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Abstract:  16 

Engineered Cocrystals offer an alternative solid drug form with tailored 17 

physicochemical properties. Interestingly, although cocrystals provide many 18 

new possibilities they also present new challenges, particularly in regard to their 19 

design and large-scale manufacture. Current literature has primarily focused on 20 

the preparation and characterization of novel cocrystals typically containing only 21 

the drug and coformer, leaving the subsequent formulation less explored. In this 22 

paper we propose, for the first time, the use of hot melt extrusion for the 23 

mechanochemical synthesis of pharmaceutical cocrystals in the presence of a 24 

meltable binder. In this approach, we examine excipients that are amenable to 25 

hot melt extrusion, forming a suspension of cocrystal particulates embedded in a 26 

pharmaceutical matrix. Using ibuprofen and isonicotinamide as a model 27 

cocrystal reagent pair, formulations extruded with a small molecular matrix 28 

carrier (xylitol) were examined to be intimate mixtures wherein the newly 29 

formed cocrystal particulates were physically suspended in a matrix. With 30 

respect to formulations extruded using polymeric carriers (Soluplus® and 31 

Eudragit® EPO, respectively), however, there was no evidence within PXRD 32 

patterns of either crystalline ibuprofen or the cocrystal. Importantly, it was 33 

established in this study that an appropriate carrier for a cocrystal reagent pair 34 

during HME processing should satisfy certain criteria including limited 35 

interaction with parent reagents and cocrystal product, processing temperature 36 

sufficiently lower than the onset of cocrystal Tm, low melt viscosity and rapid 37 

solidification upon cooling. 38 
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Introduction  39 

Pharmaceutical material science is fundamental in the design and development 40 

of new and improved drug delivery platforms. In particular, crystal engineering 41 

has brought the possibility of designing new drug complexes (cocrystals) that 42 

provide an opportunity to modify the properties of the parent drug. Possible 43 

improvements include solid-state properties, aqueous solubility, dissolution rate 44 

and bioavailability1–3, the latter being particularly important for BCS Class II 45 

drugs. Undoubtedly, over the last decade, the use of crystal engineering to 46 

optimise the physical properties of drugs has gained significant attention4,5. This 47 

may be attributed to the fact that the effective delivery of drugs to a patient in a 48 

safe and cost-effective manner is significantly influenced by the physicochemical 49 

properties of drug in the solid state. Moreover, cocrystals manufactured via 50 

crystal engineering offer an alternative solid drug form with tailored 51 

physicochemical properties and represent a significant opportunity to generate 52 

intellectual property. Interestingly, although cocrystals provide many new 53 

possibilities they also present new challenges, particularly in regard to their 54 

design and large-scale manufacture. 55 

Pharmaceutical cocrystals are multi-component molecular complexes 56 

consisting of a drug and a cocrystal former (coformer) in a well-defined 57 

stoichiometry, formed mainly via hydrogen bonding, halogen bonds and/or π−π 58 

stacking supramolecular interactions4–6. The wide range of coformer properties 59 

and interactions in solid and solution phase (depending upon manufacturing 60 

method) provides an opportunity to alter physicochemical properties. It has 61 

been previously reported that successful cocrystallization requires 62 

complimentary functional groups on drug and coformer, typical examples 63 

including carboxylic acids and amides7.  64 

Cocrystals are traditionally manufactured using traditional solvent 65 

evaporation8,9. However, more recently there has been a strong and increasing 66 

demand for clean and environmentally friendly processes that focus on green 67 

methods of conducting chemical reactions in the absence of solvents. Of 68 

particular relevance within the pharmaceutical arena has been the recent 69 

interest in, and success of, grinding methods, for pharmaceutical 70 

cocrystallisation via mechanochemical reactions10–13. This has been driven by the 71 
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fact that pharmaceutical cocrystal synthesis is largely due to the formation of 72 

supramolecular interactions that can be broken and reformed under mild 73 

mechanical conditions.  74 

Dry/neat grinding, are simple and commonly used processes for 75 

mechanochemical synthesis within solid blends14. These techniques have 76 

emerged as a useful, alternative technique to the traditional solvent-intensive 77 

methods for pharmaceutical cocrystal synthesis and production. However, there 78 

has been a number of reports presenting incomplete cocrystallisation using dry 79 

grinding15. Liquid-assisted grinding has, therefore, gained considerable favour 80 

because of the possibility of providing dramatically improved productivity via 81 

the addition of only small amounts of liquid to a typical grinding process16–24. It 82 

is, however, occasionally criticised for the unintentional production of cocrystal 83 

solvates25. In addition, the role of the added liquid differs from case to case, 84 

resulting in difficulties in clarifying reaction mechanisms16,20,26. More recently, 85 

another advanced solvent-free continuous manufacturing method, hot-melt 86 

extrusion (HME), has also emerged as an, easy to scale, alternative for 87 

mechanochemical cocrystal synthesis27–31. Interestingly, current literature has 88 

primarily focused on the preparation and characterization of novel cocrystals 89 

typically containing only the drug and coformer, leaving the subsequent 90 

formulation less explored32. IN this regard, Etter et al (1993) reported 91 

cocrystallisation in the presence of a third component by solid-state grinding33. 92 

The resulting product contained cocrystals of the complementary reagent pair, 93 

as well as the additional inert component that remained unchanged following 94 

cocrystal manufacture. Furthermore, cocrystals formed in the presence of the 95 

inert component had the same crystal structure as cocrystals grown from 96 

solution. More recently, driven by polymer-induced heteronucleation studies34, it 97 

has also been shown that the involvement of macromolecules in the cocrystal 98 

pool may also catalyse the reaction during mechanochemical preparation of 99 

cocrystals35. The cocrystals manufactured using polymer-assisted grinding 100 

methods were shown to negate the risk of generating undesirable solvates, while 101 

providing excellent control over the particle size of the resultant cocrsytals. 102 

Moreover, other important work has investigated cocrystal manufacture in the 103 

presence of an inert excipient36. The effects of coformers on phase 104 
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transformation and release profiles of carbamazepine (CBZ) cocrystals in 105 

hydroxypropyl methylcellulose (HPMC) matrix tablets were examined. It was 106 

shown that HPMC partially inhibited the crystallisation of CBZ during dissolution.  107 

If mechanochemical synthesis is to deliver its promise of being a clean 108 

manufacturing technology, it must be shown to be capable of operating in an 109 

environment devoid of solvent and be scalable. Furthermore, it is well 110 

recognised that cocrystal synthesis is only one step in the development of 111 

suitable oral dose formulations with other components (e.g., lubricant, glidant, 112 

diluent) and unit operations (milling, sieving, blending, compression, filling) 113 

being required before a successful drug product is produced.  In light of the 114 

above, we propose, for the first time, the use of hot melt extrusion, a solventless, 115 

continuous and easily scalable technique, for the mechanochemical synthesis of 116 

pharmaceutical cocrystals in the presence of a meltable binder. In this approach, 117 

we examine chemically inert excipients that are amenable to hot melt extrusion, 118 

forming a suspension of cocrystal particulates embedded in a pharmaceutical 119 

matrix. We aim to understand if inert meltable carriers can be used to facilitate 120 

the production of a solid extrudate while also acting as a catalyst for 121 

cocrystallisation during melt-extrusion processing.   122 

 123 

Selection of Formulation Components 124 

Cocrystal Reagents 125 

Ibuprofen (Ibu, Figure 1a) is a BCS Class II drug37 and has dissolution limited 126 

absorption, particularly in acidic environment. Ibu has been widely used as a 127 

cocrystal reagent, principally because it is inexpensive and contains a carboxylic 128 

acid functional group that makes it an excellent donor to form intermolecular 129 

hydrogen bonds with cocrystal reagents that possess a lone pair of electrons38.  130 

