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Determination of the mode I crack resistance

curve of polymer composites using the

size-effect law
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Abstract

This paper presents a new method to measure the crack resistance curve associ-
ated with the longitudinal failure of polymer composites reinforced by unidirectional
fibres. Rather than using compact tension test specimens, the identification of the
size-effect law of double edge notched specimens is used to obtain the crack resis-
tance curve. Special emphasis is placed on the appropriate calculation of the stress
intensity factor of the specimens when using quasi-isotropic or cross-ply laminates.
For this purpose, both analytical closed-form solutions and numerical methods are
investigated. Four different carbon-epoxy material systems, T800/M21, IM7/8552,
T700/AR-2527, and T700/ACE are tested and the corresponding size effect laws
and R-curves are measured. A good correlation between the crack resistance curve
obtained using the size effect law and that previously measured for one of the ma-
terial systems using the compact tension test is obtained. The highest value of the
longitudinal fracture toughness was obtained for the T800/M21 material.
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Nomenclature

a, a0 crack length, initial value of the crack length
A, C fitting parameter used in the linear regression I fit

Á, Ć fitting parameter used in the linear regression II fit

É equivalent modulus
f correction factor for the dimensionality of the specimen
GI energy release rate in mode I
h thickness of the laminate
h0, h90 thickness of the 0◦ and 90◦ plies, respectively
KI stress intensity factor
l half of the length of the specimen
le size of the element
lfpz length of fracture process zone
M , N fitting parameter used in the bilogarithmic regression fit
P applied load.
Pu peak load
R R-curve
R0, R90 R-curves for the 0◦ ply an 90◦ ply, respectively
Rss steady-state value of fracture toughness
R0ss steady-state value of the fracture toughness of the 0◦ ply
slm components of the compliance matrix computed in the x1-x2 coordinate system
t thickness of the specimen
ul nodal displacement
w half of the width of the specimen
x1, x2 preferred axes of the material
Ym nodal load

α, α0 shape parameter, initial value of the shape parameter
β, γ parameters used in the R-curve fit
∆a crack increment
ϵ error
ζ elastic parameter
κ correction factor
κ0 correction factor κ for α = α0

κ́0 derivative, with respect to α, of the correction factor κ for α = α0

K matrix for the polynomial fitting of κ
λ elastic parameter
ξ shape-parameter
ρ elastic parameter
σ remote stress
σu ultimate nominal stress
σ̂u corrected value of the ultimate stress
ϕ correction factor for an infinitely long specimen
Φ matrix for the polynomial fitting of ϕ
χ correction factor for the orthotropy of the material
ψ correction factor for the length of the specimen
Ψ matrix for the polynomial fitting of ψ

Avg. average value
SD standard deviation
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1 Introduction1

The most recent analysis methods that predict fracture of polymer composite2

materials require not only the value of the fracture toughness, but also its re-3

lation with the increment of the crack length, i.e., the crack resistance curve.4

Taking the thickness of the individual ply as the representative length scale5

it is possible to formulate ’mesomodels’ that account for both delamination6

(interlaminar cracking) and ply failure mechanisms (intralaminar cracking)7

[1–3]. The softening constitutive relation that simulates longitudinal failure,8

where the fracture plane is approximately perpendicular to the fibre direction,9

requires the fracture toughness to regularize the numerical solution [3]; how-10

ever, the crack resistance curve must also be measured to identify the different11

regions of the softening constitutive relation so that the failure mechanisms12

acting at the crack tip and along the wake of the crack are properly accounted13

for [4].14

Recently, Finite Fracture Mechanics models that use the laminate thickness15

as the representative length-scale have been developed to predict fracture of16

multidirectional composite laminates in the presence of stress concentrations17

[5–7]. These methods are typically used for the preliminary design and opti-18

mization of composite structures, and are based on the simultaneous fulfilment19

of a stress-based criterion, which requires a stress allowable, and of an energy20

based criterion, which requires the fracture toughness [5–7] or the crack resis-21

tance curve [8].22

Based on the above observations, it becomes apparent that reliable test meth-23

ods for the measurement of the intralaminar fracture toughness 1 of composite24

laminates and of the corresponding crack resistance curve (R-curve) are re-25

quired. While a strong emphasis has been placed on the use of compact tension26

test specimens [9], recent results have shown that using the current geometry27

of the compact tension test specimen it is not possible to measure the fracture28

toughness of modern resin systems that result in high values of the fracture29

toughness [10]. For example, in previous attempts to measure the fracture30

toughness of cross-ply Hexcel’s T800/M21 carbon-epoxy laminates using the31

geometry proposed in [9] the region of the specimen subjected to compres-32

sive stresses buckled [10]; such an elastic instability renders the test results33

