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Acoustic supersolitons arise when a plasma model is able to support three consecutive local extrema

of the Sagdeev pseudopotential between the undisturbed conditions and an accessible root. This leads

to a characteristic electric field signature, where a simple bipolar shape is enriched by subsidiary

maxima. Large-amplitude nonlinear acoustic modes are investigated, using a pseudopotential

approach, for plasmas containing two-temperature electrons having Boltzmann or kappa distributions,

in the presence of cold fluid ions. The existence domains for positive supersolitons are derived in a

methodological way, both for structure velocities and amplitudes, in terms of plasma compositional

parameters. In addition, typical pseudopotentials, soliton, and electric field profiles have been given to

illustrate that positive supersolitons can be found in the whole range of electron distributions from

Maxwellian to a very hard nonthermal spectrum in kappa. However, it is found that the parameter

ranges that support supersolitons vary significantly over the wide range of kappa considered. VC 2013
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818888]

I. INTRODUCTION

The concept of acoustic supersolitons was introduced by

Dubinov and Kolotkov for plasmas with five species,1,2 but

discussed only for a single set of plasma parameters.

Mathematically, supersolitons arise when a plasma

model is able to support three consecutive local extrema of

the Sagdeev pseudopotential3 between the undisturbed con-

ditions and an accessible root. This leads to a characteristic

supersoliton signature in the electric field, viz., the usual

simple bipolar soliton shape is enriched by the presence of a

subsidiary maximum on each side of the structure. Electric

field structures that are similar in appearance have been

observed in space plasmas.4 Although the authors of Ref. 4

offer an alternative explanation (involving Bernstein-Green-

Kruskal modes) for these forms, it is possible that the struc-

tures may in fact represent acoustic supersolitons.

Going beyond the initial identification of supersolitons,1,2

Verheest et al.5,6 have shown that they can also exist in three-

component plasmas and established a methodology to define

their existence domains in parameter space. Thus, it is clear

that these new soliton forms are not an artefact of very special

plasmas requiring a larger number of parameters to generate

them. Remarkably, many features of supersolitons had been

seen in previous papers7–10 but not recognized as being special.

Ion acoustic solitons in three-species plasmas composed

of an ion species and two Boltzmann-distributed electron

components having different temperatures have long been a

subject of study.11–18 It is well-known that both positive and

negative solitons can be found, and that coexistence occurs,

that is, there are regions of parameter space in which either

positive or negative potential solitons may occur, depending

on initial disturbances. In addition, negative potential double

layers were found to act as the limit of the negative soliton

existence domain.15

Subsequently, Baluku et al.8 found that positive double

layers could also exist in such a plasma in a narrow range of

parameter space. Although the normalized double layer struc-

ture speed, Mdl, had in practice often been found to act as the

upper limit for soliton existence, Baluku et al.8 showed that

solitons could indeed occur beyond that value for these posi-

tive potential double layers. It has since turned out that the

solitons that arise at speeds beyond Mdl are in fact supersoli-

tons. Hence, Ref. 8 showed that plasmas having two

Boltzmann-distributed electrons and one fluid ion species can

admit positive supersolitons. We note that this form of three-

component plasma is in contrast to those considered recently

by Verheest et al.5,6 The latter investigations of supersoliton

existence domains were carried out in plasmas with only a sin-

gle component of (Cairns-distributed,19 nonthermal) electrons,

but two inertial species, viz., either two ion species5 or an ion

species, together with massive dust grains.6

Although Boltzmann distributions are very often used in

the modeling of plasmas, particle velocity distribution functions

in space plasmas often exhibit enhanced high-energy (superther-

mal) tails and are well-fitted by kappa distributions.20–22 The

kappa distribution, a generalization of the Maxwellian, repre-

sents a family of velocity distributions, ranging from an extreme

“hard” spectrum associated with j ’ 1:5� 2, to the Maxwell-

Boltzmann distribution for j!1. Observations in Saturn’s

magnetosphere23 have shown that the electron distribution func-

tion is best fitted by a double kappa distribution, that is, each of

the components of the two-temperature electron distribution is

best fitted by its own low-kappa form. Although there is

a)Electronic mail: frank.verheest@ugent.be
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variation in the deduced values of kappa associated with the

cool (jc) and hot (jh) electron components in the inner Kronian

magnetosphere,23 it is noticeable that in general, jc < jh.

Hence, when Baluku and Hellberg24 studied the effects of low j
on ion-acoustic solitons in a two-electron-temperature plasma,

they used jc ¼ 2 and jh ¼ 3 as a representative low-j case.

However, although the generalization of a Boltzmann dis-

tribution to one with highly superthermal electrons yielded

solitons and double layers, no positive solitons were found

beyond Mdl for low-j distributions.24 Hence it appeared that,

unlike the Boltzmann case,8 double-kappa electron distribu-

tions with low j do not sustain supersolitons.

Both Refs. 8 and 24 have given a thorough discussion of

all possible large amplitude solitons and double layers, but

did not specifically address the supersoliton properties.