Isonicotinamide (IsoNA, Figure 1a), although not classified as a GRAS 131 

substance, has been shown to be an effective coformer with many literature 132 

examples of carboxylic acid-IsoNA cocrystals39–41.  133 

 134 

Matrix Excipients 135 

Recently it has been demonstrated that a small molecular weight sugar alcohol, 136 

mannitol, could be used as a matrix platform capable of significantly increasing 137 
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the dissolution rate of poorly water soluble drugs42. In the work reported by 138 

Thommes et al., (2011) HME was used to manufacture a suspension of 139 

crystalline drug in a molten excipient to produce a uniform distribution of fine 140 

particles. Rapid crystallization of mannitol ‘fixed’ the suspended drug particles 141 

producing a solid homogeneous extrudate. In the work described in this article, 142 

we adapt the concept of extruded crystalline suspensions and apply the 143 

aforementioned preliminary criteria into matrix carrier selection. However, due 144 

to thermal stability considerations, mannitol, which melts at 160°C, was not used. 145 

Consequently, xylitol which melts at a significantly lower temperature was 146 

employed.   147 

Despite the advantages sugar alcohols offer with respect to low melt viscosity 148 

and rapid solidification, extrudates may be difficult to shape post extrusion 149 

owing to the rigidity of their crystalline structure. Thus, the use of thermoplastic 150 

polymers was also examined. Eudragit® E PO and Soluplus® were chosen for 151 

such purposes owing to their relatively low Tg and hence wider processing 152 

window. If cocrystals can be successfully manufactured and precipitated from an 153 

amorphous polymeric carrier, an amorphous suspension also referred to as a 154 

glass suspension could be formulated. 155 

 156 

Materials & Methodology 157 

Materials  158 

Ibuprofen, isonicotinamide, and xylitol were purchased from Sigma-Aldrich (St. 159 

Louis, MO, USA). Eudragit®E PO was obtained from Evonik (Essen, Germany). 160 

Soluplus® was kindly supplied by BASF Corporation (Ludwigshafen, Germany). 161 

All other chemical reagents used were of analytical grade.  162 

 163 

Differential Scanning Calorimetry (DSC) 164 

Cocrystallisation feasibility studies and extrudate analyses were conducted on a 165 

DSC 4000 (heat flux single furnace), and a DSC 8000 (power compensation dual 166 

furnace), respectively (Perkin-Elmer, Windsor, Berkshire, UK). Both instruments 167 

were calibrated at the respective ramp rates with indium and zinc for both 168 

melting point and heat of fusion. Either dry nitrogen or helium was purged at a 169 

flow rate of 40mL/min through the sample and reference cells to maintain an 170 



 7 

inert atmosphere. 3-5mg of sample was accurately weighed into an aluminium 171 

pan and crimped using an aluminium pan lid. The crimped pan set was then 172 

subjected to a thermal ramp at 20°C/min in DSC 4000, and 200°C/min in DSC 173 

8000, respectively, from -60°C to 200°C. The polymeric candidates were 174 

subjected to modulated DSC (TA Q100, TA Instruments) at 2°C/min, with an 175 

amplitude and frequency of ±0.6°C every 40s to enable the determination of the 176 

glass transition temperature (Tg). 177 

 178 

Thermogravimetric Analysis (TGA) 179 

The decomposition temperature for each individual substance was determined 180 

using a Thermal Advantage Model Q500 TGA (TA instruments, Leatherhead, UK). 181 

Ramp tests were performed on powdered samples (5-10 mg) heated at 182 

10°C/min over a range from 0°C to 400°C. Dry nitrogen (flow rate sample: 60 183 

mL/min, flow rate balance: 40 mL/min) was purged through the sample 184 

chamber during all experiments to maintain an inert environment and hence 185 

prevent oxidation. The temperature at which a 5% weight loss occurred was 186 

recorded for each sample and considered as the onset of material decomposition.  187 

 188 

Preparation of the Reference Cocrystal Standard  189 

0.01 moles of equimolar ibuprofen-isonicotinamide mixture was dissolved in 190 

50mL methanol and stirred at room temperature until complete dissolution was 191 

achieved. The resulting clear solution was left in a fume hood covered with a 192 

funnel to allow slow evaporation of the solvent for 48 hours. The precipitate was 193 

collected and subsequently stored in an oven at 45°C for a further 24 hours to 194 

remove any residual solvent. The resulting material was gently pulverized using 195 

a mortar and pestle, sized through a 220μm sieve and stored in a vacuum 196 

desiccator before being subjected to further analysis. 197 

 198 

Cocrystallisation via Ball-Milling 199 

Equimolar ibuprofen-isonicotinamide mixtures with or devoid of excipient were 200 

ground using a ball mill (MM200, Retsch, Reinische, Haan, Germany) at a 201 

frequency of 20 s-1 frequency for pre-determined periods of time (i.e. 2, 5, 8, 15, 202 
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30, 45 and 60 minutes). The resulting pulverized mixtures were sized through a 203 

220μm sieve before being subjected to further characterisation. 204 

 205 

Cocrystallisation via Hot-Melt Extrusion 206 

Physically mixed blends of each formulation were manually fed into a co-rotating 207 

twin-screw HAAKE Mini-lab Extruder (HAAKE Minilab, Thermo Electron 208 

Corporation, Stone, Staffordshire, UK). The process temperature was determined 209 

according to the melting temperature(s) of the crystalline compound(s) in the 210 

physical blend with screw speed set at 10rpm. For the formulations containing 211 

xylitol, the HME parameters were slightly modified to prevent early-stage phase 212 

separation and late-stage die blockage. In particular, the processing was divided 213 

into two stages: the ‘feeding stage’ where temperature was set at the melting 214 

point of the polyol and screw speed set at 10rpm; and the ‘flushing stage’ where 215 

temperature was set 7°C lower than the polyol melting temperature and screw 216 

speed set at 50rpm (Table 1). All collected products were pulverized by mortar 217 

and pestle and subsequently stored in a desiccator over silica gel at room 218 

temperature prior to further analyses.  219 

 220 

Powder X-ray Diffraction (PXRD) 221 

Samples were analysed at room temperature using a MiniFlex II Desktop Powder 222 

X-ray Diffractometer (Rigaku Corporation, Kent, England) equipped with Cu Kβ 223 

radiation, at a voltage of 30 kV and a current of 15 mA. The powdered samples 224 

were gently consolidated on a glass top-loading sample holder with 0.2mm 225 

depression. All samples were scanned within the angular range of 1.5-40° 2Θ in 226 

continuous mode with a sampling width of 0.03° and a scan speed of 2.0°/min.  227 

 228 

Quantification of Cocrystal Yielding  229 

The peak area of the cocrystal characteristic peak at 3.3° 2Θ for each sample was 230 

used to determine the cocrystal yield43. A series of physical mixtures containing 231 

the reference cocrystal and xylitol at 10 different cocrystal loadings, 10, 20, 30, 232 

40, 50, 60, 70, 80, 90 & 100% w/w, respectively, were prepared through gentle 233 

mixing. The blended samples were placed into a 0.2mm-deep squared 234 

indentation on the glass sample holder for PXRD analysis. The integration region 235 
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was set between [2.400~4.050° 2θ] with manual background subtraction using 236 

the IntegralAnalysis Version 6.0 (Rigaku Corporation, Kent, England). A 237 

calibration curve, y=284.877x-668.959 (R2=0.998) was constructed using linear 238 

regression of the average peak area against theoretical cocrystal concentration 239 

in the blends. The calibration curve was validated for linearity, accuracy, 240 

precision, LoD and LoQ according to the methods recommended in the ICH 241 

guidelines44 (data included as supporting documents). 242 

 243 

FT Infrared Spectroscopy (FTIR) 244 

FT-IR spectroscopy was used to investigate molecular interactions and to 245 

identify the structure of Ibu/IsoNA cocrystal. Experiments were performed using 246 

