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Abstract 

Aircraft fuselages are complex assemblies of thousands of components and as a result 

simulation models are highly idealised.  In the typical design process, a coarse FE 

model is used to determine loads within the structure.  The size of the model and 

number of load cases necessitates that only linear static behaviour is considered.  This 

paper reports on the development of a modelling approach to increase the accuracy of 

the global model, accounting for variations in stiffness due to non-linear structural 

behaviour.  The strategy is based on representing a fuselage sub-section with a single 

non-linear element. Large portions of fuselage structure are represented by connecting 

these non-linear elements together to form a framework. The non-linear models are 

very efficient, reducing computational time significantly. 
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1  Introduction 

During a conventional fuselage design process, the preliminary detail design stage 

generates a highly idealised representation of the global fuselage structure. This 

design is then iteratively improved to satisfy performance criteria and regulatory 

requirements. At this stage a Finite Element model is constructed from this data, 

Figure 1, in which the philosophy is to model the structure with sufficient detail to 

evaluate the internal loads. In general, the aircraft fuselage is discretised to a single 

element between each stringer and each frame. This is the global or loads model, and 

is analysed for all critical aircraft loading cases. There are normally between two and 

three hundred loading cases from which the critical loads are determined. 

 

Figure 1 – Highly idealised global fuselage barrel model 

 

The primary aim of this global analysis is to obtain load paths and load levels 

throughout the structure. The loads obtained from the global model are then used to 

carry out detailed stressing on individual components. The structural members are 

stressed using conventional methods, where in the case of buckling analysis the 

techniques are based on the empirical/semi-empirical methods presented in Bruhn [1], 

NASA Astronautics Structures Manual [2], and the ESDU Structures Sub-series [3]. 

The Finite Element global analysis is linear static and non-linear geometry and 

material behaviour is only considered at the detailed stressing phase, the results of 

which are not fed back into the global model.  

 

Finite Element tools are now being developed to improve the accuracy and reliability 

of stiffened panel empirical/semi-empirical buckling and collapse analysis methods, 

with some success in improving accuracy [4, 5, 6]. However, modelling and analysis 



 

 3

times are still excessive and cannot yet replace existing approaches [4, 5, 6]. Both 

sub-structuring [7] and sub-modelling [8, 9] are common techniques used in linear 

type analysis problems to reduce analysis costs [10]. Sub-structuring allows a 

collection of model elements to be grouped together and replaced within the model 

with a sub-structure or a super-element. All but retained boundary degrees of freedom 

are eliminated on the basis of a linear response from the grouped elements. A sub-

structure or super-element appears to the rest of the model simply as a stiffness. Sub-

modelling is a technique used to study a local region of a model with a refined mesh, 

based on interpolation of a solution from an initial, relatively coarse, global model. 

Sub-modelling is most useful when it is necessary to obtain an accurate, detailed 

solution in a local region and the detailed modelling of that local region has negligible 

effect on the overall global solution. 

 

The difference between sub-structuring and sub-modelling is that in sub-structuring 

equilibrium is enforced between the super-elements and the global model. Whereas 

with sub-modelling there is no guarantee that the local model stresses generated by 

‘driven’ node displacement will be in equilibrium with stresses in the global model. 

The main limitation with sub-structuring, for non-linear barrel analysis, is that super-

element response to loading must be linear. The main limitation with sub-modelling is 

interpolating global analysis data from an equilibrium stepping analysis to a sub-

model to perform another equilibrium stepping analysis, where the local region 

response affects the overall global response. 

 

Alternative mesh-refinement [11, 12] procedures may be used to reduce analysis costs 

for linear problems. However it is worth noting that the general mesh-refinement 

approach increases the density of elements within a critical region of the model; this 

reduces the stiffness of the local region and may falsely induce buckling prematurely 

within the refined area, generating inaccurate results. Alternatively, the reduced local 

stiffness may alter component load paths and load magnitudes, leading to inaccurate 

stressing of sub-regions and again generating inappropriate results [12]. 

 

The strategy presented here is based on modelling a typical fuselage stiffened panel 

sub-section, Figure 2, with a single non-linear element.  A typical sub-section is taken 

to be a stringer segment with attached skin covering one half bay either side of the 
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stringer and the segment length covers one full frame bay.  Each non-linear element is 

required to capture both geometric and material non-linearity in its response.  The 

non-linear data can be obtained from detailed Finite Element simulation or 

experimental testing of a sub-section.  The whole fuselage model then becomes a 

collection of such non-linear elements and is capable of accurately assessing the 

compression behaviour of the fuselage. 

