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ABSTRACT
This paper investigates numerical simulation of a string coupled
transversely to a resonant body. Starting from a complete �nite
difference formulation, a second model is derived in which the
body is represented in modal form. The main advantage of this hy-
brid form is that the body model is scalable, i.e. the computational
complexity can be adjusted to the available processing power. Nu-
merical results are calculated and discussed for simpli�ed models
in the form of string-string coupling and string-plate coupling.

1. INTRODUCTION

Musical string instruments invariably comprise of a resonant body
that is driven by forces that result from exciting strings that are
coupled to the body. In sound synthesis applications, the string-
body coupling is often simpli�ed to a source-�lter model, rely-
ing on the assumption that the impedance presented by the body
to the string is much larger than the characteristic impedance of
the string. While this assumption is reasonable for most practical
cases, such models are not truely predictive. For instance, when
modelling a body excited by more than one string polarity, there
is no way of knowing how to calculate the sound radiating from
the instrument, as the levels of contribution depend on the level
of coupling at the bridge/body for each polarity. This is not nec-
essarily a problem if the objective is to model a �xed instrument,
as these levels can be �ne-tuned empirically to give the certain
desired sound (see, for example, the piano tone synthesis in [1]).
The source-�lter approach does however effectively shield the user
from the fundamental design of the instrument, allowing �exibility
only regarding the playing control of the instrument.

The long term aim of the authors of this paper is to develop
physical models that allow user �exibility in both the design and
the control of the instrument. This requires a more rigorous mod-
elling approach, and immediately makes modelling the coupling
between string and body and/or other elements such as a bridge
one of the key challenges. Among the existing physical mod-
elling paradigms, the �nite difference (FD) method lends itself ex-
tremely well to rigorous modelling, because it directly simulates
the equations that govern the physics of the instrument. With re-
gard to modelling strings and their excitation, this means that there
is no fundamental limitation with respect to incorporating nonlin-
ear phenomena. More speci�cally, the FD method can be em-
ployed for rigorous modelling of geometric nonlinearities, i.e. spa-
tially distributed non-linear coupling between the transverse and
the longitudal polarisations of the string [2]. Most other paradigms,
such as the Digital Waveguides (DW) [3] or the Functional Trans-
formation Method (FTM) [4, 5], are fundamentally more limited
in that regard, allowing only for simulation of tension modulation.

The FD method also has its disadvantages though, in particu-
lar it requires one to deal with numerical dispersion and numerical
stability. The dispersion can usually be reduced signi�cantly by
designing compact implicit schemes. Stability analysis is straight-
forward for linear systems, for example by using the von Neu-
man method [6]. For non-linear systems however, energy methods
are needed [2], and the process of designing appropriate schemes
is somewhat less standardised, often presenting further challenges
with regard to ef�ciency. One feature inherent to any FD model is
that it cannot be scaled in terms of computational complexity with-
out detrimental effects to the resulting output sound. That is, one
may reduce the sample rate in order to scale down the processing
and memory requirements, but besides the obvious consequence
of a reduced model bandwidth, this invariably also means that the
numerical artfecacts (dispersion, attenuation) inherent to the FD
scheme used are more pronounced in lower frequency ranges. This
contrasts with approaches that lead to a modal representation, such
as the FTM, that render models that allow increasing ef�ciency by
removing individual modes and/or by applying multi-rate process-
ing methods [7]. This advantage can be particularly prominent for
simulation of linear 2D or 3D systems, for which the numerical
artefacts tend to be large in FD models, and the need for scalabil-
ity high.

Given the desirability for the string model to be extendable to
geometric nonlinearities, while the body may be assumed to be-
have linear, it is of interest to explore whether it is possible to
model the string with the FD method while representing the body
in a modal fashion, thereby getting the best of both worlds. The
main challenge involved is how to numerically formulate the inter-
action between the string and the body. In this paper, we begin to
address this question by considering a simpli�ed string instrument
in the form of a (linear) stiff string coupled transversely (with one
end1) to a simply supported rectangular plate.

The general question of interfacing different physical mod-
elling paradigms has been explored extensively recently [8, 9].
Among the main outcomes are two different interaction topology
platforms, the BlockCompiler (BC) and the Binary Connection
Tree (BCT) [9], that offer robust and �exible implementation by
exploiting certain advantages of wave-domain connection units. It
appears however that the speci�c case of directly connecting an
FD model to a modal system has not been addressed yet in the
literature.

