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Summary

One-dimensional musical resonators such as strings and tubes can be efficiently modeled in the

time domain using digital waveguides. In this paper it is shown how 1-D digital waveguides may

also be employed as efficient building blocks in simulations of higher dimensional systems governed

by the wave equation. Focusing on synthesis of membrane vibrations driven by external forces, it

is shown that all normal modes within a specified bandwidth can be captured with a finite set of

extracted waveguides, each representing plane-wave motion in a specific direction. A digital realisation

is presented and validated via numerical comparisons. The results of a computational complexity

analysis indicate that - if a sufficient number of waveguides can be discarded - synthesis by digital

waveguide extraction is more efficient than modal synthesis.

PACS no. 43.75.Zz, 43.75.Hi

1. Introduction

Sound synthesis by physical modelling relies largely
on time-domain modelling of elemental vibrating
structures, such as strings, tubes, bars, membranes,
and plates. This paper addresses the simulation of the
(linear) vibrations of a rectangular membrane driven
by a point-force, as depicted schematically in 1(a).
Membrane vibrations have been simulated with vari-
ous modelling paradigms, including finite differences
[1, 2], digital waveguide meshes [3, 4], and modal ap-
proaches [5, 6]. For 2-D problems, the computational
complexity of these approaches is of the same order of
magnitude, the operational count being proportional
to the number of modes below Nyquist [1]. This con-
trasts with the simulation of the 1-D cousin of the
membrane, the string, which - under specific simpli-
fying assumptions - is simulated at much less compu-
tational cost with digital waveguides than with the
other paradigms. The efficiency derives from the fact
that, in its simplest form, a digital waveguide consists
only of a pair of delay-lines that can be implemented
as circular buffers at minimal cost using pointer arith-
metic [7]. This benefit is lost in the 2-D version, since
conventional arithmetic is required at each node of a
digital waveguide mesh.
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Figure 1. (a) Rectangular membrane driven by a force at
position (ze, ye ), while the velocity is observed at the coor-
dinates (xp,yp). (b) Global structure of the digital waveg-
uide extraction (DWE) model, which computes velocity
at discrete-time instants ¢ = nT’, where 7T is the sampling
period. Each block Hg(z) respresents an extracted digital
waveguide that simulates plane-wave motion in a specific
direction.

In search of efficiency, various authors have found
ways of reducing 2-D and 3-D wave motion to delay-
line structures. Directly relevant to the current study
is the synthesis method proposed by Aramaki [§],
which consists of a parallel set of digital waveguides,
each capturing a specific sub-group of normal modes.
Another closely related study is that by Essl [9], who
investigated how the motion of a circular membrane
can be modeled - much like with geometrical methods
- by iterating a fundamental solution. However, nei-
ther of these approaches led to improved membrane
synthesis efficiency. Bilbao [10] showed that an initial
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Figure 2. Waveguide model of an ideal string. An external
force signal is applied at position x = z., and the velocity
is observed at = x,.

value problem for an ideal square membrane with free
boundary conditions can be solved by grouping modes
into harmonic subsets, each of which can be simulated
with a digital waveguide. The advantage compared
to Aramaki’s approach is that it does not involve
large-order phase-adjusting loop filters, thus enabling
greater efficiency. However it has not been detailed
how to deal with external driving forces, propagation
losses, non-square domains, and fixed boundary con-
ditions.

This paper extends, refines, and re-evaluates the
idea of synthesis via capturing harmonic subsets with
digital waveguides, in application to rectangular mem-
branes with free or fixed boundaries and driven by one
or more external forces. The resulting digital waveg-
uide extraction (DWE) model, which can be seen as a
generalisation of Bilbao’s approach, computes mem-
brane velocities at discrete-time instants, and takes
the form depicted in Fig. 1(b).

2. String Waveguide Model

The transversal motion of an ideal string driven by
external forces is governed by [11]

+(pA) T (2, ), (1)

wye(z,t) = c2wm(:§, t)

where w denotes string displacement, and ¢ =
VT /(pA) is the wave velocity that depends on ten-
sion (7)), mass density (p), and string cross-sectional
area (A). Here w,, and wy; denote the second deriva-
tive of w with respect to the spatial coordinate (z)
and time (t), respectively, and f(z,t) denotes force
density.