1 Two different types of failure mechanisms are usually considered in fibre rein-
forced composites: interlaminar, when crack propagation occurs between the plies
of the laminate (i.e. delamination), and intralaminar, when crack propagation oc-
curs within the individual plies of the laminate.
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meaningless.34

Therefore, the objective of this paper is to develop a new methodology to35

obtain the R-curve of polymer composite laminates reinforced by unidirec-36

tional fibres. The main idea put forward here, which follows Bažant’s seminal37

work [11], is to relate the size effect law with the crack resistance curve of38

the composite material. The general overview of such relation is presented in39

section 2. Section 3 describes the experiments that were performed in three40

different types of carbon-epoxy composite laminates and presents the cor-41

responding R-curves. The conclusions and suggestions for future work are42

presented in section 4.43

2 Analytical Model44

2.1 Overview45

Consider the geometry shown in Figure 1. The width of the specimen is equal46

to 2w and a0 is the initial crack length. The length of the specimen is 2l.47

[Fig. 1 about here.]48

In a two-dimensional orthotropic body, taking x1 and x2 as the preferred axes49

of the material (see Figure 1), the mode I component of the energy release50

rate for crack propagation in the x1-direction, GI , reads [12]:51

GI =
1

É
K2

I (1)

where KI and É are respectively the stress intensity factor and the equivalent52

modulus. The equivalent modulus reads:53

É =
(
s11s22

1 + ρ

2

)−1/2

λ1/4 (2)

where slm are the components of the compliance matrix calculated in the x1-54

x2 coordinate system, and λ and ρ are two dimensionless elastic parameters55

defined as:56

λ =
s11
s22

, ρ =
2 s12 + s66
2
√
s11s22

(3)
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The stress intensity factor in equation (1) is a function of ρ, of the remote57

stress σ, and of the shape and size of the specimen. Using the orthotropic58

rescaling technique [12,13], the stress intensity factor of a notched bar can be59

written as:60

KI = σ
√
w κ(α, ρ, ζ) (4)

where ζ = λ−1/4ξ, α = a/w and ξ = w/L are the shape-parameters, and κ61

is the correction factor that depends on the geometry and orthotropy of the62

material.63

Replacing (4) in (1) the energy release rate reads:64

GI =
1

É
w σ2κ2 =

1

4w É

(
Pκ

t

)2

(5)

where t is the thickness of the specimen and P is the applied load. Assuming65

that κ is an increasing function of the crack length (the specimen has a pos-66

itive geometry), the size effect method can be used to measure the fracture67

toughness of the material [11]. Equation (5) can be re-written as:68

GI (∆a) =
P 2

4w t2 É
κ2

(
α0 +

∆a

w
, ρ, ζ

)
(6)

where α0 is the initial value of the shape parameter, α0 = a0/w. For different69

sizes, wn, the crack driving-force curves GI corresponding to the peak loads,70

Pun, are tangent to R-curve, and this fact can be used to measure the R-71

curve, R. Mathematically the peak load, Pu, or the ultimate nominal stress,72

σu = Pu/ (2wt), can be obtained from the following system of equations:73


GI (∆a) = R (∆a)

∂GI (∆a)

∂∆a
=
∂R (∆a)

∂∆a

(7)

Assuming that the size effect law is known, σu = σu (w), using (5) in the first74

of equation (7) yields:75

R (∆a) =
1

É
w σ2

u κ
2 (8)
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This equation is valid for every w. Following [11], differentiating (8) with76

respect to w, under the hypothesis that geometrically similar specimens are77

tested (α0 and ξ are not functions of the width, w) and remembering that the78

R-curve does not depend on the size of the specimen w (∂R/∂w = 0), the79

following equation is obtained:80

∂

∂w

(
w σ2

u κ
2
)
= 0 (9)