a Fourier transform infrared spectrophotometer model 4100 (FT/IR-4100) 247 

(Jasco, Easton, MD), incorporated with the Version 2 Jasco Spectra Manager 248 

Software. A scanning range of 4000-400cm-1 with 4.0cm-1 resolution and 16 249 

scans per spectrum was used for all samples. Prior to FTIR spectroscopic 250 

analysis, samples were gently ground with dry potassium bromide (KBr) powder 251 

using an agate mortar and pestle and compressed at approximately 7.5Pa for 60s 252 

to prepare a KBr disk. The concentration of the samples in a KBr disk was 253 

maintained at 0.67% (2mg sample plus 298mg KBr) for all analyses.  254 

 255 

Raman Microscopy & Mapping 256 

Raman spectroscopic analyses were conducted using a RamanMicro 300 Raman 257 

microscope (Perkin Elmer, Windsor, Berkshire, UK) coupled with an Avalon 258 

Raman station R3 Model AVRS003A spectrometer (Avalon Instruments, Belfast, 259 

UK). A magnification of 20x with a total exposure time of 20s (4s acquisition × 5) 260 

was used for all samples. Data was collected from 200-3200cm-1 and analysed 261 

using Spectrum v6.3.4 software with an automatic baseline correction. Cross 262 

sections of rod shaped extrudates were mapped with a 50µm spacing between 263 

each sampling point. Approximately 4000 points were collected across the 264 

exposed mapping area for the cross section of one pellet. The laser power was 265 

set at 80% throughout the mapping process to avoid sample saturation. 266 

Spectrum IMAGE R1.6.4.0394 software was used to conduct mapping analysis 267 

for each examined sample. The characteristic peak associated with the 268 
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Ibu/IsoNA cocrystal at 1020 cm-1 was used in the single wavenumber mode. The 269 

maps were shown with an ordinate axis range of [1000-7500 INT], whilst the 270 

horizontal X axis range and the vertical Y axis range were both 0-2350 μm. A 271 

rainbow cubic look-up table was utilized to illustrate the intensity of the chosen 272 

cocrystal peak. 273 

 274 

Polarized Light Microscope (PLM) 275 

A polarized light microscope (Olympus BX50F4, Microscope Service and Sales, 276 

Surrey, UK) was used to study the morphology of the melt-extruded cocrystals in 277 

comparison to that of the unprocessed ibuprofen. Polarized light micrographs of 278 

each sample were captured at room temperature using a Pixelink Megapixel 279 

Firewire Camera and Pixelink software (Scorpion Vision Ltd., Lymington, UK). 280 

The milled sample within the size range 180~212μm was dispersed in a drop of 281 

mineral oil on a glass slide. All measurements were performed at a magnification 282 

of 200x with the polariser and analyser positioned perpendicularly. 283 

 284 

 In-vitro Dissolution Study 285 

In-vitro drug dissolution tests were conducted to evaluate solubility 286 

enhancement and dissolution behaviour of the melt extruded Ibu/IsoNA 287 

cocrystals in comparison with that of the unprocessed ibuprofen. Release studies 288 

were performed using a Caleva dissolution tester 10ST (GB Caleva Ltd., Dorset, 289 

UK) according to the BP 2011 apparatus II, paddle method. The powdered 290 

samples were sieved to the same particle size [180~212μm] prior to testing. 291 

Each formulation, containing equivalent to 120mg Ibu, was tested in 600mL 292 

deionized water at 37±0.5°C using a paddle rotation speed of 75rpm. 3mL 293 

aliquots were withdrawn from each dissolution vessel at regular time intervals 294 

and filtered through a 0.45μm Millipore filter unit (MILLEX®-GS, Millipore, 295 

Carrigtwohill Co, Cork, Ireland) before being subjected to a validated HPLC 296 

analysis. Immediately after sample withdrawal, 3mL of blank dissolution media 297 

was added into each vessel to maintain the overall media volume.  298 

 299 
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High Performance Liquid Chromatography (HPLC) 300 

The concentration of ibuprofen in each sampled aliquot was determined using 301 

HPLC analysis. The HPLC system consisted of a Waters binary HPLC pump 1525, 302 

a Plus Auto sampler 717, an In-line Degasser AF and a Dual λ Absorbance 303 

Detector 2487 (Waters, Massachusetts, USA). Sampled aliquots were analysed at 304 

220 nm using a Jupiter C18 300 column (5μm) with a length of 250 mm and a 305 

diameter of 4.60 mm (Phenomenex, Macclesfield, UK). The mobile phase 306 

consisted of 85% methanol and 15% deionized water containing 0.2% TFA. The 307 

flow rate was set at 1 mL/min and the column chamber was maintained at 40°C 308 

for the entire analytical procedure. The average retention times under these 309 

conditions were 4.56 minutes for Ibu, 3.40 minutes for IsoNA, while other 310 

components were tested to show no interference. When Soluplus® was involved, 311 

the mobile phase was changed to a 70:30 ratio between the organic and 312 

inorganic solutions with a retention time of 8.76 minutes for ibuprofen to avoid 313 

interference. Peak areas were calculated using Breeze 3.30 software. Standard 314 

solutions were prepared in triplicate using methanol and deionized water at 1:1 315 

volume ratio for the generation of a linear calibration curve (R2>0.999). The 316 

calculated concentrations of ibuprofen dissolved during the dissolution test were 317 

then plotted as a function of time. 318 

 319 

Storage Stability 320 

The extruded suspensions were stored either in a desiccator over silica gel for 12 321 

months under ambient conditions or in a desiccator over saturated sodium 322 

chloride solution at 20°C and 70%RH for 12 months. The aged suspensions were 323 

examined by PXRD and the cocrystal content in each formulation was calculated 324 

using the aforementioned yielding quantification.  325 

 326 

Statistical Analysis  327 

Statistical analyses were conducted using a one-way analysis of variance 328 

(GraphPad Prism 6.0). Individual differences between treatment groups were 329 

identified using Tukey’s post-hoc test with P<0.05 denoting statistical 330 

significance. 331 

 332 
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Results 333 

Formation of Ibu/IsoNA Cocrystal 334 

In this work we considered that Ibu and IsoNA would form a cocrystal at an 335 

equimolar stoichiometric ratio45–48. This would be facilitated by the interaction 336 

of the carboxylic acid functional group of Ibu, the IsoNA amide and the N on the 337 

pyridine of IsoNA26. With respect to IBu and IsoNA, the carboxylic acid group, 338 

would be highly pertinent in successful formation of cocrystal with carboxylic 339 

acid-aromatic nitrogen and carboxylic acid-amide synthons being the major 340 

interactions present (Figure 1b).  341 

 Prior to addition of pharmaceutical excipients and evaluation of extrusion as a 342 

continuous process for mechanochemical synthesis of cocrystals, we employed 343 

ball milling to determine the feasibility of forming a cocrystal product from an 344 

Ibu/IsoNA blend at a 1:1 molar ratio. Conventional DSC analysis at a heating rate 345 

of 20°C/min was used to confirm the formation of the Ibu/IsoNA cocrystal. It has 346 

been previously reported in many articles that the melting temperature (Tm) of 347 

cocrystal is often between that of the drug and the coformer, or lower than both 348 

individual Tm values. The DSC thermograms for Ibu, IsoNA, and their equimolar 349 

physical mixtures are shown in Figure 2. Ibu and IsoNA exhibited characteristic 350 

melting points, when heated using a ramp rate of 20°C/min, at approximately 351 

80.58±0.32°C and 161.56±0.59°C, respectively. Physically mixed and ball-milled 352 

samples exhibited DSC traces devoid of an endothermic peak characteristic of 353 

IsoNA melting and importantly, a new endothermic event, considered to be the 354 

heat of fusion for a cocrystal was observed at approximately 123°C. The enthalpy 355 

associated with this peak increased in value as a result of increasing mechanical 356 

energy (physically mixed sample (50.1±0.77 J/g); 2 minutes milling (148.6±0.83 357 

J/g); 5 minutes milling (155.6±1.02 J/g)).  Moreover, ball milled samples 358 

exhibited an Ibu melting peak that was significantly depressed, decreasing from 359 