The paper is laid out as follows. The main continuous-domain
equations are given in section 2. In section 3, a full �nite dif-

1The connection of the string end to a resonant body is directly appli-
cable to, for example, harps, but is indirectly also useful as a model for
instruments in which the string couples to the body via a bridge located
away from the string ends.
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ference model of a string coupled to a plate (the FD-FD model)
is presented. This is followed by the FD-Modal formulation, in
which the plate is represented in modal form, in section 4. Results
generated with these models at 44.1 kHz are discussed in section
5, and concluding remarks are given in section 6.

2. A STRING COUPLED TO A RESONANT BODY

2.1. Transverse Vibrations of a String
Transverse vibrations of a stiff, lossy string can modelled using the
following equation of motion [10]:

utt = c2
uuxx − κ2

uuxxxx − 2b1uut + 2b2uuxxt + ρ−1
u Fu, (1)

where t and x denote time and position along the string, respec-
tively, and where using these as subscripts denotes partial differ-
entiation, i.e.

ut ≡ ∂u

∂t
, ux ≡ ∂u

∂x
, utt ≡ ∂2u

∂t2
, uxx ≡ ∂2u

∂x2
. (2)

The �rst two terms from the left in (1), in the absence of the
others, will give rise to the wave equation for the ideal string.
The parameter κu is related to stiffness and b1u and b2u denote
a frequency-independent and frequency-dependent loss parameter,
respectively. Fu is the force density (N/m) acting on the string
and ρu is the mass density (kg/m) of the string. Applying a sim-
ply supported boundary condition at one of the ends of the string
amounts to setting both the displacement and the bending moment
to zero [11]. For example, at the left end of the string we have

u(0, t) = uxx(0, t) = 0. (3)

2.2. Transverse Vibrations of a Thin Plate
We aim to simulate the string coupled to a thin plate of homo-
geneous isotropic material, the vibrational character of which is
dominated by stiffness [11]. If losses are included, the following
equation can be used:

vtt = −κ2
v42v − 2b1vvt + 2b2v4vt + ρ−1

v Fv, (4)

where 4 = (uxx + uyy) and (x, y) are the spatial coordinates.
Various boundary conditions are applicable here (i.e. free, clamped,
simply supported). It is well known that only in the case of sim-
ply supported boundary conditions, the modes of the plate can be
calculated analytically [11].

2.3. Coupling Conditions
Consider that the string is of length L and that its right end is
rigidly coupled to the plate at a point (xc, yc). For a stiff string,
the force that the string then exerts on the plate comprises of a
tension term and a shear force:

Fc = −Tuux(L, t) + κ2
uρuuxxx(L, t). (5)

The other conditions for rigid coupling are that the displacements
of the string and plate are equal at the connection point, and that
the bending moment of the string vanishes there (i.e. it cannot be
transferred through the connection):

u(L, t) = v(xc, yc, t), (6)
uxx(L, t) = 0. (7)

3. FD-FD FORMULATION

3.1. FD Formulation of the String

To solve equation (1), it may be approximated over a grid spacing
Xu and time step T , with the difference operators de�ned as:

δx ≡ un
k+1 − un

k−1

2Xu
, (8)

δt ≡ un+1
k − un−1

k

2T
, (9)

δ2
x ≡ un

k+1 − 2un
k + un

k−1

X2
u

, (10)

δ2
t ≡ un+1

k − 2un
k + un−1

k

T 2
, (11)

δt,− ≡ un
k − un−1

k

T
. (12)

These operators can be applied to equation (1) as follows

δ2
t u = −κ2

uδ2
xδ2

xu + c2
uδ2

xu− 2b1uδtu + 2b2uδ2
xδ−tu + ρ−1

u Fu,
(13)

where the non-centered operator (δt,−) is employed in order to
avoid implicitness [10]. The �nal update equation2 takes the form:

un+1
k = a1uun

k + a2u(un
k+1 + un

k−1) + a3u(un
k+2 + un

k−2)

+ a4uun−1
k + a5u(un−1

k+1 + un−1
k−1) + a6Fn

k , (14)

and the Courant-Friedrichs-Lewy (CFL) condition of this scheme
is:

X2
u ≥ 1

2 c2
uT 2 +2b2uT +

q`
1
2 c2

uT 2 + 2b2uT
´2

+ 4κ2
uT 2. (15)

3.2. FD Formulation of the Thin Plate

The discretisation of (4) is carried out using an interpolated scheme
adapted from [12], using the following approximation to the Lapla-
cian:

4 ≈ 4̂ = αδ2
+ + (1− α)δ2

×, (16)

with

δ2
+ = δ2

x + δ2
y, (17)

δ2
× = δ2

x + δ2
y +

X2
v

2
δ2

xδ2
y, (18)

where Xv is the spatial step in both directions (x, y), and where α
is a free interpolation parameter (0 ≤ α ≤ 1). It follows then that