 

Figure 2 – Fuselage barrel modelling strategy 

 

The procedure followed here is to carry out detailed FE analysis on individual sub-

sections to generate the non-linear model data and then to carry out an analysis of the 

newly assembled global model.  Since the execution time for buckling analysis 

rapidly increases with model size [5], the analysis of all the individual sub-sections is 

still less than that for the complete structure.  Moreover since there is a significant 

degree of repeatability in the structure not every sub-section needs to be analysed.  

 

The following section describes the procedure for obtaining the non-linear data for a 

single non-linear element before describing how the global model is assembled and 

analysed.  The global structure used as a benchmark for this work is a 36 by 34 inch 

flat fuselage panel used in a previous study [4] on the post buckling behaviour of 
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fuselage panels.  This naturally provided a basis since both detailed FE and 

experimental results already exist for comparison with this new modelling approach. 

 

2  Sub-Section Modelling  

A number of element types were considered as possible 1D non-linear entities, 

including beam elements with modified stress-strain data and spring elements with 

non-linear force displacement response properties [13]. Both element types produce 

identical output with the same input stiffness properties; however using spring 

elements required a minimum amount of data manipulation. Using a spring element as 

a ‘non-linear super element’ the non-linear axial stiffness of the sub-section may be 

effectively modelled as a single spring. The major advantage of a non-linear spring 

element over conventional sub-structuring is that it is able to represent a structure’s 

non-linear response to loading whereas conventional sub-structuring is limited to 

linear cases. The main concern to be addressed is then the generation of the spring 

input data. 

 

A number of approaches may be used to generate the stiffness response including 

theoretical, numerical and experimental analysis methods [13]. The technique 

presented within this paper focuses on the use of non-linear 3D-Shell FE models to 

generate the required stiffness data since these have already been successfully used 

for panel collapse analysis [14, 15]. 

 

Stiffened panels are commonly modelled as a series of shell elements representing the 

plate sections and beam elements representing the stiffener sections, Figure 3a. This 

level of idealisation will accurately and efficiently represent the structure’s linear 

stiffness but will fail to capture stiffener local cross-section translation and rotations 

and therefore fail to accurately model non-linear buckling and post buckling 

behaviour [4, 6, 16]. In order to predict the collapse behaviour the cross-section must 

be modelled in detail [15]. 
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Figure 3 – Stiffener idealisation 

 

Lynch [4] developed a number of Finite Element modelling methodologies for the 

buckling and post buckling analysis of metallic fuselage panels. The idealisations 

proposed focus on modelling each section of the stiffener cross-sections with shell or 

beam elements, Figure 3b. The work investigated element selection, minimum 

required mesh density and the plate-stiffener interface idealisation. The work 

developed a computationally expensive analysis methodology capable of accurately 

predicting the structural response of flat fuselage stiffened panels loaded in 

compression. The skin-rivet-stringer joint idealisation represents the rivets with rigid 

links (MPCs) Figure 3b. The contact condition between the skin and the stringer 

flange is not modelled here as the computational costs have been shown to outweigh 

the small increase in model stiffness prediction accuracy [4]. 

 

Following the computational methodologies developed by Lynch and applying 

appropriate boundary conditions, which aim to match the true constraint conditions 

within the global structure, the required sub-section stiffness data can be generated. It 

should be noted however that the applied sub-section boundary conditions are based 

on the same simplifying assumptions followed as part of the conservative traditional 

analysis process [1, 2, 3]. The model results will therefore tend towards under 

predicting the structure’s response [4]. An example of a typical sub-section model and 

its associated boundary conditions is detailed in Figure 4. A uniform axial 

displacement is applied to the upper end of each sub-section model with the lower end 
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axial displacement constrained, both the upper and lower model edges are assumed to 

be simply supported [1]. The simple support sub-section boundaries, constraint skin 

and stringer out-of-plane deformations along the frame lines, this out-of-plane 

condition represents the post-buckling constraint within the global structure. The 

simple support conditions however, do not account for frame rotational constraints 

and hence the conservative response noted above. The model side edge nodes have 

material constraints applied to replicate their constraint conditions within the global 

structure, Figure 4. Within the post-buckling region the material constraints applied to 

the side nodes permits skin out-of-plane deformations, allowing skin post-buckling 

out-of-plane behaviour. 