From the well-known D’Alembert solution to the
wave equation, it follows that the velocity at any point
is the sum of the forward- and backward travelling
wave at that point. Assuming free boundaries (which
is suited to the purposes of this study), an observation
position z,, and a driving force at a single position
Te, Le. Fo(t) = [6(x — xe) f(x,t)de = f(xe,t), the
string may be modelled as depicted in Fig. 2. Each of
the blocks represents the time it takes for a velocity
wave to travel between two points on the string, and
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these delay values are expressed in terms of the time-
delay parameters 7 = L/c, 7. = z./c, and 7, = x,/c.
This waveguide model can be thought of as the con-
tinuous model underpinning a digital waveguide string
model [7], the driving source of which can be modeled
by adding the signal F.(t)/(2Zy) to the local veloc-
ity waves in both directions, where Zy = pAc is the
characteristic impedance.

From Fig. 2, the Laplace-domain transfer function
of the string model can be deduced to be:

(1 + T672s‘rc) (1 + ,r672s(7'77'p)) efs(‘rpre)
270(1 — r2e—2s7)
and it can be shown - using Laplace and Fourier trans-

forms - that the corresponding impulse response can
be written

h(t) = (22107) (2+ i {cos [wWin(t + Te — Tp)]

m=1

H(s) =

(2)

+ €08 [wim (t + Te + 7))

+ cos [wim (t — Te — 7))

+ 08 [wi, (t — Te + 7)) }) (3)

3. Modal Formulation of Membrane
Response

Considering the spatial coordinates (z,y), the equa-

tion of motion for a lossless membrane driven by ex-
ternal forces is [11]

(p0) ' f(, y,1), (4)

where the wave velocity ¢ = /7T /(pb) depends on
the membrane tension per unit length (7), the mass
density (p), and the membrane thickness (b). Apply-
ing forced-motion analysis (see, e.g. [12]) and assum-
ing fixed or free boundaries, the velocity response at
pick-up position (z,,¥,) to an impulse force applied
at (ze,ye) can be derived and formulated in modal
form as follows:

147 SIS
2 + Z Z Wlm (Iev ye)Wlm (I;Dv yp)hlm (t)
=1 m=1

) = 1pbL, L, 5)

where hy,, (t) = cos(wimt) represents the reponse of a
single mode indexed by (I, m), W (x,y) is the mode
shape function, and r denotes the boundary reflection
coefficient. For fixed boundaries, we have r = —1 and

Wim (z,y) = sin(lmz/L,) sin(mmy/Ly), (6)
while for free boundaries, we have r = 1 and
Wim (z,y) = cos(Imx/L,) cos(mmy/Ly). (7)

For either boundary condition, the modal frequencies
are

2 m?2
TERER ®
x Y

Wim = TC
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4. Waveguide Extraction

This section shows how the solution to the 2-D mem-
brane problem can be decomposed into a set of 1-D
waveguide solutions. The key notion is that the mem-
brane motion can be considered as sum of plane wave
motions:

t) =Y hy(t), (9)

q€Q

where () is the collection of all possible directions. For
investigating plane waves from a modal perspective,
we consider a subset of (5) by setting

l=kqs, m=kq, k=1273.. (10)
where ¢, and g, are integers and ¢ = ¢, /¢, represents
the direction of wave travel. To avoid a direction being
represented multiple times, ¢, and g, are restricted to
mutually prime pairs [10]. Limiting ourselves to plane
waves in one direction in a membrane with fixed edges
then yields a subset impulse response function

4
he(t) =

Z Wi (xea ye)Wk (:va yp) COS(wkt)v
Y =
k=1 (11)

with the normal modal shapes
Wi (z,y) = sin(kgymax/Ly) sin(kgqymy/Ly), (12)

and where the normal mode frequencies now form a
harmonic subset:

k2q2 kg2 e
Wi = TC I2 + Iz =k L_q ) (13)

where L, = (Lo Ly)/ ( 2L+ qug). Note that we

can also write

1
- s . (14)
Lily  pre ;L2 +q2L3

Equation (12) can be written
_2{ cos [kw (q r z:LZyy >}
oo ()