4̂2 = α2δ2
+δ2

+ + (1− α)2δ2
×δ2
× + 2α(1− α)δ2

+δ2
×. (19)

Applying the difference operators to equation (4) yields:

δ2
t v = −κ2

v4̂2v − 2b1vδtv + 2b2vδt4̂v, (20)

2See appendix for all difference equation coef�cient formulae.
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Figure 1: Relative phase velocity of the FD plate formulation as a function of frequency (polar plot radius) and propagation angle (polar
plot angle), for α = 1 and α = 0.5. In the plots, starting from the most inner circle, the dotted-line circles indicate f = ( 1
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and the �nal update equation becomes:

vn+1
l,m = a1vvn

l,m

+ a2v

`
vn

l+1,m + vn
l−1,m + vn

l,m+1 + vn
l,m−1

´

+ a3v

`
vn

l+1,m+1 + vn
l+1,m−1 + vn

l−1,m+1 + vn
l−1,m−1

´

+ a4v

`
vn

l+2,m + vn
l−2,m + vn

l,m+2 + vn
l,m−2

´

+ a5v

`
vn

l+2,m+1 + vn
l+2,m−1 + vn

l+1,m+2 + vn
l+1,m−2

... +vn
l−2,m+1 + vn

l−2,m−1 + vn
l−1,m+2 + vn

l−1,m−2

´

+ a6v

`
vn

l+2,m+2 + vn
l−2,m+2 + vn

l+2,m−2 + vn
l−2,m−2

´

+ a7vvn−1
l,m

+ a8v

`
vn−1

l+1,m + vn−1
l−1,m + vn−1

l,m+1 + vn−1
l,m−1

´

+ a9v

`
vn−1

l+1,m+1 + vn−1
l+1,m−1 + vn−1

l−1,m+1 + vn−1
l−1,m−1

´

+ a10vFn
l,m. (21)

The CFL condition of this scheme is:

X2
v ≥ 2T

„
b2v +

q
b2
2v + κ2

v

«
·max(1, 2α). (22)

In our example applications, we used α = 0.5, which leads to the
best possible scheme within the family of interpolated schemes, in
that the numerical cut-off then lies at or near Nyquist for all propa-
gation directions. Figure 1 illustrates the relative phase velocity of
the scheme (the ratio between the discrete and the continuous wave
velocity [12]) as a function of frequency and direction for α = 0.5
as well as for the standard case of directly applying centered oper-
ators (i.e. α = 1). The relative phase velocity data was calculated
only for real wavenumbers, hence the edges of the plot indicate
the numerical cut-off frequency, above which the wavenumbers
become complex-valued (see [13] for a more detailed explanation
of this type of plot).

3.3. Updating the Connection Point
For a string rigidly coupled to a plate, a special update equation
has to be found for the connection point (k = L/Xu). Applying
centered difference operators to equation (5) gives

F n
k = − Tu

2Xu
(un

k+1−un
k−1)+

κ2
u

2X3
u

(un
k+2−2un

k+1+2un
k−1−un

k−2),

(23)

Since un
k+2 and un

k+1 are so-called `ghost points', i.e. they lie
outside the bounds of the string, they must be eliminated from (23).
Using equation (7) it can be shown that un

k+1 = 2un
k −un

k−1. The
ghost point un

k+1 can therefore be substituted by 2un
k − un

m−1.
Writing (14) in terms of un

k+2 and substituting for un
k+1, un

k+2 in
(23) yields:

F n
c = θ

n
d1u

n
k + d2u

n
k−1 + d3u

n
k−2

+ d4u
n+1
k + d5u

n−1
k + d6Fn

k

o
, (24)

where θ = (ρuXu)/(2T 2). Equation (6) can be used to replace
(un+1

k , un
k , un−1

k ) with (vn+1
l,m , vn

l,m, vn−1
l,m ). Assuming now that

there are no further contributions to the force density term in (21),
we substitute Fl,m = Fc/(X2

v ), which yields the �nal update
equation at the connection point (l = xc/Xv , m = yc/Xv):

vn+1
l,m = g1v

n
l,m

+ g2(v
n
l,m+1 + vn

l,m−1 + vn
l+1,m + vn

l−1,m)

+ g3(v
n
l+1,m+1 + vn

l+1,m−1 + vn
l−1,m+1 + vn

l−1,m−1)

+ g4(v
n
l,m+2 + vn

l,m−2 + vn
l+2,m + vn

l−2,m)

+ g5(v
n
l+1,m+2 + vn

l+1,m−2 + vn
l−1,m+2 + vn

l−1,m−2 +

... vn
l+2,m+1 + vn

l+2,m−1 + vn
l−2,m+1 + vn

l−2,m−1)