80.58±0.32°C to 73.97±0.56°C and 72.03±0.04°C for 2 minutes and 5 minutes 360 

milling, respectively. The enthalpy of these two transitions was also significantly 361 

lowered. Moreover, there was no evidence of a melting endotherm for crystalline 362 

IsoNA in the DSC thermograms where Ibu was present. From the data, it would 363 

appear that once Ibu melted, IsoNA dissolved in the molten drug.  364 

The addition of 10% xylitol, as shown in Figure 3, considerably decreased the 365 
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value of enthalpy associated with the cocrystal peak from 148.6±0.83 J/g to 366 

62.46±0.64 J/g after 2 minutes milling. In this case it is important to note that the 367 

maximum enthalpy expected for the formulations incorporating 10% w/w 368 

xylitol would be approximately 133 J/g (0.9x148.6). The enthalpy observed at 2 369 

minutes milling in the presence of 10% Xylitol was approximately 48% of what 370 

was expected.  The enthalpy, nonetheless, increased significantly with increasing 371 

duration of milling, reaching 124.69±1.13 J/g (96% of value observed for neat 372 

cocrystallisation) after 45 minutes of consecutive milling. A further 15 minutes 373 

milling processing, however, decreased the measured cocrystal ΔH to 374 

107.25±0.98 J/g. In all cases, there was a clear melting endotherm present for 375 

Xylitol suggesting that, unlike IsoNA, it remained crystalline following Ibu 376 

melting.  377 

 378 

Hot Melt Extrusion 379 

Hot melt extrusion is a non-ambient process that forces materials through a 380 

heated barrel. Processing parameters and formulation variables have a 381 

significant impact upon the properties of extruded product. The process 382 

parameters and associated observations made during HME are listed in Table 1. 383 

The incorporation of polymeric matrix carriers (formulations 2 and 3) 384 

significantly reduced the torque values, when compared with formulation 1 (Net 385 

cocrystal reagents). The addition of 10% w/w xylitol resulted in an increase of 386 

torque from 40-44Ncm up to 109-122Ncm and a reduction in the residence time 387 

from 233s to 90s. A further increase in the xylitol concentration to 30% w/w 388 

decreased the torque to 43-59Ncm, similar to the torque values recorded for 389 

formulation 1. A further increase in the concentration of xylitol to 50% w/w 390 

reduced the torque to 19-22Ncm. Interestingly, decreasing torque values 391 

progressing through formulations 4, 5 and 6 resulted in residence times that 392 

were increased. The addition of xylitol (30% and 50%) increased residence time 393 

to 272s and 329s, respectively. 394 

 395 

Thermal Analysis 396 

When using conventional DSC at a heating rate of 20°C/min during preliminary 397 

study, physically mixed Ibu and IsoNA blends showed only endothermic events 398 
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typical of the melting of Ibu and the Ibu/IsoNA cocrystal (Figure 2). By using 399 

hyper DSC (200°C/min), however, it was possible to observe an endothermic 400 

peak characteristic of the melting of the residual IsoNA content. The 401 

thermograms provided by hyper DSC measurements for pure Ibu, IsoNA, xylitol 402 

and their extruded mixtures are presented in Figure 4. Ibu and IsoNA exhibited 403 

characteristic melting points (peak) at 84.41±0.57°C and 163.26±0.99°C, 404 

respectively, when heated using a ramp rate of 200°C/min. The DSC trace 405 

obtained for the reference cocrystal, precipitated from solution, showed one 406 

single endothermic event, typical of a melting transition ranging from 407 

120.78±0.03°C to 134.59±0.43°C, with the peak maximum at 127.29±0.55°C.  408 

At such relatively fast heating rate, xylitol melted at 104.17±0.29°C and 409 

displayed a broad melting peak ranging from 92.98±0.13°C to 112.30±0.17°C. 410 

The similarity of melting temperatures for xylitol and the cocrystal presented 411 

difficulty in using DSC to determine presence of cocrystal. This was made more 412 

difficult by the fact that the melting transition associated with the cocrystal 413 

showed considerable depression if measured in the presence of xylitol (Figure 4). 414 

This was particularly relevant in formulations containing high concentrations of 415 

xylitol. Moreover, evidence of unreacted Ibu and IsoNA could be observed in 416 

thermograms associated with suspensions of 30% and 50% xylitol. However, Tm 417 

of the residue of both parent components were also noticeably depressed (both 418 

onset and end point).  419 

Amorphous carriers Eudragit® E PO and Soluplus® showed a Tg at 420 

43.94±0.13°C and 66.52±0.20°C, respectively (Table 2). All carrier excipients 421 

studied were thermally stable whereas ibuprofen and the reference cocrystal 422 

showed onset of decomposition at 197.44±3.67°C and 164.07±6.77°C, 423 

respectively.  424 

 425 

PXRD 426 

PXRD patterns are depicted in Figure 5.  Ibu showed distinct peaks at 6.3°, 427 

16.7°, 20.2° and 22.4° 2Θ, ISoNA at 17.9°, 21.0° and 23.4° 2Θ, and Xylitol at 20.0°, 428 

22.5°, 22.7° and 38.4° 2Θ, respectively. For the physically mixed systems the 429 

PXRD data (iv) correlated well with DSC data in that there was little evidence of 430 

cocrystal formation. For the extruded formulations containing Xylitol, the 431 
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cocrystal product (V-X) showed distinct peaks that were distinguishable from 432 

simple overlap of cocrystal reagents and xylitol. New peaks were evident at 3.3° 433 

and 17.1° 2Θ. The intensity of the peaks attributable to cocrystal product varied 434 

as a function of excipient type and concentration. It is evident from cocrystal 435 

yield that the conversion from the parent reagents to the cocrystal was 436 

28.06±1.65%, 33.46±0.55%, 28.60±0.61% and, 28.25±0.65% for formulations 1, 437 

4, 5 and, 6, respectively. Those formulations extruded with polymeric excipient, 438 

on the other hand, showed no evidence of cocrystal formation. Interestingly, 439 

these diffractograms (vi and vii) showed no characteristic peaks attributable to 440 

Ibu either. This would suggest that Ibu had been rendered amorphous following 441 

extrusion.  442 

 443 

FTIR Spectroscopic Analysis 444 

The FTIR spectra, in the 3600-2600 cm-1 and 2000-1200 cm-1 wavenumber 445 

intervals, for Ibu, IsoNA, xylitol, the cocrystal reference, and the extruded 446 

suspensions containing 10%, 30% and, 50% xylitol, respectively, are 447 

represented in Figure 6. The assignment of IR vibrational bands in Ibu, IsoNA 448 

and the equimolar reference cocrystal obtained from solution method is listed in 449 

Table 3. The FTIR spectrum for Ibu showed a number of weak peaks in the 450 

wavenumber region [3100-2900 cm-1] reflecting complex modes of vibrations 451 

associated to C-H, C-H2 and C-H3 groups49; and a very broad peak covering 452 

almost the whole wavenumber range from 3400~2800 cm-1 associated to O-H 453 

stretching vibrations within a carboxylic acid dimeric structure of Ibu. A sharp 454 

and intense C=O stretching band at 1721.16 cm-1 was also observed for Ibu due 455 

to the presence of a mono carboxylic acid group50. IsoNA, on the other hand, 456 

showed characteristic IR bands at: (i) 3369.03 cm-1 and 3185.83 cm-1, 457 

representing asymmetric and symmetric νN-H stretching vibrations, respectively, 458 

for the H-bonded primary amide groups among closely packed IsoNA 459 

molecules51,52; (ii) 1668.12 cm-1, denoting νC=O stretching of the amide carbonyl 460 

group53; (iii) 1622.80 cm-1 and 1594.84 cm-1 for the δN-H bending vibrations of 461 

the primary amide54; and (iv) 1551.45 cm-1 signifying νC=N ring stretching in the 462 

heterocyclic pyridine ring structure54,55.  463 
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As shown in Figure 1, the the cocrystal structure involves a number of groups 464 

with characteristic IR vibrational bands. They are the IsoNA amide N-H 465 

(stretching and bending), the ISoNA amide C=O (stretching), and the pyridine N 466 

of isoNA, as well as the carboxylic acid group of IBU.  467 

The amide carbonyl and the pyridine N are two competing H-bond acceptor 468 

sites in IsoNA structure.  The pyridine N, however, is generally considered a 469 

better acceptor56, and hence more prone to attract the amide H-atom, forming a 470 