By substitution of (14) and then substituting the re-
sulting equation into (11), it can be found that hg(t)
can be written as follows:

Wk(xa y) =

hq (t) = he1,p1 (t)_[hel,zﬁ (t) + he2p1 (t)]+he2,p2 (t)7(16)

(c) European Acoustics Association, ISBN: 978-84-694-1520-7, ISSN: 221-3767
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X=0 x=5 =2, x=P5,

Figure 3. Waveguide system for modelling a plane-wave
subset of the membrane response. The factor r represents
the membrane boundary reflection coefficient, which is
chosen as r = —1 for fixed boundaries and r = 1 for free
boundaries.

where each of the four terms is of the form

heol®) = 31 (377 5 {eoslontt 47
Tp)] + cos [wg(t + 7e — 7p)]
+ cos [wk (t — Te + 7p)] }, (17)

+ cos [wi(t — 7e —

and where 7, = Lg/c and Z, = pbc is the char-
acteristic impedance of the membrane. Comparing
(17) to (3) reveals that equation (17) equals the im-
pulse response of a string with free boundaries and of
length L,, wave speed ¢, and characteristic impedance
Zy, but without the zero-frequency mode contribu-
tion, and with additional scaling by L,/(2L;L,). This
means that in order to model the membrane with 1-D
waveguides, we must replace the 1/(27)) scaling fac-
tor as used in the waveguide string model (see Fig. 2)
with

Lo 1 Lg
2L,L, 2Zy 4ZoL.L,

9q = (18)
In the sum of terms in (16), the zero-frequency mode
contributions cancel each other out when each term
is modelled as a 1-D waveguide string model.

Repeating the above derivations for free boundaries
yields the same result, apart from the minus sign in
(16), which becomes a plus sign. Hence a more general
form is given in by

hg(t) = herp1(t) + 7 [he,p2(t) + hea,p1 ()] + he2,p2(t).
(19)

Since the four waveguide string models have the
same effective length, the output for a plane-wave sub-
set ¢ may in fact be modeled using a single extracted
waveguide model, in which the force signal is injected
additively at two points along the system y-axis,

QzIeLy + nyeL

xT _nyeLz

Ay = y =
‘ 2L2+ 2L2 ﬁe 2L2+ 2L2
qz Yy qy x qz y qy T

qgcxeLy

, (20)

and in which the output velocity is the sum of the
values at extraction points

ap = QzTpLy + qyyp Ly Qw‘rpL — qyYpLa (21)

JELR+ gLz GLy +agL?
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FIR

Figure 4. Digital realisation of a waveguide model for sim-
ulation of a plane-wave subset. The 2~ and 2= blocks
represent integer delay-lines, which are fractionally ad-
dressed using interpolation (I) and deinterpolation (DI)
blocks. The multipliers with r merely allocate the sign (i.e.
r = £1) according to the specified membrane boundary
conditions.

The block diagram for this arrangement is depicted
in Fig. 3. As holds for an initial-value problem for a
square membrane with free edges [10], the extracted-
waveguide coordinates may take on values outside the
range [0, L,], in which case they must be reflected into
that range. A simple and numerically insensitive way
to reflect the spatial coordinate x to x € [0, Lq] is

X = <1— '1— (qu mod 2>’>Lq. (22)