+ g6(v
n
l+2,m+2 + vn

l+2,m−2 + vn
l−2,m+2 + vn

l−2,m−2)

+ g7v
n−1
l,m

+ g8(v
n−1
l+1,m + vn−1

l−1,m + vn−1
l,m+1 + vn−1

l,m−1)

+ g9(v
n−1
l+1,m+1 + vn−1

l+1,m−1 + vn−1
l−1,m+1 + vn−1

l−1,m−1)

+ g10u
n
k−1

+ g11u
n
k−2

+ g12Fn
k . (25)

As will be explained in section 5.1, we also consider a string (dis-
placement denoted with u) coupled with one of its ends to another
string (displacement denoted with v). The connection point update
equation can be derived in a similar fashion, leading to

vn+1
l = g1 (vn

l+2 + vn
l−2) + g2 (vn

l+1 + vn
l−1) + g3v

n
l + g4v

n−1
l

+ g5

`
vn−1

l+1 + vn−1
l−1

´
+ g6u

n
k−1 + g7u

n
k−2 + g8Fn

k . (26)

Note that Fn
k in equations (25 ) and (26 ) denotes a possible exter-

nal force density applied on the string at the connection point.
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4. FD-MODAL FORMULATION

4.1. Projection onto a Modal Basis
The FD model of the string and plate can be formulated in ma-
trix form. As an example, consider an ideal string (no stiffness
or losses), �xed at both ends, with its displacement denoted by
v(x, t). The difference equation (14) then reduces to

vn+1
l = (vn

l+1 + vn
l−1)− vn−1

l + ρ−1
v T 2Fn

l , (27)

and the complete FD formulation can then be written in matrix
form as follows

vn+1 = Avn − vn−1 + ρ−1
v T 2f , (28)

where A is tridiagonal matrix, and vn and fn are vectors holding
the displacement and force density values at the (M − 1) interior
points for a string discretised into M segments (i.e. excluding the
boundary points which are held at zero). Projection onto a modal
basis is performed by diagonalising this system of equations, giv-
ing

Φn+1 = G−1AG| {z }
D

Φn −Φn−1 + ρ−1
v T 2 G−1fn

| {z }
f̄n

. (29)

where the matrix G holds the the eigenvectors of A, and the ma-
trix D is diagonal, containing the eigenvalues of A. Equation (29)
shows that the system can be computed by updating a set of uncou-
pled equations, each of which represents a second order oscillator,
similar to those employed in Modal Synthesis [14]. The state of
each oscillator is updated with

φn+1
i = b1,if̄

n
i − a1,iφ

n
i − φn−1

i , (30)

where b1,i = T 2/ρv and where a1,i is the ith diagonal element of
−D. The latter can be related to the frequency of the second-order
oscillator with a1,i = −2 cos(ωiT ). The displacements can be
calculated directly from the oscillator states with

vn+1 = Gφn+1, (31)

and the force density input signals are calculated with

f̄n = G−1fn. (32)

It is readily seen that if we multiply G with a scalar of the di-
mension of one over length (m−1), f̄n becomes a force term rather
than a force density term, and that this alteration has no effect on
the output, since it will be cancelled out with (31). Put in another
way, we may replace fn with an actual force term Fn as long as
we also scale the output by an appropriate normalisation factor η
of the dimension (m−1). For 2D objects, this normalisation factor
will be of the dimension (m−2) (See section 4.4).

4.2. Comparison to the Functional Transformation Method
The Functional Transformation Method (FTM) is a physical mod-
elling paradigm that directly translates the underlying differential
equations into a structure for calculating the displacement at any
point along a vibrating object as a weighted set of second-order
oscillator3 states [4, 5]. The main difference with the FD method
is that the FTM does not involve spatial discretisation, and that

3In some scenarios, complex �rst-order �lters are used instead [5].

it uses the impulse invariant transform to obtain a discrete-time
model for each modal oscillator. Its main advantage is that no
numerical dispersion or attenuation is introduced; the main limi-
tation is that closed-form expressions for the �nal coef�cients of
the model can only be found for idealised cases; in particular, it
cannot easily handle irregular domains [5].