Equation (9) can be solved for w = w (∆a). Replacing w in (8) yields the81

R-curve, R (∆a).82

The size effect law should be determined by testing geometrically similar spec-83

imens. Following Bazant and Planas [11], three different kinds of fitting are84

generally used: i) the bilogarithmic regression; ii) the linear regression I; iii)85

the linear regression II. The regression fits normally used, and the correspond-86

ing formula for the calculation of the length of the fracture process zone, lfpz,87

and for the fracture toughness at propagation, Rss, are reported in Table 188

where κ0 = κ|α=α0
and κ́0 = ∂κ/∂α|α=α0

.89

[Table 1 about here.]90

2.2 Determination of κ91

According to Bao et al. [13], the effect of the parameter ζ is negligible when92

ζ ≤ 1/2; therefore, for a sufficiently long specimen the correction factor used93

in equation (4) will be a function of α and ρ only. Under these circumstances94

it is possible to express κ as:95

κ = f(α)χ(ρ) (10)

where χ is the correction factor for the orthotropy of the material96

χ(ρ) = 1 + 0.1 (ρ− 1)− 0.016 (ρ− 1)2 + 0.002 (ρ− 1)3 (11)

f is the configuration correction factor for the dimensionality corresponding97

to the isotropic case, i.e., when ρ = 1. The correction factor for the double98

edge cracked specimen is given in Tada et al. [14]:99
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f(α) =
√
πα

[
1 + 0.122 cos4

(
απ

2

)] √(
2

απ

)
tan

(
απ

2

)
(12)

For materials with 0 ≤ ρ ≤ 4, the error obtained is negligible if κ is obtained100

multiplying the correction factor for isotropic material of equation (12) for the101

correction for the orthotropy (equation (11)) [13]. Consequently, the solution102

of equation (10) is applicable in the case of quasi-isotropic laminates (in this103

case χ = 1 and κ = f), or of multidirectional laminates that are not highly104

orthotropic (0 ≤ ρ ≤ 4).105

If a cross-ply laminate is used, the parameter ρ will not satisfy this inequality,106

taking values larger than 4; therefore equation (10) is not applicable. The107

importance of determining the expression of κ under this circumstances results108

from the fact that, for a cross-ply laminate, it is possible to obtain easily the109

R-curve of the ply in the longitudinal direction (i.e. in the fibre direction),110

knowing the R-curve of the laminate, R.111

As observed by Pinho et al. [9], the R-curve of the 0◦ plies can be obtained112

neglecting the fracture toughness of the 90◦ plies. The energy balance for a113

self-similar crack propagation da in the cross-ply reads:114

Rh da = R0 h0 da+R90 h90 da (13)

where R0 and R90 are the R-curves for the 0◦ and 90◦ plies, respectively,115

and h, h0 and h90 are the thickness of the laminate, the 0◦ and 90◦ plies,116

respectively. Neglecting R90 (R90 << R0), after simplifying, equation (13)117

can be rearranged as:118

R0 =
h

h0
R (14)

If a balanced cross-ply is used, h0 = h90 = h/2; therefore, the R-curve of119

the ply in the longitudinal direction reads: R0 = 2R. This means that, for120

a balanced cross ply, the fracture toughness in longitudinal direction, R0, is121

simply twice the fracture toughness of the laminate, R.122

The use of a balanced cross-ply to measure the fracture toughness of the 0◦123

ply is proposed here. In this case, the influence of λ on the calculation of the124

correction factor, κ, can be eliminated (because κ = 1 when s11 = s22) and125

this parameter will only depend on α, ρ, and ξ. Since equation (10) cannot126

be used, a new expression for κ should be found. Taking advantage of the127

capabilities of the commercial software Abaqus [15], a parametric model of128

the specimen was build in Python [16] to calculate the correction factor κ for129
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different values of α, ρ, and ξ. One-quarter of the specimen was modeled using130