 

Figure 4 – Sub-Section model boundary conditions 

 

Based on the results of extensive element mesh convergence studies [4], linear 

quadratic shell elements, ABAQUS element S4R [17], with a minimum mesh density 

of 4 nodes per buckle half-wave was used for each sub-section model. The sub-

section models were analysed for linear buckling, extracting the fundamental 

eigenmode in each case. Each model was then seeded with an initial geometric 

imperfection based on the sub-section’s fundamental eigenmode, with a maximum 
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magnitude of 10% skin thickness [4]. Post buckling behaviour was then determined 

accounting for both material and geometric non-linearity employing a Newton-

Raphson solution procedure [17, 18]. The sub-section axial stiffness was then 

extracted for the analysis data. Figure 5 illustrates a typical sub-section axial load 

versus axial deflection curve predicted by a sub-section FE analysis. 

 

Figure 5 – Sub-Section model axial stiffness 

 

 

Figure 6 – Non-linear spring results [13] 
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Murphy [13] considered sub-section data generated using theoretical analysis as well 

as detailed 3D-Shell FE models. The sub-structuring procedure detailed above was 

then validated against experimental sub-section specimen tests. The load-deflection 

curves for these cases are illustrated in Figure 6. It is worth noting that the 

discrepancy between the experimental load-deflection curve and the non-linear spring 

model curves is due primarily to the under design of edge support bars used in the 

experimental set-up, Murphy [13]. The work demonstrated that the spring non-linear 

sub-structuring technique detailed above might be used to accurately model sub-

section axial stiffness at a fraction of the cost of detail 3D-Shell modelling techniques.  

The detailed model took approximately 5 hrs to run
1
, whilst having obtained the load-

deflection data for the spring analysis run-time was reduced to 30 seconds.  It was 

noted that the true value of the non-linear sub-structuring methods would only be 

achieved when using non-linear spring elements to model large stiffened panel 

structures. 

 

Once the sub-section model has been analysed the next stage is the discretisation of 

the structure’s axial load versus axial deflection curve into non-linear spring input 

data. In practice this is simply a list of load-deflection points entered as spring 

properties within an analysis input deck [17]. 

 

Once all the sub-sections of the global structure are modelled and the spring data 

generated, the next stage is the assembly of the global spring framework model. 

 

3  Assembling the Global Model  

The global modelling scheme requires the assembly of the sub-section spring 

elements in their appropriate location and additionally to account for the lateral and 

longitudinal interaction between springs via the frame structure. A global model built 

with the sub-section axial spring elements will only be capable of modelling axial 

behaviour since this is the only degree of freedom considered in generating the spring 

data.  Therefore any frame local-axial stiffness representation added at the global 

model stage will not add to the value of the model. Considering the 1D axial nature of 

the non-linear spring elements used to model sub-sections the fuselage frames are 

                                                           
1
 Analysis preformed on a Silicon Graphics Indigo workstation with 64MB of RAM. 
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simply modelled as rigid bodies that are free to translate axially, Figure 7. The frames 

are also constrained from translations normal to the skin, which is consistent with 

fuselage frame design philosophy [19] and the boundary conditions applied to the 

sub-section models. Each sub-section spring is attached to the forward and rearward 

frame structure, this method of coupling the non-linear spring elements although 

simple, is effective as shall be demonstrated in the next section. 

 

Figure 7 – Global spring framework modelling scheme 

 

4  Validation specimen analysis 
In order to assess the accuracy and cost of the global stiffness modelling methods, the 

flat specimen detailed in Figure 8 was analysed and stiffness results compared with 

detail 3D-Shell FE analysis data and experimental test data. The specimen consists of 

a 36 by 34 inch skin, stiffened by six stringers and two frame segments. The specimen 

was designed such that the failure load is approximately three times the initial 

buckling load of the centre skin bays. The rivet pitch was chosen so as to eliminate 

inter-rivet buckling. The evaluated buckling load for the centre skin bays was 22,714 

lbf (with the edge skin bays buckling at 10,035 lbf) and the theoretical local-flexural 

failure load was 72,016 lbf. Two specimens were tested in an Avery hydraulic 

compression-testing machine with a 150-ton capacity, Figure 9. A half-inch thick 
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cerrobend
2
 base was cast on to specimens, design to produce fully clamped boundary 

conditions at each end. The ends were subsequently machined flat and perpendicular 

to the skin to ensure that uniform axial loads were applied. Frame support fixtures 

were designed to eliminate frame out-of-plane deflections, while allowing axial 

displacements. This was achieved by bolting specially built trolleys onto the 

protruding specimens frames. The trolleys then rolled vertically between support 

tracks. 