N-HN bond in bulk IsoNA. In forming an amide homodimer synthon during 471 

cocrystallisation, the amide N-H asymmetric and symmetric stretching (3369.03 472 

cm-1 and 3185.83 cm-1) were shifted to 3434.60 cm-1 and 3173.29 cm-1, 473 

respectively, whilst the amide carbonyl stretching vibration band (1668.12 cm-1) 474 

was shifted to 1629.55 cm-1. The N-H blue shift to 3434.60 cm-1 indicated 475 

dissociation of the existing N-HN bond, generating free amide N-H. The N-H 476 

red shift to 3173.29 cm-1, together with the carbonyl red shift to 1629.55 cm-1, 477 

were both attributed to the formation of N-HO bonds between the amide N-H 478 

and amide carbonyl groups in the IsoNA homodimer.  479 

The lone pair of electrons on the pyridine N, after dissociation of the original 480 

N-HN bond in bulk IsoNA, provides a strong proton acceptor site. The absence 481 

of the associated Ibu O-H stretch (broad peak in the region 3400~2800 cm-1) 482 

provides support for dimeric dissociation in bulk Ibu. The occurrence of an 483 

additional peak at 3317.93 cm-1 was attributed to the formation of a 484 

supramolecular heteromeric synthon through O−HN hydrogen bonding 485 

between the pyridine N and the Ibu O-H38. Moreover, in forming the carboxylic 486 

acid-pyridine H-bond, the carboxylic acid carbonyl (1721.16 cm-1) was red 487 

shifted to 1702.84 cm-1, while a C-H stretching (796.457 cm-1) from the pyridine 488 

ring was also red shifted to 779.101cm-1, indicating formation of a C−HO 489 

hydrogen bond within the heteromeric synthon39,57. It was also apparent that the 490 

addition of xylitol as a matrix carrier did not alter interactions between two 491 

parent cocrystal reagents. The IR spectra of the cocrystal/xylitol suspensions 492 

were typical of the spectrum of cocrystal with xylitol superimposed (Figure 6).  493 

 494 
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Raman Spectroscopy and Mapping 495 

As shown in Figure 7, the unprocessed Ibu, IsoNA, and their equimolar cocrystal 496 

showed three distinctive peaks within Raman shift region 1050.0~975.0 cm-1. 497 

Ibu exhibited a peak at 1006.13 cm-1 characteristic of aromatic ring C-C 498 

stretching. IsoNA presented a very intense and well-defined peak at 993.97 cm-1 499 

attributed to the pyridine ring structure. In the equimolar cocrystal, the pyridine 500 

peak was broadened and the wavenumber was shifted to 1020.50 cm-1. There 501 

were two shoulders characteristic of the vibration of the aromatic ring of Ibu, as 502 

well as the residual pyridine ring structure from the remaining free IsoNA. The 503 

matrix carrier xylitol, on the other hand, did not show any distinctive peak 504 

within this Raman shift region. It is, therefore, clear that the peak at 1020.50 cm-1, 505 

characteristic of the cocrystal, is free of interference from any other component 506 

within the formulation. By plotting the intensity of this specific peak across the 507 

the sampled cross-sectional area of the extrudate we can determine the 508 

distribution of the cocrystal.  509 

Figure 8 (a) provides a Raman map of the extrudate produced using only 510 

cocrystal reagents devoid of any excipient.  The peak intensity at 1020 cm-1 has 511 

been used to generate the Raman map using a rainbow cubic look-up table. The 512 

lookup table was generated within an ordinate range of [1000-7500 INT]. It is 513 

apparent that there is a difference in the intensity of the cocrystal peak across 514 

the cross-sectional area with a highly intense region focused to the outer edges 515 

of the extrudate. The spectra of a number of labelled points, representing a range 516 

of intensities across the map are provided for comparative purposes.  517 

The mapping results shown in Figure 9 depict the intensity values of the 518 

1020.50 cm-1 peak in extrudates containing different concentrations of xylitol 519 

and following storage. Interestingly, the intensity of the cocrystal peak varied 520 

considerably as a function of xylitol concentration and storage. When extruded 521 

with 10% xylitol (Figure 9(1)), there was an obvious and significant increase in 522 

the intensity of cocrystal (relative to neat extrusion) across the cross-sectional 523 

area of the extrudate. This result correlated well with results obtained from XRD 524 

where the formulations containing 10% xylitol had intense diffraction bands at 525 

3.3° and 17.1°. With increasing xylitol concentration in the formulation (30% 526 

and 50%, respectively), the overall intensity for the characteristic cocrystal peak 527 
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at 1020.50 cm-1 decreased throughout the entire cross-section (Figure 9, (2) and 528 

(3)). This result was again mirrored in the XRD where the cocrystal yield 529 

decreased from 33.46±0.55% to 28.25±0.65%, as the concentration of xylitol 530 

increased from 10% to 50%. Importantly, after 12-month storage under 531 

controlled conditions (20°C with 70% RH), an extensive increase in the intensity 532 

values for the distinctive cocrystal peak at 1020 cm-1 was observed for all three 533 

formulations containing xylitol (Figure 9, (4), (5) & (6)), suggesting significant 534 

growth of the cocrystal content upon aging . 535 

 536 

Cocrystal Morphology Study 537 

The crystal habit of a drug is extremely important consideration in 538 

pharmaceutical manufacturing. Typically a number of basic physicochemical 539 

properties such as solubility, dissolution rate, powder flow, compressibility, and 540 

mechanical strength depend on the crystal habit. Figure 10 cshows polarised 541 

light micrographs of Ibu, as received, cocrystal formed using traditional solvent 542 

methods and melt extruded cocrytal particles. The PLM images clearly depict the 543 

needle-like shape of both Ibu and the reference cocrystal standard. Such 544 

anisotropic shape could be problematic during pharmaceutical manufacturing 545 
58,59. Conversely, the melt-extruded cocrystal particles (Figure 10c), were 546 

uniformally shape and much smaller in size.  547 

 548 

In-vitro Drug Dissolution 549 

Drug release profiles (Figure 11) and associated data confirmed that all extruded 550 

formulations exhibited improved solubility and increased dissolution rate of Ibu 551 

with the exception of the formulation containing Eudragit® E PO. The amorphous 552 

dispersion with Soluplus® (formulation 2) had a similar relative dissolution rate 553 

at 5 min (0.95±0.06) and 45 min (0.44±0.04) to the neat-extruded formulation 1 554 

(0.94±0.04 and 0.44±0.00, respectively). Formulation 1, however, had a 555 

significantly higher dissolution rate (0.20±0.01) and increased solubility 556 

(DP180min of 36.30±1.33%) at 180 min than formulation 2 (0.16±0.02, and 557 

29.08±3.13%, respectively). The inclusion of xylitol significantly increased the 558 

dissolution rate at drug percent released. In particular, the extruded suspension 559 

containing 50% w/w xylitol (formulation 6) exhibited the highest DP and RDr 560 
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values of all formulations (DP5min at 6.41±0.07%, DP45min at 37.41±0.81%, 561 