4-node plane stress reduced integration elements (CPS4R) [15] (Figure 2).131

The material properties used in the CPS4R elements are the laminate elastic132

properties, which are either calculated from the ply elastic properties and lay-133

up using lamination theory (unidirectional reinforcements), or directly mea-134

sured in experimental tests (woven fabrics).135

Taking into account κ will be used in the test method to measure the R-curve136

of the ply in the longitudinal direction, appropriate boundary conditions must137

imposed in the finite element model. Therefore, a displacement is applied at138

the end of the specimens (see Figures 1 and 2). The length of the specimen139

of Figure 1 corresponds to the free length of the specimen.140

[Fig. 2 about here.]141

The Virtual Crack Closure Technique [17] is used to calculate the energy142

release rate. Taking into account the symmetry of the problem, the crack143

driving force is equal to:144

GI = −Ym un/le (15)

where Ym and ul are the load and the displacement in the x2 direction of the145

nodes m and l, respectively, and le is the size of the element (see Figure 2).146

The correction function κ can be obtained fitting the numerical results using147

a polynomial function:148

κ =

√
tan

πα

2

∑
i

∑
j

∑
k

Kijk α
i−1 ρj−1 ξk−1 (16)

where Kijk is the element of the matrix K of indexes i, j, and k. The values149

of the components of the matrix K are reported in Table 2.150

[Table 2 about here.]151

Observing equation (16) it is conclded that the correction factor κ depends152

on ξ. Considering also equations (8) and (9) it is clear that the experimental153

tests should be performed with the same ξ or, in other words, scaling the free154

length.155

Figures 3(a) and 3(b) compare the numerical results and the polynomial fitting156

surfaces for the two extreme cases of ξ = 0 (infinitely long specimen) and157

ξ = 1, respectively. The average error in the calibration range (0 < ξ ≤ 1,158

8



0 ≤ ρ ≤ 20, 0 ≤ α ≤ 0.9) is less than 2%.159

[Fig. 3 about here.]160

For an infinitely long specimen (ξ = 0), the correction factor κ reads:161

ϕ = κ|ξ=0 =

√
tan

πα

2

∑
i

∑
j

Φij α
i−1 ρj−1 (17)

where Φij is the element of the matrix Φ of indexes i and j. The matrix Φ162

reads:163

Φ =



1.7482487564 −0.053754159533 0.0040142704949 −9.8480085881e− 05

−0.76896688866 −0.0068632911438 0.0029984681658 −0.00010108691939

0.85633404777 0.23922363475 −0.023289123198 0.00062358861997

−0.67470597429 −0.25334178248 0.022297779266 −0.00056784694513

0.18495379886 0.084067007027 −0.0068989066533 0.00016783852495


(18)

Figure 4 shows the numerical point and the polynomial fitting surface. The164

average error in the calibration range (0 ≤ ρ ≤ 20, 0 ≤ α ≤ 0.9) is again less165

than 2%.166

[Fig. 4 about here.]167

If the specimen is long enough, equation (17) can be used to approximate the168

correction factor. The corresponding error is:169

ϵ =

∣∣∣∣∣ϕ− κFEM

κFEM

∣∣∣∣∣ (19)

Figure 5 shows the average error, which is defined in equation (19), as a170

function of ξ. As expected, the error ϵ increases increasing the shape parameter171

ξ. In the range 0 < ξ < 0.2 the error is exactly the same of that for ξ = 0. In172

the range 0.2 < ξ < 0.5 the error is higher but still less than 5% and therefore173

acceptable, equation (17) can still be used to estimate the correction factor κ.174

In the range ξ > 0.5 the error is unacceptably high and equation (16) should175

be used.176

[Fig. 5 about here.]177
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Equations (16) and (17) provide an important improvement on the estimation178

of κ when compared with equation (11). Figure 6 shows the correction factor179

κ as a function of α for different values of ρ for an infinitely long specimen.180

For quasi-isotropic laminates (ρ = 1) equations (11) and (17) yield the same181

results. However, when ρ increases (Figure 6 reports the cases with ρ = 5 and182

ρ = 10), the difference between the predictions becomes very high and the use183

of equations (16)-(17) is recommended.184

[Fig. 6 about here.]185

Sometimes it is not possible to scale the free length of the specimens or to186

respect the condition ξ < 0.5. For example, when testing specimens whose187

dimensions lie between a large range of sizes (i.e. when a coupon and a struc-188

tural part are tested). In this case is still possible to obtain the R-curve of the189

material by an appropriate manipulation of equations (8) and (9). First of all190

it is convenient to factorize κ as follows:191

κ (α, ρ, ξ) = ϕ (α, ρ) ψ (ρ, ξ) (20)

where ϕ is the correction factor for an infinitely long specimen (obtained using192

equation 17) and ψ reads:193

ψ = 1−
∑
i

∑
j

Ψij ρ
i−1 ξj (21)