5. Digital Realisation

The digital waveguide extraction (DWE) synthesis
model takes the form of Fig. 1(b), i.e. a parallel set of
1-D digital waveguides. The discretisation of the ex-
tracted waveguides is performed following principles
and techniques of the well-known digital waveguide
modelling approach described in detail by Smith [7],
which leads to the structure depicted in Fig. 4. The
integer part of the time delay 7, is realised with a
digital delay-line of length N = |L,/(cT)], a Thi-
ran all-pass (AP) filter is employed to model the sum
D = 2(Ly/(cT)— N) of the fractional parts of the
lengths of the upper and lower delay-line. In order to
simulate propagation losses, a linear-phase FIR filter
[13] is used, although alternatively an IIR filter [14]
can be employed. For maximum efficiency, the lowest
possible filter orders are used here. That is, a first-
order all-pass filter, which can be implemented with
a single multiplier, is employed at the right-hand ter-
mination of Fig. 4, and a second-order FIR loss fil-
ter models the lumped propagation losses, which can
be realised using just two multiplies. Since a second-
order linear-phase FIR loss filter has a phase delay of
exactly one sample, we may replace one of the unit de-
lays of either the upper or lower delay-line with such
a FIR section without affecting the overall loop de-
lay time. For large membranes, cascaded FIR sections
may occasionally be needed for the longer waveguides.

10 © © ©
o © o o o 0 0O 0O 0O O O
8+ o o o o O O O O O 4
o o/ o/o /oS © o 0 O o o o
6F O o o o o O 4
€ Q) O © o 0O e} o o [¢)
4 o o o o q
o o o O
2 ») o q
0O 0O 0O O O O

Figure 5. Modes represented as circles plotted at coor-
dinates [, m. The thick black elliptic curve indicates the
Nyquist limit, and the thick gray elliptic curve indicates
the fidelity frequency fc limit. Each thin straight line rep-
resents a direction ¢, and the modes that it crosses are the
modes captured by the digital waveguide q.

As shown in Fig. 4, the digital input signal g,Fe(n)
is injected into the upper and lower delay-line us-
ing deinterpolators (DI), and the velocity output sig-
nal vg(zp, yp,n) is extracted from the delay-lines by
means of linear interpolator (I) blocks. The use and
design of interpolators and deinterpolators in the con-
text of digital waveguide modelling is described in de-
tail by Valiméki [15]. Here linear (de)interpolators are
used, i.e. first-order Lagrange FIR filters, which can
be realised using a single multiplier.

6. Reduced DWE Model

Musical sounds and other audio signals usually have a
large part of their energy in the low-frequency range,
and therefore it is worth considering a fidelity fre-
quency f. < 0.5fs above which accuracy is traded
off against efficiency, the underlying hypothesis being
that this frequency can be chosen so that no or little
significant perceptual change is affected [10]. Compu-
tational savings are then made by only including dig-
ital waveguides that have a fundamental lower than
fe, which leads to a reduced, less costly DWE model.
As an example, Fig. 5 demonstrates the modes that
are captured by a reduced DWE model (f. = 0.25f5)
in the case of a rectangular membrane (L, = 7.5X,
L, = 5X) with fixed boundaries. Note that all modes
with frequencies below the f. limit are captured, but
that the DWE model naturally also produces a num-
ber of modes above f.. In other words, some high-
frequency detail always remains.

7. Multiple Outputs and Inputs

In audio applications of the membrane model, it is
often desirable to work with multiple inputs and out-

(c) European Acoustics Association, ISBN: 978-84-694-1520-7, ISSN: 221-3767
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Figure 6. Spectra of the output velocity signals, calculated for the membrane parameters p = 100 Kgm 3, b = 1.0 mm,
L, = 120.26mm, L, = 18.17mm, 7 = 500Nm™", by = 357!, b = 0.0003m?s™", z. = 24.05mm, y. = 24.05 mm,

Tp = 72.15mm, y, = 56.12 mm.

puts. This requires that for N;, inputs and N,,; mem-
brane outputs, each digital waveguide has 2N,,, injec-
tion points and 2N,,; extraction points. Regarding
modal synthesis, a realisation with multiple inputs
and outputs requires, as with the functional transfor-
mation method [5], N, coefficients at the input side
and N, coefficients at the output side. This leads to
(Nin + Nout) coefficients per mode, in addition to two
coefficients per (lossy) oscillator.