 

Figure 8 – Validation specimen 

                                                           
2
 Cerrobends is a low melting point alloy used in structural testing to create support bound conditions. 
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Figure 9 – Test set-up (Avery compression testing machine) 

 

A full non-linear analysis of the specimen was also performed using the 3D-Shell 

modelling methods outlined in Section 2. The detailed specimen FE analysis modelled 

non-linear material and geometric behaviour and consisted of approximately 16,000 

first order beam and shell elements plus 600 rigid beam elements representing the 

specimen rivets. The model required three man-days to build and in its completed 

state consisted of approximately 90,000 degrees of freedom, Figure 10. The loads and 

boundary conditions applied to the full specimen model were designed to be as 

representative of the experimental test as possible, Figure 10. 

 

Figure 10 – Specimen FE model plus loading and boundary conditions 

 

The first step in the analysis of the specimen using the non-linear springs is the 

division of the structure geometry into sub-sections. Each frame bay is divided into a 
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series of sub-sections along the centre skin lines, Figure 11 details the sub-division. 

The specimen analysis only requires 9 sub-section models considering structural 

repetition, Figure 11. A sub-section model is required for each geometry set (top, 

middle and bottom sub-sections) and each geometry model must be analysed for a 

series of boundary conditions (left, centre, and right sub-sections). In total, 50% of 

specimen geometry is modelled. Once the structure has been sub-divided the sub-

section models may be built and analysed following the procedures laid out in Section 

2. For the sub-section at the boundaries of the validation specimens, edges which are 

free are modelled as free edges and edges clamped in cerrobends are modelled with 

skin out-of-plane translations constrained and with loading translations free. The 

resulting axial loads versus deflection curves for the nine sub-models are presented in 

Figure 12. 

 

Figure 11 – Specimen sub-division scheme 
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Figure 12 – Specimen sub-section analysis results 

 

Considering Figure 12 there are three distinct groups of curves, one for the top frame 

bay sub-models (L1, C1 and R1), one for the middle frame bay sub-models (L2, C2 

and R2), and one for the bottom frame bay sub-models (L3, C3 and R3). Within the 

pre-buckling region the sub-section cross-sectional area, length and material 

properties clearly define the structure’s pre-buckling stiffness. It is worth noting at 

this stage that the effect of small deviations in panel geometry is clearly identified 

during this process.  In this case the layout of the panel is not quite symmetric, with 

the bottom frame bay sub-section models (L3, C3, R3) being a half-inch shorter than 

the top sub-section models (L1, C1, R1).  The corresponding increase in stiffness is 

clearly seen in Figure 12 with curves for L3, C3 and R3 having the steepest initial 

slope. 

 

The post-buckling stiffness and failure loads of the top (L1, C1, R1) and bottom (L3, 

C3, R3) frame bay sub-models appear dissimilar. Two principal structural differences 

explain is behaviour. First the boundary conditions on the top and bottom frame bays 

are different, with either the top or bottom of the structure cast in cerrobends or 

restrained by a frame (note the stringer cross-sections are not symmetrical). The effect 

of boundary conditions is minimal within the initial unbuckled region, however within 

the post-buckled region the boundary conditions effect the buckling mode and 
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therefore the post-buckling stiffness and failure load. The second difference is the 

frame bay length, this quite clearly will change the initial stiffness of the curves, 

however in addition the variation in structural length will influence the buckling mode 

shape and again will affect the predicted post-buckling stiffness and failure load. 

 

The middle frame bay sub-section models predict a stringer local-flexural buckling 

failure mode for the panel. The predicted load versus axial deflection data is then used 

to create the load response data for the non-linear springs to be used in the global 

spring framework model. The final stage is then the assembly of the sub-section 

springs to form the global model. Figure 13 schematically illustrates the global spring 

model. The global model in this case is loaded and constrained to replicate the 

specimen’s mechanical test set-up, in order to benchmark global model accuracy. 

 

Figure 13 – Global spring framework model 

 

5  Results  

The global model stiffness results are presented in Figure 14 along with the 

experimental results and detailed 3D-Shell FE results. Table 1 presents the 

computation cost of both the efficient and detailed specimen FE models. 
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Figure 14 – Global model results 

 

Figure 15 – Experimental failure mode 

 

Two specimens were tested to failure. Based on the experimental stiffness curves 

local specimen skin buckling occurs at approximately 25,000 lbf and specimen failure 

occurs at 80,640 lbf for Specimen 1 and 82,880 lbf for Specimen 2. Both specimens 

fail through the same mechanism of stringer local-flexural buckling, ending in a 

convex specimen collapse (specimen skin side curving out, stringer side curving in, 