Ψij is the element of the matrix Ψ of indexes i and j:194

Ψ =

 0.018136304459 −0.17640537683 0.35130642410 −0.16996415435

−0.0051147015355 0.038096285848 −0.033267185410 0.00918499914


(22)

Equation (20) is less accurate than equation (16) ; however, because the aver-195

age error between the fitted function and the numerical points is less than 5%,196

its use is still acceptable. Figure 7 shows the correction factor ψ as a function197

of ρ and ξ. As expected, when ξ = 0 (infinetely long specimens), the correction198

factor ψ is equal to 1.199

[Fig. 7 about here.]200

Defining a corrected value of the ultimate stress (or ultimate load) as:201
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σ̂u = σu ψ(ρ, ξ) (23)

The size effect law, σ̂u = σ̂u (w), can still be obtained choosing the best re-202

gression method of those reported in Table 1. Equations (8) and (9) can be203

rewritten as:204

R (∆a) =
1

É
w σ̂2

u ϕ
2 (24)

∂

∂w

(
w σ̂2

u ϕ
2
)
= 0 (25)

As previously explained, equation (25) can be solved obtaining w = w (∆a)205

that substituted in equation (24) yields the R-curve, R (∆a).206

It should be noted that in the case of multidirectional highly orthotropic207

laminates (multidirectional laminates with ρ > 4) a solution for the correction208

factor κ (α, ρ, ζ) is easily obtained. In fact, invoking the orthotropic rescaling209

technique 2 [12], equations (16)–(25) are still valid if ξ is replaced by ζ.210

3 Experiments211

The proposed methodology is applied to measure the R-curve of the following212

laminates:213

• CP-IM7/8552: [90/0]8s 16-ply cross-ply laminate with a nominal laminate214

thickness of 2 mm. The nominal ply thickness is 0.125 mm.215

• CP-T800/M21: [90/0]8s 16-ply cross-ply laminate with a nominal laminate216

thickness of 2 mm. The nominal ply thickness is 0.125 mm.217

• QI-T700/AR-2527: [(0/−45)/(45/0)/(90/45)/(−45/90)]s 16-ply quasi-isotropic218

laminate with a nominal laminate thickness of 1.3 mm. This lay-up is sym-219

metric by C-PlyTM [0/ − 45] non-crimp fabric (NCF) bi-angle layer, but220

not-symmetric ply by ply. The nominal ply thickness is 0.08 mm.221

2 The orthotropic rescaling technique is based on the rescaling of the x1-axis by
ξ = λ1/4x1 and it allows to draw a parallel between an orthotropic body (λ ̸= 1) and
a solid with cubic symmetry (λ = 1). For this reason, even if κ (α, ρ, ξ) was formally
derived for the case of a cross ply laminate (that is a solid with cubic symmetry
being λ = 1), if the orthotropic rescaling technique applies, the correction factor for
the orthotropic body, κ (α, ρ, ζ), takes the same value of equation (16) substituting
ξ by ζ. It should be remembered that ξ and ζ are both dimensionless parameters
and that in the case of a cross ply laminate ξ = ζ.