Since for an ideal string, the FD method also does not intro-
duce any numerical dispersion or attenuation, a direct comparison
with the FTM is particularly illuminating for this case. For an ideal
string, the FTM can be seen to effectively update the oscillators
states according to (30), using the coef�cients (see [4]):

b1,i =
T sin(ωiT )

ρvωi
, (33)

a1,i = −2 cos(ωiT ). (34)
In other words, only the b1,i coef�cients are different in compar-
ison to the diagonalised FD method. This difference vanishes
when one calculates the velocity of both models rather than the
displacement. In the diagonalised FD model, one then applies a
centered operator to the output of each oscillator, which can also
be interpreted as multiplying the b1,i with (z− z−1)/(2T ), where
z = ejωT . From the fact that for any single oscillator, we have
only one frequency to consider ω = ωi, we can thus write the b′1,i

coef�cient for calculating the velocity output of mode i as

b′1,i =
T 2(ejωiT − ejωiT )

2ρvT
=

T sin(ωiT )

ρv
. (35)

For the FTM, we can directly differentiate with respect to time by
multiplying (33) with ωi, leading exactly to (35), which suggests
mathematical equivalence of the two paradigms for the ideal loss-
less string when observing velocity output.

4.3. Adding Modal Damping
While it is straightforward to include damping from the start for an
FD model, in the case of projection on a modal basis, the damp-
ing may also be imposed after diagonalisation (thus avoiding nu-
merical attenuation). In addition, we now consider an excitation
force (F ) at a single position on the body, and apply this directly
to the second-order oscillators, incorporating the modal excitation
weighting into the b1,i coef�cients. These adjustments lead to the
modal oscillator update equations of the form

φn+1
i = b1,iF

n − a1,iφ
n
i − a2,iφ

n−1
i , (36)

where
b1,i =

ViT
2e−αiT

ρv
, (37)

a1,i = −2e−αiT cos(ωiT ), a2,i = e−2αiT . (38)
where αi and ki denote the decay rate and wave number of mode
i, respectively, and Vi represents the modal excitation weight that
depends on the excitation position. It can be seen that - for simply
supported boundary conditions and assuming zero initial condi-
tions - the FTM effectively uses the same formulation [4], be it
that equation (37) is replaced by

b1,i =
ViTe−αiT sin(ωiT )

ρvωi
, (39)

although the weightings Vi (these are called �transformation ker-
nels� in [4, 5]) are not included in the coef�cients there, but applied
separately.
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Figure 2: Displacement of the second string at 1/5 of its length
when exciting an ideal string-string system at the connection point.

4.4. Modal Representation of a Simply Supported Plate

In order to formulate a plate in modal form, the diagonalisation of
an FD model of a 2D, stiff and lossy system is considerably more
complex than for a simple ideal string, but in principle it can be
used as a basis. Given that the numerical dispersion is quite large
for explicit FD models, it is a good idea then to start instead from
an implicit FD formulation, which allows reducing such errors sig-
ni�cantly.

For idealised resonators, such as a rectangular plate with sim-
ply supported edges, one may of course derive the modal param-
eters (frequency, damping, weights) in an analyic fashion (for ex-
ample using the FTM). This is what is used for the example ap-
plications in this study, with one alteration, namely that the b1,i

coef�cients are set as predicted by the FD formulation, i.e. as in
(37). As will be seen in section 5.1, this ensures that when the
plate is coupled to the string, certain FD features are preserved.

Taking such an analytical approach, the transverse displace-
ment of the plate at any point (x, y) can be calculated in modal
form with:

vn+1 = η

NmX
i=1

Wi φn+1
i , (40)

where η = 4/(LxLy) is the normalisation factor, Nm is the num-
ber of modes taken into account and where Wi are the modal
`pick-up' weights, that depend on observation position. For lossy
plates, the modal frequency and decay rate can be de�ned for mode
(m, n) with wave number kmn as

ωmn =
p

κ2
vk4

mn − α2
mn, (41)

αmn = b1v + b2vk2
mn. (42)

The associated modal excitation and pick-up weights for the rela-
tive excitation position (xe, ye) and relative pick-up position (xp, yp)
are [11]

Vmn = sin(mπxe/Lx) sin(nπye/Ly), (43)

Wmn = sin(mπxp/Lx) sin(nπyp/Ly). (44)

The values of ωmn, αmn, Vmn and Wmn that correspond to fre-
quencies below Nyquist can be collected and stored in long �at
vectors, thus forming the modal data ωi, αi, Vi and Wi that can be
directly applied in the modal formulation of the plate.
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Figure 3: Force (top) and displacement (bottom) at the connec-
tion point, for the plate-string system excited with a hammer-string
model.