DP180min at 43.53±0.34%, RDr5min of 1.28±0.01, RDr45min of 0.83±0.02 and, 562 

RDr180min of 0.24±0.00, respectively.  563 

 564 

Cocrystal Content Evaluation After Aging 565 

The stability of pharmaceutical materials that may undergo physical form change 566 

during storage is fundamentally important. Stability must be examined in detail 567 

in order to develop successful pharmaceutical products. The physical stability 568 

relating to the relative quantity of cocrytal is shown in Figure 12. Samples were 569 

stored at room temperature under both desiccated and humid conditions (20°C 570 

over silica gel, and 20°C with 70%RH, respectively) to evaluate changes in the 571 

cocrystal content. As previously presented, formulation 4 that contained 10% 572 

w/w xylitol showed a significantly higher cocrystal yield (33.46±0.55%) than the 573 

neat-extruded formulation 1 (28.06±1.65%) immediately after HME processing. 574 

Increasing the concentration of xylitol considerably decreased the yield for 575 

formulations 5 (28.60±0.61%) and 6 (28.25±0.65%), respectively. A similar but 576 

qualitative indication was also evident in the Raman maps.  Interestingly, the 577 

neat extruded formulation 1 showed an increase in cocrystal yield increase 578 

following 12-month storage under dry (33.85±2.69%) and humid (43.31±1.25%) 579 

conditions, respectively. Formulations containing xylitol, retained the same 580 

quantity of cocrystal yield following storage under dry conditions, while showing 581 

increase to various extents, 34.86±0.85%, 35.66±1.88% and 34.49±2.40 for 582 

formulations 4, 5 and 6, respectively, following storage under humid conditions.  583 

 584 

Discussion 585 

Pharmaceutical cocrystals offer a way to overcome the solubility issues 586 

associated with BCS class II compounds while also retaining the thermodynamic 587 

stability of the crystalline form of a drug60,61. Conventionally, the manufacture of 588 

a pharmaceutical cocrystal product is divided into two major aspects: the 589 

production/synthesis of the cocrystal itself and the subsequent formulation of 590 

cocrystal into a pharmaceutical dosage form. Pharmaceutical cocrystals have 591 

developed significantly in the past decade with increasing number of patents 592 

issued worldwide. However, at present there is still limited marketed examples 593 
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of pharmaceutical products involving cocrystals62,63. With the recent 594 

implementation of techniques such as hot-melt extrusion28 and spray drying64,65, 595 

as methods of manufacturing pharmaceutical cocrystals, it has become possible 596 

to combine cocrystallisation and formulation to reduce the number of 597 

manufacturing steps involved in drug product manufacture. Hot-melt extrusion  598 

is particularly advantageous owing to its continuous processing capability; ease 599 

of scaling and it may be used to manufacture cocrystals without the need for 600 

organic solvents.  601 

To achieve mechanochemical synthesis of cocrystals via HME comprehensive 602 

investigations must be conducted in order to develop a thorough understanding 603 

of the reaction selectivity between ingredients; the most appropriate reaction 604 

conditions/parameter settings for a specific system; and most importantly, the 605 

selection of a suitable matrix for the cocrystal reagents. To probe this further, we 606 

have processed mixtures consisting of chosen cocrystal reagents and an ‘inert’ 607 

carrier excipient via hot melt extrusion. The principal hypothesis being that 608 

Ibu/IsoNA cocrystals should be suspend in the final matrix. Consequently, the 609 

HME processing temperature was set significantly lower than the Tm onset of the 610 

cocrystals (approximately 120°C). The chosen carrier excipient was either a 611 

pharmaceutical grade polymer (Eudragit® EPO and Soluplus®) with relatively 612 

low values of Tg hence lower processing temperature, or a commonly used food 613 

and pharmaceutical additive, namely Xylitol, that was molten at the chosen 614 

extrusion temperature.  615 

For Soluplus® and EPO there was evidence of crystalline IsoNA within the 616 

matrices and negligible Ibu/IsoNA cocrystal product. Moreover, for both 617 

polymeric systems, there was no evidence within XRD patterns of crystalline Ibu, 618 

after extrusion. In the case of Soluplus®, the lack of crystalline Ibu may be 619 

attributed to heating the drug beyond its melting point during extrusion (92°C) 620 

and entrapping the drug in a highly viscous polymer network. The entrapment of 621 

Ibu molecules within rubbery and highly viscous Soluplus® would lead to 622 

reduced mobility of Ibu and consequently reduce the interaction with IsoNA, 623 

limiting cocrystal yield. Conversely, when utilising EPO as a matrix carrier, 624 

competition between EPO and the coformer isonicotinamide to form hydrogen 625 

bonds with ibuprofen would further impact upon cocrystal yield. There have 626 
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been many reports of interactions between carboxylic acids and EPO66–68. 627 

Additionally, we would expect, as with Soluplus®, that the mixing of Ibu with 628 

highly viscous rubbery EPO would physically hinder molecular interaction 629 

between the cocrystal reagents limiting cocrystal yield. 630 

Conversely, the small molecular weight sugar alcohol used in this study 631 

(xylitol), was found to assist cocrystallization. In part, this may be attributed to 632 

limited miscibility between cocrystal product and Xylitol. Indeed, polyols have 633 

been shown previously to be relatively inert during extrusion69. Furthermore, it 634 

is well accepted that low molecular weight solvents (typically volatile organic 635 

solvents) can significantly improve cocrystal yield.  There are many reported 636 

articles describing the significant increase in yield associated with solvent-637 

assisted-methods relative to neat preparation17,70,71. In comparison to Soluplus® 638 

and EPO, Xylitol is a low molecular weight (152 g/mol) carrier, with a melt 639 

viscosity typically  3~4 orders of magnitude lower than the two polymeric 640 

excipients. The lack of miscibility between the cocrystal and xylitol and the low 641 

viscosity and hence, increased molecular mobility of cocrysal reagents appear to 642 

have been key drivers in the successful production of cocrystal.  Moreover, the 643 

low viscosity, ease by which cocrystal may disperse throughout the melt58 and 644 

the rapid solidification of xylitol post-extrusion, led to a solid extrudate with 645 

cocrystal well dispersed throughout the xylitol matrix.  646 

Cocrystals formed using xylitol as a matrix carrier possessed the same 647 

hydrogen-bonding pattern (FTIR) and crystal structure (XRD) as the reference 648 

cocrystal manufactured via solvent evaporation and the neat-extruded cocrystal . 649 

The inert nature of xylitol and the limited miscibility with the cocrytal is 650 

fundamental to successful cocrystal formation during extrusion. Strong non-651 

covalent interactions between any ingredients, other than a coformer pair, may 652 

be detrimental to product formation and yield. Therefore, it becomes very 653 

important to understand and if necessary quantify the strength of interaction 654 

between all components to ensure successful cocrystal formation during 655 

extrusion.  656 

From this work, it is evident that cocrystal suspensions may be successfully 657 

manufactured in a single step using extrusion provided a matrix carrier has 658 

specific qualities. Potential matrix carriers should have limited ability to form 659 
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non-covalent interactions with all cocrystal components, a sufficiently low 660 

processing temperature such that it is lower than cocrystal melting temperature 661 

and rapid solidification upon cooling.  662 

The improvement in the dissolution of drug compounds, when manufactured 663 

as cocrystals, can be used to enhance the solubility of BCS class II drugs. It was 664 

evident that the addition of small quantities of xylitol (10%) increased cocryatl 665 

yield however at higher xylitol concentrations (30% and 50%), the cocrystal 666 

yield was equivalent to the formulation devoid of xylitol (Formulation 1). There 667 

was no evidence of crystalline ibuprofen immediately after processing, indicating 668 

that residual ibuprofen was rendered amorphous. Therefore, the amorphous 669 

content (as percentage of the total Ibu content) in the 30% and 50% xylitol 670 

formulations were equivalent to that in the neat-extruded formulation. And the 671 

amorphous Ibu content in the 10% xylitol formulation was less than that in the 672 

system devoid of xylitol. 673 

In drug dissolution studies, formulation 1 (devoid of xylitol) exhibited 674 

significantly increased rate and extent of drug release relative to the crystalline 675 

ibuprofen powder. This could be the result of a combined effect of the formation 676 

of both the cocrystal and amorphous forms of ibuprofen. Although it is difficult 677 

to quantify the impact of each individual form to the dissolution improvement, 678 

the fact that formulations 1, 5 and 6 all had equivalent amounts of cocrystal yield 679 

is suggesting that the further increased dissolution rates of formulations 5 and 6, 680 

relative to formulation 1, are attributed to the presence of xylitol.  681 

The enhanced dissolution rate observed for a cocrystal suspension embedded 682 

in a hydrophilic matrix relative to neat cocrystal powders may be attributed to 683 