11



• CP-T700/ACE: [0/90]5 Torayca R⃝ woven fabric laminate with a nominal222

thickness of 2mm and a nominal fabric thickness of 0.2mm.223

The cross-ply laminates also enable the calculation of the R-curve in the lon-224

gitudinal direction of the ply. The elastic parameter of the laminates as well225

as the references to the corresponding previous investigations, are shown in226

Table 3.227

[Table 3 about here.]228

The geometry of the specimens is reported in Figure 8. To keep the tolerance229

under control, in particular concerning the crack length, a0, and the width, 2w,230

the specimens were machined in a CNC machine equipped with a 1mm drill231

bit. The use of a 1mm drill bit does not lead to sharp crack tips; however this232

is not problematic because: i) the specimen fails when the crack has already233

propagated until its critical length; therefore at failure the crack tip is sharp;234

ii) it has been shown that the fracture toughness measured in a center cracked235

specimen with a crack machined using a drill bit and in a specimen with a236

crack manufactured using a thin saw is virtually the same [21]. The free length,237

2l, was controlled during the experimental tests to ensure that the condition238

ξ ≤ 0.2 was always respected. Table 4 shows the size investigated for each239

laminate and the label corresponding to each size. The test matrix is shown240

in Table 5.241

[Fig. 8 about here.]242

[Table 4 about here.]243

[Table 5 about here.]244

Three specimens were tested for each size at a speed of 1mm/min. An Instron245

4208 testing machine equipped with a 100kN load cell was used to perform246

all the tensile tests. The average and the standard deviation of the remote247

stresses are shown in Table 6.248

[Table 6 about here.]249

The pictures of the failed specimens are shown in Figure (9).250

[Fig. 9 about here.]251

The size effect law (see Table 1) that best fit the data are the bilogarithmic252

(for CP-IM7/8552 and CP-T800/M21 laminates) and the linear regression I253

(QI-T700/AR-2527). Figure 10 shows the experimental data and the fitting254

obtained for all the laminates. The parameters that give the best fitting are:255

• M = 1242MPa
√
mm, N = 8.614mm for CP-IM7/8552;256

12



• M = 1440MPa
√
mm, N = 3.719mm for CP-T800/M21;257

• A = 0.656E−6MPa−2mm−1, C = 0.384E−5MPa−2 for QI-T700/AR-2527;258

• Á = 0.672E − 5MPa−2, Ć = 3.7E − 007MPa−2mm−1 for CP-T700/ACE.259

[Fig. 10 about here.]260

Knowing the size effect law, the R-curve is calculated solving equations (8) and261

(9). This is equivalent to obtain the R-curve as envelope of the crack driving262

force curves. Figure 11 and 12 show the fracture toughness for the ply in the263

longitudinal direction of the IM7/8552 and T800/M21 laminates, respectively.264

As explained before these curves are obtained multiplying by two the fracture265

toughness of the laminate. For the IM7/8552 0◦ ply, the experimental points266

obtained from the compact tension (CT) specimens are also reported using267

the FEM based data reduction method proposed in [9].268

The steady-state value of the R-curve obtained using the double-edge notched269

specimens is in good agreement with that obtained using CT specimens. How-270

ever, some differences are observed on the rising part of the R-curve, and on271

the length of fracture process zone, lfpz. Using double-cantilever beam test272

specimens, Foote [22] demonstrated that the rising part of the R-curve and273

the corresponding length of the fracture process zone depend on the specimen274

size, up to a critical size after which constant R-curves are obtained. This indi-275

cates that further studies based on CT test specimens with different sizes are276

required to clarify the differences observer in the rising part of the R-curve.277

However, it should be emphasised that the method proposed here provides a278

robust way to identify the steady-state value of the fracture toughness, corre-279

sponding to an improvement over the classical CT test method.280

[Fig. 11 about here.]281

[Fig. 12 about here.]282

Figure 13 shows the R-curve of the QI-T700AR-2527 laminate.283

[Fig. 13 about here.]284

[Fig. 14 about here.]285

The values of the length of the fracture process zone, lfpz, and of the steady286

state value of the fracture toughness of the 0◦ ply, R0ss, are calculated and287

shown in Table 7. For the T700/AR-2527 ply these values are calculated using288

the analytical model previously developed [21] to predict the fracture tough-289

ness of the 0◦ ply from that of a multidirectional laminate.290

Unfortunately this model cannot be used to determine the fracture toughness291

of the 0◦ ply for the CP-T700/ACE material system. In fact, as shown in292

13



Figures 9(d) and 15(d), the fracture surface of this materials includes several293

pulled-out boundles of fibres and a damage region that is not confined to the294

uncracked ligament of the specimen. Neglecting the energy dissipated by the295

additional failure mechanism overestimates the fracture toughness of the ply.296

[Fig. 15 about here.]297

[Table 7 about here.]298

To simplify the use of R-curve in numerical and analytical models it is useful to299