4.5. Updating the Connection Point

In this section, the coupling of the FD difference string with a
modal resonant body is presented. Given the generality of the
modal representation, the resonant body could be any linearly vi-
brating system. In this scenario, the only force applied to the body
is that exerted by the string at the connection point, and we need
to calculate the displacement (vc) at that same point. In other
words, the plate (or other resonant body) is locally characterised
by a transfer function. In order to derive a computable update for-
mula, �rst equation (36) is substituted into equation (40), which
yields

vn+1
c = η

NMX
i=1

Wi

n
b1,iF

n
c − a1,iφ

n
i − a2,iφ

n−1
i

o
, (45)

or

vn+1
c = F n

c η

NmX
i=1

Wib1,i

| {z }
β

− η

NmX
i=1

Bi

`
a1,iφ

n
i + a2,iφ

n−1
i

´

| {z }
Hn

,

(46)
or

vn+1
c = βF n

c −Hn. (47)
At the connection point, the force is still de�ned by equation (24).
This force term can be substituted into (47), which yields:

vn+1
c = g1v

n
c + g2u

n
k−1 + g3u

n
k−2 + g4v

n−1
c + g5Fn

k + g6H
n.

(48)

5. RESULTS

5.1. Model Equivalence for String-String Coupling

In order to test the validity of the modal formulation within an FD
modelling framework, simulations of an ideal string coupled with
one end to the center of another ideal string (of equal tension) were
carried out; the �rst string was �xed at its left end, and the second
string (acting as the `resonant body') was �xed at both ends. This
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Figure 4: Spectral centroid (top) and number of modes (bottom)
as a function of normalised threshold frequency for the case of a
hammered string coupled to a plate.

coupling of two transversely vibrating strings is of course rather ar-
ti�cial and unlike any real string instrument; it is used here merely
to demonstrate certain system features.

Three different models were used: the FD-FD model, the FD-
Modal (a) model that uses equation (37) for the b1,i coef�cients,
and the FD-Modal (b) model that uses equation (39) for the b1,i

coef�cients. The comparison between these three cases is useful,
since the FD-FD model exhibits no numerical dispersion or atten-
uation for the ideal string provided that the Courant number is cho-
sen exactly at the stability bound. Hence any deviations between
these models should be small, and shed further light on the effects
of the choice for the b1,i coef�cients.

In the simulation, a perfect wave impulse was generated at the
connection point, and the displacement of the second string at 1/5
from one of its ends was recorded. Figure (2) shows the resulting
displacement signals for the three models. It can be seen that the
FD-Modal (a) model gives exactly the same response as the FD-
FD model, thus validating the use of equation (37). The FD-Modal
(b) model gives a similar response, but with the noticable differ-
ence that the original pulse shape applied is not exactly preserved
and takes on a bandlimited nature. Note that this discrepancy does
not indicate any de�ciency of either paradigm, but merely high-
lights that since FD models using force and displacement as their
variables (rather than force and velocity), the FTM needs to be
adapted in order to interface directly to an FD model.

5.2. Comparison for String-Plate Coupling

Moving on now to a somewhat more realistic scenario, the reso-
nant body has been upgraded to a thin, lossy plate of 0.4m×0.4m,
and the string has been made stiff and lossy. Moreover, the string
is now excited with a hammer-string interaction model [15], tak-
ing all the string parameters as those for a piano C2 string from
[10]. For the plate we used κv = 2m2s−1, bv1 = 1s−1, bv2 =
0.01m2s−1, and ρv = 10kg m−2. Figure (3) shows the force and
displacement at the connection point, as calculated with the FD-
FD and FD-Modal (a) model. As expected, the two models now
show some small discrepancy (due to numerical dispersion in the
FD-FD model), but the overall match is still quite close. Interest-

Table 1: Spectral centroid analysis. Nm is the number of modes,
fsc is the spectral centroid, ∆fsc is the difference with fsc for
fth = 0.5, and f1 is the fundamental frequency.

Case (1): Case (2):
bv1 = 3, bv2 = 0.01 bv1 = 10, bv2 = 0

fth/fs Nm fsc (Hz) ∆fsc/f1 fsc (Hz) ∆fsc/f1

0.5 849 1675 0 2222 0
0.12 197 1673 0.038 2212 0.15
0.1 160 1664 0.17 299 0.34
0.05 77 1530 2.23 1973 3.8

ingly, the computation time in MATLAB for the FD Modal model
is in this case about half of that required for the FD-FD model.
This can be explained by the fact that the FD-FD model, if trans-
lated directly into modal form (as in section 4.1), would result in
about twice the number of modes. The explicit FD-FD system is
thus larger in order due to spatial discretisation.

5.3. Reducing Computational Complexity

A key advantage of the modal formulation is that the number of
modes that is included is adjustable, which allows to scale the com-
putational complexity. Normally, one would include all (not over-
damped) modes with frequencies lower than Nyquist, but sounds
that are perceptually close can be generated with a lower number
of modes. For example, one could remove all modes with decay
rates higher than a certain threshold, or include frequencies up to
a lower bound than Nyquist (the latter is used in this study). In
practice, both amount to reducing the bandwidth.