(1) the cocrystal particles present in the suspension are less aggregated due to 684 

the distribution within the matrix carrier, facilitated by agitation caused by 685 

extrusion screw rotation and (2) improved wettability owing to the 686 

hydrophilicity of the carrier42,72–75. For the matrix containing Soluplus®, the 687 

release of Ibu initiated rapidly due to the presence of amorphous Ibu at the 688 

surface of the Soluplus® matrix. However, the erosion of the Soluplus® matrix 689 

was significantly slower than that of formulations containing xylitol or those 690 

devoid of excipient. With IsoNA rapidly dissolving into the dissolution medium 691 

due to its high aqueous solubility, the rapid ingress of water into the Soluplus® 692 
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matrix may have increased Ibu mobility causing clustering of the dispersed Ibu 693 

molecules and their subsequent recrystallization within the matrix. Conversely, 694 

the formulation containing EPO, exhibited a reduced dissolution rate. This 695 

retardation of drug release may be due to the cationic nature of the polymer, the 696 

interaction with the acidic drug and the inherent slow dissolution of the 697 

polymeric carrier in the chosen dissolution media.  698 

Many approaches have been used to enhance the dissolution performance of 699 

BCS class II drugs. Cocrystals have not only been shown to improve drug release 700 

properties but are also more physically stable than amorphous drug forms 701 

during storage.  To understand the storage stability of the extrudates cocrystal 702 

suspensions were desiccated under two different conditions, namely, a dry 703 

environment over silica gel, and humid condition maintained at 70%RH, both at 704 

20°C for 12 months. As previously discussed, hydrogen bonds between the two 705 

cocrystal reagents are stronger than that between the homo-molecules6,41, it is 706 

therefore of relevance to confirm if the formed cocrystal could stay unchanged 707 

under pharmaceutically relevant storage conditions. Indeed, both Raman 708 

mapping and PXRD patterns showed that the stored samples had varying 709 

degrees of cocrystal growth as a result of aging. This is quantitatively indicative 710 

of incomplete cocrystallisation during extrusion. However, both DSC and PXRD 711 

analyses on extrudates immediately following manufacture showed little 712 

evidence of the presence of crystalline Ibu or IsoNA. The growth of cocrystal 713 

during storage may be attributed to interaction between amorphous Ibu and 714 

IsoNA molecules, that subsequently form cocrystals76. The samples stored under 715 

high humidity, in particular, showed significant cocrystal growth during storage 716 

most probably due to increased global molecular mobility following ingress of 717 

moisture into the xylitol matrix. Consequently, it may be concluded that even if 718 

reagents are partially amorphous following extrusion and are physically 719 

stabilised by the presence of a matrix carrier they may still recrystallize. This is 720 

driven by the ingress of moisture, the drop in Tg, associated increase in 721 

molecular mobility of the amorphous components77 and the subsequent 722 

formation of a thermodynamically favourable cocrystal product.  723 

Furthermore, the incomplete cocrystal conversion may be attributed to the 724 

rapid transport of material through the extrusion barrel, limiting reaction time. 725 
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The residence time of a typical HME process is a multifactorial-controlled 726 

variable that is dependent upon factors such as the properties of the extruded 727 

materials, the processing parameter settings and, the machine geometry78–82. For 728 

larger scale extruders, residence time may be prolonged due to physically 729 

extended barrel length. Limitation with respect to limited reaction time may be 730 

overcome using increased mixing intensity. An incorrect choice of screw 731 

geometry may lead to inadequate mixing in the barrel and reduce cocrystal 732 

yield27,28. The extruder utilized in this work consisted of a 10cm long conical 733 

barrel coupled with non-intermeshing conical co-rotating screws. A full 734 

conveying screw design was  employed throughout the entire length of the 735 

barrel. With this set-up, the compression of materials occurs by decreasing the 736 

barrel volume in the direction of melt flow. When extruding a cocrystal 737 

suspension from a mixture of the reagent pair and a chosen carrier, however, 738 

such an extruder design (limited mixing intensity) may not be aggressive enough 739 

to compensate for the limited residence time  In addition, it may also be 740 

important to consider the solubility of cocrystal parent reagents in the carrier. A 741 

liquefied carrier that cannot solubilize the parent reagents may reduce 742 

interspecies collision. Conversely, carrier-reagent reactivity should be less than 743 

reagent-reagent reactivity in order to encourage increased cocrystal yield.  744 

Theoretically, the solubility of the components within this process would be 745 

expected to be temperature dependent. Thus a detailed investigation into the 746 

influence of processing temperature on the solubility between components and 747 

hence the cocrystal conversion is necessary.  748 

 749 

Conclusion 750 

This work demonstrated the viability of concurrent cocrystallisation and drug 751 

product formulation in a miniature scale (10g) co-rotating twin-screw extruder. 752 

The final extrudates were examined to be intimate mixtures wherein the newly 753 

formed cocrystal particulates were physically suspended in a matrix formed by a 754 

‘inert’ carrier excipient. Importantly, it was established in this study that an 755 

appropriate carrier for a cocrystal reagent pair during HME processing should 756 

satisfy certain criteria including: (1) limited interaction with parent reagents and 757 

cocrystal product; (2) processing temperature sufficiently lower than the onset 758 
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of cocrystal Tm; (3) low melting viscosity; and (4) fast solidification upon cooling. 759 

In conclusion, the use of low viscosity, chemically ‘inert’ matrix carriers may be 760 

successfully employed in the mechanochemical synthesis of pharmaceutical 761 

cocrystal suspensions via HME. 762 
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Figures  

 

 

 
(a) 

 
(b) 
 
Figure 1(a). Molecular structure of Ibuprofen, nicotinamide, isonicotinamide and (b) 
proposed theoretical architecture of an ibuprofen/IsoNA cocrystal (FriŠčić & Jones 2007, 
Karki et al; 2007). Hydrogen bonds are shown as dotted lines. 
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Figure 2 Representative DSC thermogram from top to bottom: crystalline ibuprofen; 
crystalline isonicotinamide (as is); physical mixture (PM) of ibuprofen & isonicotinamide at 
1:1 molar ratio; equimolar Ibu/IsoNA ball milled for 2 minutes; and equimolar Ibu/IsoNA 
ball milled for 5 minutes. 

 
Figure 3 Overlaid DSC thermograms showing the formation and increase of Ibu/IsoNA 
cocrystal in the presence of 10wt% xylitol after (from top to bottom): 2, 5, 15, 30, 45 and, 
60 minutes ball milling. 
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Figure 4 Representative DSC thermograms of materials used in cocrystal formulation 
development. From top to bottom: ibuprofen, xylitol, isonicotinamide, reference cocrystal 
standard prepared using solution method, extruded Ibu/IsoNA cocrystal suspension in 
10wt% xylitol; extruded Ibu/IsoNA cocrystal suspension in 30wt% xylitol and, extruded 
Ibu/IsoNA cocrystal suspension in 50wt% xylitol. 
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Figure 5 Overlaid PXRD patterns of: (i) xylitol; (ii) IsoNA; (iii) Ibu; (iv) equimolar 
Ibu/IsoNA physical mitxture; (v) 1:1 neat extruded at 92°C; (vi) 10wt% Soluplus® HME; 
(vii) 10wt% EPO HME; (viii) 50wt% xylitol HME; (ix) 30wt% xylitol HME; and (x) 10wt% 
xylitol HME. Please note: all extrudates contained ibuprofen and isonicotinamide at a 1:1 
molar ratio. 
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Figure 6 Overlaid FTIR spectra within wavenumber ranges of [2600-3600 cm-1] and [1200-
2000 cm-1], respectively for, from top to bottom: Ibu, IsoNA, xylitol, the cocrystal reference, 
extruded suspensions containing 10%, 30% and, 50% xylitol, respectively. 
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Figure 7 Raman shift region [1050.0~975.0 cm-1] showing non-interfering, characteristic 
peaks for: (Red) unprocessed Ibuprofen; (green) unprocessed IsoNA; and (blue) the 
equimolar cocrystal prepared using slow evaporation. 