express it analytically. A formula that has shown a good fitting of the R-curve300

is:301

R = Rss

[
1− (1− γ∆a)β

]
(26)

where γ and β are the parameters that best fit the formula to the R-curve.302

As an example, Figure 16 shows the R-curve for QI-T700/AR-2527 laminate303

and the corresponding fitting. The parameters that best fit the R-curves of304

the ply in the longitudinal direction are shown in Table 7.305

[Fig. 16 about here.]306

A comparison of the R-curves of the 0◦ ply in the longitudinal direction for the307

different materials is shown in Figure 17. It is observed that the T800/M21308

material has the highest value of the steady-state fracture toughness, R0ss,309

whereas the lowest value is observed for IM7/8552.310

[Fig. 17 about here.]311

4 Conclusions312

Using the size effect law measured in composite laminates with two edge cracks313

it is possible to obtain the crack resistance curve, both for the multiaxial lam-314

inate tested and for the 0◦ ply. The methodology proposed here circumvents315

both the need to perform complex post-processing analysis based on Finite316

Elements and the need to measure the crack length during the test.317

The stress intensity factor used in the model can be easily obtained using a318

polynomial approximation of the results of the application of the Virtual Crack319

Closure technique in parametric Finite Element models of specimens with two320

edge cracks loaded in tension. It is concluded that this is the preferred method321

to calculate the stress intensity factor for general lay-ups and geometries.322
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All the three carbon-epoxy material systems investigated here, T800/M21,323

IM7/8552, and T700/AR-2527 showed a crack resistance curve. The steady-324

state values of the longitudinal fracture toughness are 205kJ/m2 for IM7/8552,325

283kJ/m2 for T800/M21, and 254kJ/m2 for the T700/AR-2527 laminates.326

The respective values of the fracture process zone are 2.63mm, 1.14mm and327

1.92mm. It should be noted that the previous attempts to measure the R-328

curve of T800/M21 using compact tension test specimens were not successful329

due to specimen buckling [10]; however, using the method proposed here it330

was possible to obtain the R-curve of T800/M21.331

The methodology proposed here provides a robust way to measure the steady-332

state value of the R-curve for fibre-reinforced composites, if compared with the333

CT specimen, for which the determination of the steady-state value may be334

ineffective.335

The information generated in this paper will be used in the definition of the336

constitutive relations of the analysis models that aim to predict the mecha-337

nisms of crack initiation and propagation of composite structures.338
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Fig. 1. Double edge cracked specimen (DEC).
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Fig. 2. Finite element model using for the calibration of κ.
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Fig. 3. Numerical results and polynomial fitting for κ (equation (16)).

21



0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
0

1

2

3

4

α [–]ρ [–]

φ
[–

]

Fig. 4. Numerical results and polynomial fitting for ϕ (equation (17)).
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Fig. 8. Technical draw of the specimen.
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(a) CP-IM7/8552

(b) CP-T800/M21

(c) QI-T700/AR-2527

(d) CP-T700/ACE

Fig. 9. Specimen after testing.
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Fig. 10. Size effect laws: experiments and fitting for the investigated material.
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Fig. 11. R-curve of the 0◦ ply for IM7/8552 (in black) obtained as envelope of the
driving force curves (in blue) and comparison with experimental results obtained
using CT specimens (every marker a different specimen).
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Fig. 13. R-curve of the QI-T700/AR-2527 quasi-isotropic laminate (in black) and
the corresponding driving force curves (in blue).
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(a) CP-IM7/8552 (b) CP-T800/M21

(c) QI-T700/AR-2527 (d) CP-T700/ACE

Fig. 15. Typical fracture surface observed in all the laminate tested (specimen
type B).
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Regressions fit Formula Fitting parameters Rss lfpz

Bilogarithmic lnσu = ln
M√
N + w

M , N
κ20
É
M2 κ0

2 κ́0
N

Linear regression I
1

σ2
u

= Aw + C A, C
κ20
É

1

A

κ0
2 κ́0

C

A

Linear regression II
1

wσ2
u

= Á
1

w
+ Ć Á, Ć

κ20
É

1

Ć

κ0
2 κ́0

Á

Ć

Table 1
Size effect law fits [11].
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i j k K (i, j, k) i j k K (i, j, k)