8. Numerical Results

In order to investigate the validity of the DWE model
and to inspect the degradation of the output signal
when the model captures a reduced set of modes,
the output velocity of a fixed-boundary membrane
was calculated, using a short Gaussian pulse force in-
put signal. This calculation was performed with the
full modal model and with three DWE models, us-
ing the fidelity frequencies f. = 0.5fs, fe = 0.2fs,
and fo = 0.1f,. All models used a sampling fre-
quency fs = 44100Hz. The resulting magnitude spec-
tra, shown in Fig. 6, confirm that a decrease in f.
results in a reduction of the bandwidth in which the
modal and the DWE model produce a similar spec-
trum.

9. Computational Complexity

In analysing the computational complexity, the num-
ber of runtime multiplies required is taken as the cri-

(c) European Acoustics Association, ISBN: 978-84-694-1520-7, ISSN: 221-3767

terion to base any complexity measures on, and a sce-
nario with N, inputs and N,,; outputs is assumed. A
further assumption is that the loss filter requires two
multiplies, thus any small additional cost that may
occur when employing the cascaded FIR design for
large membranes with strong losses is neglected. In
the DWE model, the number of multiplies per digi-
tal waveguide is Mgyg = 4 + 2 (Nip + Nowt), while in
the modal model, the number of multiplies per mode
iS Myoda = 2 + Nip + Nowe- It can be shown that
the number of digital waveguides required to capture
all modes of frequency less than f. is approximately
Nawg ~ (6f2S/ (mc?), where S = L, L, is the mem-
brane surface area. The total number of modes gen-
erated by these Ng,4 digital waveguides is approxi-
mately Npoq = (2fs/¢) A/ NawgS where n = 1/3 for
fixed boundaries and n = 2/5 for free boundaries. The
output generated by the DWE model with fidelity up
to fe could also be calculated with a reduced modal
model in which the same set of modes is captured.
Hence the relative computational complezity of the
DWE model may be seen as the ratio of total number
of multiplies needed to render that output:

o Ndu)gdeg

NawgMawg _ [ 6 ( fe
= Nmodeod B \/77: (fs) ' (23)

In order to estimate the overall reduction in com-
plexity, we define a second complexity measure, R,
that compares the reduced DWE model to a full
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Figure 7. Relative computational complexity ratios R
(black lines) and R (gray lines) for fixed boundaries (solid)
and free boundaries (dashed).

modal model (that captures all Nipoa modes below
Nyquist):

= NawgMawg _ 2\/T <f>2 (24)
Nmodeod nm fs

Fig. 7 shows R and R as a function of f./f,. From
the R plots it can be seen that the DWE model is
more efficient than a modal model that generates the
same sound as long as the fidelity ratio f./fs is less
than around 0.42, and that the associated complexity
reduction is around 40% for f./f, = 0.25. The R plots
indicate that the overall reduction in complexity is
about 70% for f./fs = 0.25.

10. Concluding Remarks

We have shown how membrane vibrations may be
modeled and digitally synthesised as the sum of the
outputs of a set of extracted digital waveguides, each
representing plane-wave motion in a specific direction.
The computational complexity of the model - defined
here as the total number of required multiplies - may
be reduced by only including digital waveguides of a
fundamental frequency less than a chosen fidelity fre-
quency (fe), and thus capturing fewer system modes,
at the cost of decreased accuracy. Our comparisons
have indicated that for fidelity frequencies smaller
than about 84% of the Nyquist frequency, the DWE
modelling approach affords greater complexity reduc-
tions of this kind than a modal approach that discards
the same number of modes.

A question that naturally arises from these findings
is how small one may choose f, before any perceptual
difference occurs. Preliminary listening tests using a
44.1kHz sample rate have indicated that, in general,
no difference is perceivable if f. is at least about half
of the Nyquist frequency. This means that - compared
to a full modal model - an overall reduction in com-
putational complexity of 70% can be made.

van Walstijn, Mullan: Simulation of Membrane Vibrations with 1-D Waveguides

A further question that could be addressed by fu-
ture research is whether the principle of using 1-D
waveguides to model higher-dimensional systems can
also be applied to objects of different characteristics
or geometry.
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