 
 
 

 
Figure 8 (a) Schematic demonstration of the occurrence and concentration of the cocrystal 
across the cross section of a formulation 1 extrudate. (b) The spectra showing the intensity 
of the cocrystal peak at 1020 cm-1 at the labelled points and that of the cocrystal reference 
are shown in the right figure in an overlaid format.  
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Figure 9 Raman map/image showing the intensity of the peak at 1020 cm-1, characteristic of the cocrystal, throughout the cross section 
of: (1) fresh extrudates of formulation 4, containing 10% xylitol; (2) fresh extrudates of formulation 5, containing 30% xylitol; (3) fresh 
extrudates of formulation 6, containing 50% xylitol; (4) aged formulation 4; (5) aged formulation 5; and (6) aged formulation 6. 

 



 33 

 

 
Figure 10 Polarized light micrographs showing crystal habit and size of: (a) 
unprocessed Ibu; (b) reference 1:1 Ibu/IsoNA cocrystal prepared using solvent 
evaporation; and (c) melt-extruded cocrystal particles. Particulates chosen all 
passed through 212μm sieve and were dispersed in mineral oil (200x, the entire 
width of each picture represents 0.5mm on a magnified scale bar).  

 
 
  



 34 

 

 
Figure 11 Drug dissolution profiles of melt extruded equimolar Ibu/IsoNA 
formulations in deionized water. Profiles from bottom to top: ( ) extrudates 
containing  Eudragit® EPO; ( ) Pure ibuprofen powders; ( ) extrudates 
containing  Soluplus®; ( ) 1:1 melt-extruded cocrystal (formulation 1); ( ) 1:1 
extruded cocrystal suspension in 10% xylitol (formulation 4); ( ) 1:1 extruded 
cocrystal suspension in 30% xylitol (formulation 5); and ( ) 1:1 extruded 
cocrystal suspension in 50% xylitol (formulation 6). Each point represents the 
mean ± S.D. of 3 replicates. 
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Figure 12 Yielded cocrystal content determination for freshly extruded and 
stored cocrystal suspension formulations containing (from left to right): 0%, 
10%, 30% and, 50%, w/w xylitol.  
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Tables 

Table 1 Nomenclature and the Parameter Settings for the Hot-Melt Extruded Formulations Composed of Equimolar Ibu and IsoNA, as 
well as a Third Matrix Carrier. a  

Formula 
Ibu IsoNA Soluplus® Eudragit® 

EPO Xylitol Feed & Mix 
Temp/speed 

Flushing 
Temp/speed 

Residence 
time 

Flush 
Torque Outcome 

wt% wt% wt% wt% wt% °C /rpm °C /rpm s Ncm 

1 62.82 37.18 − − − 92/10 92/10 233 40~44 Fragile rods 

2 56.54 33.46 10 − − 92/10 92/10 241 4~6 Sticky strand 

3 56.54 33.46 − 10 − 92/10 92/10 220 4~6 Sticky strand 

4 56.54 33.46 − − 10 92/10 85/50 90 109~122 Brittle strand 

5 43.98 26.02 − − 30 92/10 85/50 272 43~59 Brittle strand 

6 31.41 18.59 − − 50 92/10 85/50 329 19~22 Brittle strand 
a Note that the weight ratios tabulated here provide 1:1 molar ratio for Ibu and IsoNA in the blends. The batch size was maintained at approximately 10g for each 
formulation and the extrudates were collected after equilibration for 5 minutes. 
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Table 2. The Molecular Weights, Melting/Glass Transition Temperatures and 
Decomposition Temperatures of Each Individual Compound used in This Study. a 

Compound 
Mw 

g/mol 

Tm or Tg 

°C 

T5wt% loss 

°C 

Ibu 206.30 84.41 ± 0.57 197.44 ± 3.67 

IsoNA 122.12 163.26 ± 0.99 188.10 ± 2.14 

Ibu/IsoNA 
cocrystal 656.48 127.29 ± 0.55 164.07 ± 6.77 

Xylitol 152.15 104.17±0.29 270.03 ± 0.43 

Eudragit® E PO 47,000 43.94 ± 0.13 279.70 ± 1.00 

Soluplus® 90,000~140,000 66.52 ± 0.20 308.57 ± 0.91 

a The temperatures shown here represent the mean ± SD of three replicates. Note that the 
values of Tm listed the peak maximums measured at 200°C/min. 
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Table 3 Assignment for the Most Characteristic Vibrational Bands of Ibu and 
IsoNA in the Raw Materials and the 1:1 Melt-Extruded Ibu/IsoNA Cocrystal. 
 IR Frequency 

(cm-1) 
Raman Shift  
(cm-1) Band assignment a 

Ibuprofen 

3400~2800  - νO-H (Associated) 

1721.16 (vs) 1605.95 νC=O (Carboxylic acid) 

1007.62 (m) 1006.13 νC-C (Aromatic ring chain vib) 

 796.457 (m) - γ=C-H (Aromatic ring) 

Isonicotinamide 

3369.03 (vs) 3070.09 νN-H   (Asymmetric stretching) 

3185.83 (vs) 3063.81 νN-H   (Symmetric stretching) 

1668.12 (vs) 1601.58 νC=O   (Stretching) 

1622.80 (s) 

1594.84 (m) 

- 

- 

δN-H  (H-bonded amide bending) 

δN-H (Free amide bending) 

1551.45 (m) 993.94 νRing  (Pyridine ring stretching) 

Equimolar 
Ibu/IsoNA 
reference 
cocrystal 

3434.60 (vs) - νN-H  (Free amide) 

3317.93 (w) - νN-H (H-bonded pyridine N) 

3174.26 (vs) - νN-H  (H-bonded amide) 

1702.84 (vs) 1612.66 νC=O  (Carboxylic acid) 

1629.55 (m) - νC=O   (H-bonded amide C=O) 

1609.31 (s) - δN-H (Free amide) 

1560.13 (m) 1020.70 νRing  (Pyridine) 

 779.101 (m) - γ=C-H (H-bonded pyridine =C-H) 

a ν = stretching vibration; δ = in-plane bending; γ = out-plane bending.
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Table 4 Dissolution Parameters Calculated for Fig 11. 

Formulation 
Dissolution Parameters 

    
DP5mina DP45mina DP180mina RDr5minb RDr45minb RDr180minb 

 Pure Ibu 1.26±0.17% 7.35±0.12% 16.65±0.03% 0.25±0.03 0.16±0.00 0.09±0.00 

1 4.69±0.19% 19.71±0.06% 36.30±1.33% 0.94±0.04 0.44±0.00 0.20±0.01 

  2 4.73±0.32% 19.83±1.71% 29.08±3.13% 0.95±0.06 0.44±0.04 0.16±0.02 

  3 2.45±0.10% 5.47±0.08% 11.64±1.36% 0.49±0.02 0.12±0.00 0.06±0.01 

  4 5.09±0.70% 27.88±0.06% 41.90±0.04% 1.02±0.14 0.62±0.00 0.23±0.00 

5 5.40±0.08% 28.74±0.18% 41.55±0.03% 1.08±0.02 0.64±0.00 0.23±0.00 

  6 6.41±0.07% 37.41±0.81% 43.53±0.34% 1.28±0.01 0.83±0.02 0.24±0.00 

a DP: Drug percent (%) released at a particular time point; 

b RDr: Relative dissolution rate (%/ minutes) at a particular time point. (RDr=DP/dissolution time). 
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