Figure 15). The experimental specimen’s post failure stiffness data was not captured 

during the tests, therefore no negative slope is seen at the end of the experimental 

curves, Figure 14. The detailed FE model predicts local buckling at approximately 
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22,550 lbf, some 10% lower that the experimental value. The FE model however 

predicts the same stringer local-flexural failure mode as seen in the tests and predicts 

failure at a load of 81,741 lbf, 1.37% lower than Specimen 2 and 1.37% higher than 

Specimen 1. The detailed FE model stiffness output closely matches the experimental 

pre buckling gradient, and slightly over predicts the post buckling value. Due to the 

high predicted post buckling stiffness the FE model also slightly under predicts the 

specimen’s axial deflection at failure. Again based solely on the load versus axial 

deflection curves the efficient global model predicts the specimen’s local buckling 

load at approximately 23,750 lbf, 5% lower that the experimental value. The efficient 

model accurately predicts the structure’s pre buckling stiffness and slightly under 

predicts the post buckling stiffness, as expected. The model predicts the failure load 

as 83,038 lbf, 2.9% higher than Specimen 1. Due to the under prediction of specimen 

post buckling stiffness and the over prediction of specimen failure load the model also 

over predicts the specimens axial deflection at failure. The efficient model predicts 

specimen stiffness within 5% of experimental values up to 85% failure load, and 

within 7.5% up to 95% failure load. 

 

Comparing the model size (Degrees Of Freedom – DOFs) for the full specimen model 

and a single sub-model, Table 1 and the required analysis space (temporary analysis 

file size plus executable size) and time (wallclock time), it is clear that there is a non-

linear relationship between model size and model cost when modelling non-linear 

buckling collapse behaviour. Considering the size of temporary analysis files and 

analysis executables, the full specimen model requires an expensive UNIX server box 

for its analysis, whereas the sub-models and global spring model could have been 

analysed on a much less expensive desktop UNIX box or PC. The total time required 

to build all 9 sub-models and the global spring model was 1.5 man-days, half the time 

required to build the full specimen model. Finally the total wallclock analysis time for 

the efficient modelling procedure was 1,124 sec, compared to 21,317 sec for the 

analysis of the full specimen model. This shows a possible reduction in compute time 

of 95%. 
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Table 1 – Computational analysis cost parameters 

  

6  Conclusion 

The driving force behind the work presented here is to increase the fidelity of global 

load models used in the aerospace industry. Presently global load models are highly 

idealised, with a single element representing a panel skin bay or a stringer section 

between frames. The aim here is to add to the global load model accuracy by 

accounting for the non-linear behaviour present due to the design philosophy of the 

structure. A typical global load model will be considered for in excess of 200 load 

cases and will consist of hundreds of thousands of degrees of freedom. As hardware 

developments have reduced run times for each loading case, airworthiness issues have 

increased the number of cases to be considered, resulting in an equilibrium for 

modelling fidelity, time and cost. In addition, each global loads model requires many 

man years to build at the present idealisation level, to try and model the entire 
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structure at a higher level would greatly increase project timeframes and cost. 

Therefore, intelligent modelling procedures are required to increase model accuracy. 

The work presented aims to develop efficient modelling techniques to improve global 

model accuracy by accounting for sub-section non-linear behaviour without incurring 

the time penalty which comes with more detailed models. A simple non-linear sub-

structuring strategy has been presented and results show great potential in increasing 

global model accuracy. The non-linear global model results match experimental 

stiffness results closely, with the efficient model predicting specimen stiffness within 

5% of experimental values up to 85% failure load, and within 7.5% up to 95% failure 

load. Considering traditional global fuselage barrel models only account for linear 

behaviour this is a potential step forward for the accuracy of these models. The simple 

non-linear spring modelling strategy may also be used to reduce the required effort to 

built and run a complex 3D-Shell model of a stiffened panel structure. The modelling 

strategy reduces analysis run times but also reduces analysis job sizes therefore 

reducing the computational power required and consequently reduces the cost of 

required computational hardware. 

 

Considering the potential of the modelling strategies introduced there are still a 

number of issues requiring investigation. The first is the development of additional 

strategies to accurately and efficiently model the non-linear behaviour of the structure 

when loaded in shear or combinations of compression and shear.  Secondly 

considering the cost saving with respect to large detailed non-linear FE models, can 

the developed modelling methods be used along with mixed element coupling 

procedures [20] to reduce the cost of large structure FE modelling, with the use of 

developed sub-structuring or sub-modelling techniques. 
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