The FD-FD model can also be scaled, by simply lowering
the sample rate, which also reduces the computational load along
with the model bandwidth. However because of numerical disper-
sion, the scaling down has in this case detrimental effects on the
modes within the remaining model bandwidth, whereas no such ef-
fects occur with scaling down the FD-Modal formulation by mode-
culling.

From a sound synthesis perspective, it is interesting then to
know how many modes may be removed before the FD-Modal
model starts to sounds different in comparison to the full-bandwidth
version. In order to investigate this, the FD-Modal simulation was
run for a decreasing set of bandwidths, i.e. gradually lowering the
threshold frequency fth above which no modes are included. To
get a �rst approximation of how the timbre of the resulting sound
changes with fth, the spectral centroid was calculated. Figure 4
shows, for two different sets of plate damping parameters, how
the spectral centroid and the number of modes (that can be con-
sidered as a metric for computational complexity) vary with fth.
Table 1 lists the devations from fth = 0.5 divided by the funda-
mental frequency of the for selected values of fth/fs. The results
indicate that when lowering fth, the decrease in spectral centroid
remains smaller than the just noticable difference - which in this
case is about 10 Hz (15% of the fundamental [16]) - as long as fth

is higher than about 0.12fs. This suggests that one may use about
one fourth of the modes without a noticable change in the sound,
which is in alignment with what was experienced in informal lis-
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tening tests. It is dif�cult though to make general, precise conclu-
sions regarding the allowable amount of disregarded modes, since
such results depend on many factors, including the sample rate, the
damping parameters, and the character of the excitation signal. In
addition, the spectral centroid is just a single timbre indicator. The
advantage of scalability is evident though from this example.

5.4. Sound Examples

The FD-Modal model can be employed to generate a wide range
of sonorities. For example, it is straightforward to connect mul-
tiple strings to a plate, and simulate classical phenomena such as
two-stage decay, beatings and sympathetic vibrations. One of our
more adventurous experiments centered around variation of the
plate mass density, which can be used to change a piano-like tone
to a percussive sounding tone that is characterised dominantly by
the plate resonances. In another experiment, we explored on-line
parameter changes that are dif�cult if not impossible with real-life
instruments, such as slowly changing the connection position on
the plate. A selection of sound examples can be found and ex-
plored on www.sarc.qub.ac.uk/∼mvanwalstijn/DAFx09/.

6. CONCLUDING REMARKS

Novel numerical formulations for simulation of a string rigidly
coupled to a resonant body have been proposed. A full �nite dif-
ference formulation of a string coupled to a plate (FD-FD model)
has been presented, and a second model (FD-Modal) was derived
in which the plate is represented in modal form. The key part of
both models is the connection point update formula that imple-
ments the coupling conditions. For the FD-Modal formulation, a
slight coef�cient adjustment in comparison to previously devel-
oped modal representations is made in order to preserve the �nite
difference character of the simulation. The main advantage of the
FD-Modal formulation is that it allows direct scaling of compu-
tational complexity without introducing artefacts to the remaining
model bandwidth, thus making it attractive for real-time applica-
tions. In our examples, the computational complexity of the plate
model was reduced by as much as 80% without noticable changes
to the sound; further reductions can be made by multi-rate imple-
mentation methods.

Because of the generality of the modal basis, the FD-Modal
model may be used for simulation of a string coupled to an ar-
bitrary linearly behaving resonant body. For resonant bodies that
can be modelled by analytic modal decomposition, the FD-Modal
model can be regarded as an FD model without the numerical arte-
facts of the body part of the system. For all other cases, the modal
data has to be either measured or pre-calculated by diagonalising
numerical methods, such as the FD method or the Finite Element
(FE) method, possibly at a higher sample rate in order to reduce
numerical dispersion. The FE method would be particularly ap-
propriate in case of dealing with real instument bodies, since it is
particularly suited to modelling objects with complicated geome-
tries [14]. Other aspects of interest for future work include exten-
sion to geometric nonlinearities and modelling bridge elements,
both of which require to reformulate the coupling conditions in
order to model interaction in more than one dimension.
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8. APPENDIX

The appendix provides the coef�cient formulae for all difference
equations presented in the paper.