1 1 1 1.74874169287311 3 3 1 -0.0163543233856253

1 1 2 0.00714960132308337 3 3 2 -0.110059901240345

1 1 3 -0.0356324675667488 3 3 3 0.203663008343557

1 2 1 -0.0526303311437509 3 4 1 0.000263571025795895

1 2 2 -0.0133183413168479 3 4 2 0.00433112725257584

1 2 3 0.0234077533074353 3 4 3 -0.00658541595211619

1 3 1 0.00393368572531936 4 1 1 -0.592470330296433

1 3 2 0.000726535951382543 4 1 2 -0.984700920323280

1 3 3 -0.000867546012453078 4 1 3 1.78897127917155

1 4 1 -9.78955615222354e-05 4 2 1 -0.302437427062842

1 4 2 -3.48057443564002e-06 4 2 2 -0.111538580444948

1 4 3 2.32697528948074e-06 4 2 3 1.46770359644942

2 1 1 -0.767208701652775 4 3 1 0.00446242346729918

2 1 2 0.0278810474891446 4 3 2 0.231728483007845

2 1 3 -0.157514192137989 4 3 3 -0.366847699226865

2 2 1 -0.0338305033576344 4 4 1 0.000182071222365654

2 2 2 0.207433832357023 4 4 2 -0.00822678007628292

2 2 3 -0.177099439797605 4 4 3 0.0111920357855815

2 3 1 0.00417757542138585 5 1 1 0.140766754998207

2 3 2 -0.000834205920090498 5 1 2 0.572777961274980

2 3 3 -0.0205786990826619 5 1 3 -1.12893905581246

2 4 1 -9.62916671898641e-05 5 2 1 0.101727935542504

2 4 2 -0.000322325843661191 5 2 2 0.108348678423743

2 4 3 0.000945832449681189 5 2 3 -0.779004510684639

3 1 1 0.815416824739527 5 3 1 0.00293052383668594

3 1 2 0.385474036008317 5 3 2 -0.122154495971872

3 1 3 -0.484668819900970 5 3 3 0.186022036976596

3 2 1 0.297280482414042 5 4 1 -0.000230184088065499

3 2 2 -0.196826534461867 5 4 2 0.00425506303131702

3 2 3 -0.530314776856868 5 4 3 -0.00561050809815955

Table 2
Elements of the K matrix.
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Laminates
Laminate’s elastic parameters

Ref.
Ex [GPa] Gxy [GPa] νxy [–]

CP-IM7/8552 90.7 5.3 0.03 [18]

CP-T800/M21 90.8 5.0 0.03 [6]

QI-T700/AR-2527 42.6 16.3 0.31 [19]

CP-T700/ACE 55.6 32.2 0.04 [20]

Table 3
Laminates investigated.
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Specimen label 2w [mm] a0 [mm]

A 10 3.0

B 15 4.5

C 20 6.0

D 25 7.5

E 30 9.0

F 35 10.5

Table 4
Specimen geometry.
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A B C D E F

CP-IM7/8552 X X X X

CP-T800/M21 X X X X

QI-T700/AR-2527 X X X X X X

CP-T700/ACE X X X X X X

Table 5
Test matrix.
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A B C D E F

CP-IM7/8552
Avg. – 309 289 269 256 –

SD – 9 16 11 10 –

CP-T800/M21
Avg. 484 426 – 380 – 299

SD 20 22 – 35 – 19

QI-T700/AR-2527
Avg. 356 351 316 291 268 253

SD 22 28 24 24 21 14

CP-T700/ACE
Avg. 339 325 323 299 277 271

SD 12 56 11 24 16 6

Table 6
Average and standard deviation of the ultimate remote stress, σu (in MPa).
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lfpz [mm] R0ss [kJ/m
2] γ [mm−1] β [–]

IM7/8552 2.63 205 0.319 3.650

T800/M21 1.14 283 0.758 3.527

T700/AR-2527 1.92 254 0.4226 4.004

Table 7
Parameter of the R-curve in the longitudinal direction of the ply.

43


