG connected at node s 

to be 
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           (A-3) 

where g
V and g

I is the vector of terminal voltage and current of synchronous generators. With the DFIG 

connected, the network equation needs to be modified as follows 
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where 
11 'Y  and 

22 'Y  do not include
12 1 2w wX X X  . From Eq. (A-2) and (A-4) it can be obtained 
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Substituting Eq.(A-5) into the second equation of (A-4) gives 

1 1
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where 
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For the N synchronous generators, it has [14] (also refer to [14] for the definition of variables and 

parameters) 
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From Eq.(A-6) and (A-7) it can have 
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Thus from Eq.(A-8), terminal current of the ith generator can be written as 
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where j
s sV V e  , ijj

ij ijy y e


 and ij

vi viy y e


 is the element of Y and V
Y  respectively. Linearizing Eq.(A-9) 

and arranging linearized equations in matrix form, it can have 
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From Eq.(A-2) and (A-5) it can have 
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From Fig. 1 it can have 
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From Eq.(A-11) and (A-12) it can have 
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From Eq.(A-6) and (A-13) it can have 
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Linearizing Eq.(A-14) gives 
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The output active and reactive power of the DFIG  
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By linearizing Eq.(A-16) it can have 
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From Eq.(A-15) and (A-17) it can have 
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From Eq.(A-10) and (A-18) it can have 
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Linearized model of N synchronous generators is [14] (also refer to [14] for the definition of 

variables and parameters) 
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Substituting Eq.(A-19) into (A-21) it can have 
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Thus Eq.(1) is obtained by substituting Eq.(A-22) into (A-20). Substituting Eq.(A-19) into the 

second equation in (A-18) gives Eq.(3).  

 

Appendix B: Linearized model of a DFIG 

Dynamic model of a DFIG can be written as [21-22, 24-25] 
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wq wd wq sd rd

rr rrrr

e wm

R X XR
pE E sE I V

X XX

R X XR
pE sE E I V

X XX

ps T T
J





    

    

 

        (B-1) 
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where 
sI  is the stator current, 

eT and 
wmT  the electromagnetic and mechanical torque, 

rR and 
rrX  the 

resistance and self-inductance of rotor, 
mX  the magnetizing inductance, J  the inertia, 

0 is the 

synchronous speed and 

' 'e wd sd wq sqT E I E I             (B-2) 

 

Take the direction of sV  as that of q axis of d-q coordinate of the DFIG. Thus voltage equation of 

stator winding of the DFIG is [22, 24] 

' ' 0, ' 'sd wd sq sq s wq sdV E X I V V E X I              (B-3) 

where X  is the transient inductance. Relation between stator and rotor current is [21] 

1
,ss ss

rd sd s rq sq

m m m

X X
I I V I I

X X X
              (B-4) 

where 
ssX is the self-inductance of stator winding. Linearization of Eq.(B-3) is 

''
,

' '

s wqwd

sq sd

V EE
I I

X X

 
              (B-5) 

Substituting Eq.(B-5) into the linearization of Eq.(B-4) gives 

'

'
' , '

' '

ss ss ss

rd wq s rq wd

m m m

X X X X
I E V I E

X X X X X X


                (B-6) 

Variation of DC voltage of the AC/DC converter and its effect on power system small-signal 

stability is very small. For the simplicity of derivation, it is assumed to be a constant (If considered, 

similar derivation can be carried out and conclusions of the paper will not be affected). Hence the 

dynamics of converter and network-side converter control system are not included in the discussions. 

Configuration of rotor-side converter control system is shown by Fig. B1 [23-24], where superscript ref 

indicates the reference of associated signal, 
sP and 

sQ  is the stator active and reactive power output of the 

DFIG respectively. 

,s sd sd sq sq s sq s sq sd sd sq s sdP V I V I V I Q V I V I V I              (B-7) 

By using Eq.(B-5), linearization of Eq.(B-7) is obtained to be 

0

0 0 0

0 0

0 0 0

'

( )
' '

s

s s sq sq s wd sq s

s s

s s sd sd s wq sd s

V
P V I I V E I V

X

V V
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X X

        

          

       (B-8) 

where subscript 0 denotes steady-state value of the associated variable. 

Denote the transfer function of active and reactive power PI controller by ( )pdK p and ( )pqK p  , that of 

direct and quadrature current by ( )idK p and ( )iqK p  respectively. From Fig. B1 and Eq.(B-8) it can have  
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From Fig. B1 and Eq.(B-9) it can have 
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    (B-10) 

Hence from Fig. B1 and Eq.(B-10) it can have 
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  (B-11) 
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Fig. B1. Configuration of rotor-side converter control system 

 

Eq.(5) is the compact form of Eq.(B-11). By using Eq.(B-5), linearization of Eq.(B-2) is obtained to 

be 

0 0 0

0 0 '

' ' '
( ) ' ( ) '

' '

wq wd wd

e sd wd sq wq s

E E E
T I E I E V

X X X
                (B-12) 

By using Eq.(B-11) and (B-12) and linearizing (B-1), Eq.(4) is obtained. 

The rotor active and reactive power output of the DFIG generator are 

, 0r rd rd rq rq rP V I V I Q              (B-13) 

Linearizing Eq.( B-13) it can have 

0 0 0 0 , 0r rd rd rq rq rd rd rq rq rP I V I V V I V I Q                  (B-14) 

Linearized total output active and reactive power of DFIG generator is  
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,w s r w sP P P Q Q                 (B-15) 

By substituting Eq. (B-6), (B-8), (B-11), (B-14) and (B-15), Eq.(7) is obtained. 

 

Appendix C: Proof of Eq.(12) 

From Eq.(2), (3) and (8), the state equation of the closed-loop system can be obtained as  
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          (C-1) 

where 
c

X  is the vector of state variables of control system of the DFIG generator. If j j jj      and 

,  1,2,j j Mv  is the eigenvalue and associated right eigenvector of state matrix A , it should have 
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where 
jg

v  is the vector consisted of elements of 
j

v  corresponding to 
g

X , 
jkv  is the element of 

j
v  

corresponding to 
k . From Eq.(3) and (8), it can have 
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Thus 
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Let ip   in the above equation, Eq.(12) is obtained. 

 

Appendix D: DFIGs’ parameters 

Examples in the paper are for the purpose of demonstration and validation of the proposed method. 

Hence the parameters of DFIGs used are same to be 

1 2 2 28 , 0, 0, 0.0145, 2.4012, 0.1784, 0.1225, 0.2, 12.56, 1, 62.5J s r m s r p i p iT s D R R X X X K K K K            