8.1. The String
The coef�cients of equation (14) are:

a1u =
`
2− 2λ2

u − 6µ2
u − 2ν2u

´
/
`
1 + ν1u

´
,

a2u =
`
λ2

u + 4µ2
u + ν2u

´
/
`
1 + ν1u

´
,

a3u =
`− µ2

u

´
/
`
1 + ν1u

´
,

a4u =
`− 1 + ν1u + 2νu

´
/
`
1 + ν1u

´
,

a5u =
`− ν2u

´
/
`
1 + ν1u

´
,

a6u =
`
T 2ρ−1

u

´
/
`
1 + ν1u

´
, (49)

where

µu =
κuT

X2
u

, ν1u = b1uT, ν2u =
2b2uT

X2
u

λu =
cT

Xu
.

(50)

8.2. The Plate
The coef�cients of equation (21) are:

a1v =
`
2− (9α2 + 6α + 5)µ2 − 2ν2v(1 + α)

´
/
`
1 + ν1v

´
,

a2v =
`
(6α2 + 2α)µ2 + ν2vα

´
/
`
1 + ν1v

´
,

a3v =
`
(−4α2 + 2)µ2 + 0.5ν2v(1− α)

´
/
`
1 + ν1v

´
,

a4v =
`
(−1.5α2 + α− 0.5)µ2´/`1 + ν1v

´
,

a5v =
`
(α2 − α)µ2´/`1 + ν1v

´
,

a6v =
`
(−0.25α2 + 0.5α− 0.25)µ2´/`1 + ν1v

´
,

a7v =
`
(ν1v − 1) + 2ν2v(1 + α)

´
/
`
1 + ν1v

´
,

a8v =
`− ν2vα

´
/
`
1 + ν1v

´
,

a9v =
`− 0.5ν2v(1− α)

´
/
`
1 + ν1v

´
,

a10v =
`
T 2/ρv

´
/
`
1 + ν1v

´
, (51)

where

µv =
κvT

X2
v

, ν1v = b1vT, ν2v =
2b2vT

X2
v

. (52)

8.3. The String Force
The coef�cients of equation (24) are:

d1 = 2− 2µ2
u − 2λ2

u,

d2 = 2(λ2
u + 2µ2

u),

d3 = −2µ2
u,

d4 = −1− ν1u,

d5 = −1 + ν1u,

d6 = ρ−1
u T 2. (53)

8.4. Connection Point in the String-Plate System (FD-FD)
The coef�cients of equation (25) are:

g1 =
`
a1v + ξd1

´
/
`
1− ξd4

´

g2 =
`
a2v

´
/
`
1− ξd4

´
,

g3 =
`
a3v

´
/
`
1− ξd4

´
,

g4 =
`
a4v

´
/
`
1− ξd4

´
,

g5 =
`
a5v

´
/
`
1− ξd4

´
,

g6 =
`
a6v

´
/
`
1− ξd4

´
,

g7 =
`
a7v + ξd5

´
/
`
1− ξd4

´
,

g8 =
`
a8v

´
/
`
1− ξd4

´
,

g9 =
`
a9v

´
/
`
1− ξd4

´
,

g10 =
`
ξd2

´
/
`
1− ξd4

´
,

g11 =
`
ξd3

´
/
`
1− ξd4

´
,

g12 =
`
ξd6

´
/
`
1− ξd4

´
, (54)

where ξ is the coupling parameter

ξ =
θ a10v

X2
v

=
1

2(1 + ν1v)

ρuXu

ρvX2
v

. (55)

8.5. Connection Point in the String-String System (FD-FD)
The coef�cients of equation (26) are:

g1 =
`
a1v

´
/
`
1 + ξd4

´
,

g2 =
`
a2v

´
/
`
1− ξd4

´
,

g3 =
`
a3v + ξd1

´
/
`
1− ξd4

´
,

g4 =
`
a4v + ξd5

´
/
`
1− ξd4

´
,

g5 =
`
a5v

´
/
`
1− ξd4

´
,

g6 =
`
ξd2

´
/
`
1− ξd4

´
,

g7 =
`
ξd3

´
/
`
1− ξd4

´
,

g8 =
`
ξd6

´
/
`
1− ξd4

´
, (56)

where the aiv coef�cients are now calculated as in (49), and where

ξ =
1

2(1 + ν1v)

ρuXu

ρvXv
. (57)

8.6. Connection Point (FD-Modal)
The coef�cients of equation (48) are:

g1 =
`
βθd1

´
/
`
1− βθd4

´
,

g2 =
`
βθd2

´
/
`
1− βθd4

´
,

g3 =
`
βθd3

´
/
`
1− βθd4

´
,

g4 =
`
βθd5

´
/
`
1− βθd4

´
,

g5 =
`
βθd6

´
/
`
1− βθd4

´
,

g6 =
`− 1

´
/
`
1− βθd4

´
, (58)

where θ = (ρuXu)/(2T 2).
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