Hence, we propose to return to these models, with a specific

focus on parameter regimes which admit supersolitons, for

plasmas with cold positive ions and two-temperature super-

thermal electrons with j distributions. This includes in the

limit j!1 the special case where the electrons are

Boltzmann-distributed. As in our earlier papers,5,6,8,24 we

will investigate large-amplitude nonlinear acoustic modes,

based on a Sagdeev pseudopotential approach,3 in a frame

which is co-moving with the nonlinear wave.

The paper is structured as follows. In Sec. II, we recall

the elements of the analytical description, derive the

Sagdeev pseudopotential, and address the essential proper-

ties, which can guide the numerical discussion in Secs.

III–V. Section III is devoted to Boltzmann electrons, for two

different but typical values of the electron temperature ratio,

and gives the existence ranges in parameter space where

supersolitons can be found, amplifying earlier work.8

Section IV then investigates strongly nonthermal j distribu-

tions, for a case which earlier was not deemed to have posi-

tive roots beyond the double layers24 and hence could not

generate supersolitons. We show that even for low j, super-

solitons can in fact exist and elaborate on the reasons for

that. Because of some fundamental differences between the

Boltzmann and low-j descriptions, as far as supersolitons

are concerned, we address in Sec. V an intermediate case,

for moderate j. Finally, Sec. VI summarizes our findings.

II. BASIC FORMALISM

To explore the occurrence of supersolitons in both

j-distributed plasmas and the limiting case of Boltzmann

electrons, we shall consider a three-component model similar

to that used by Ref. 24. The cold positive ions and two elec-

tron species with different kappa-distributed characteristics

of our plasma model are labeled i, c, and h, respectively. The

fraction of negative charge residing on the cooler electron

species is f ¼ nc0=ni0, in terms of the undisturbed densities.

The ions are assumed singly charged and cold. Singly

charged is not a real restriction, because multiple charges

can easily be accommodated by adapting the normalization.

Cold ions are a useful simplification, as Baluku and

Hellberg24 have shown that describing the ions as warm and

adiabatic only leads to small quantitative changes, and we pre-

fer to concentrate here on essential supersoliton characteristics.

The ions are described by the continuity and momentum

equations in normalized variables, referred, amongst others,

to a speed Ca ¼ ðTh=miÞ1=2
, where Th is the kinetic tempera-

ture of the hotter electrons, in the absence of superthermal

kappa effects. The space co-ordinate is measured in units of

ðe0Th=ni0e2Þ1=2
. In a frame where the nonlinear structure is

stationary (@=@t ¼ 0), all variables tend to their undisturbed

values at x! �1; and in particular, the electrostatic poten-

tial u (normalized to Th=e) tends to zero. All densities will

be normalized with respect to their equilibrium values.

One can integrate the cold ion equations with respect to

x and find that the ion charge density is given by

ni ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2u
M2

r : (1)

We note that the ion density contains the normalized speed,

M ¼ V=Ca, where V is the velocity of the nonlinear struc-

ture, seen in an inertial frame. There are thus limitations on

u on the positive side at u‘i ¼ M2=2, as for larger u the ion

density is no longer defined and in fact reaches infinite com-

pression for u! u‘i.

As announced in the Introduction, we will adopt kappa

distributions for the electrons, in the form22,24,25

nc ¼ 1� u
s½jc � 3=2�

� ��ðjc�1=2Þ
; (2)

nh ¼ 1� u
jh � 3=2

� ��ðjh�1=2Þ
; (3)

where s ¼ Tc=Th, and jc > 3=2 and jh > 3=2 are the spec-

tral indices.

The basic set of equations is closed by Poisson’s

equation

d2u
dx2
þ ni � fnc � ð1� f Þnh ¼ 0; (4)

and we have used overall charge neutrality in the undisturbed

conditions. After integration, (4) yields an energy-like

integral

1

2

du
dx

� �2

þ Sðu;MÞ ¼ 0; (5)

which can be analyzed as in classical mechanics, in terms of

a Sagdeev pseudopotential3

Sðu;MÞ ¼ f s 1� 1� u
s½jc � 3=2�

� ��ðjc�3=2Þ
" #

þð1� f Þ 1� 1� u
jh � 3=2

� ��ðjh�3=2Þ
" #

þM2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2u

M2

r !
: (6)
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Here, we have explicitly referred to u and M, because M is

to be determined such that solitary structures can exist,

whereas the parameters f, s, jc, and jh specify the precise

composition of the plasma model and can be assumed given.

We note that, in the limit j!1, the j-related terms reduce

to the usual exponential terms found in Sagdeev potentials

for Boltzmann electrons.

We recall that by construction and assumption Sð0;MÞ
¼ S0ð0;MÞ ¼ 0, and S00ð0;MÞ � 0 is required to cause the or-

igin to be a (local) unstable maximum, at least on one side.26

Derivatives of Sðu;MÞ with respect to u are denoted by

primes. In physical terms, the proper convexity condition,

S00ð0;MÞ � 0, ensures that the nonlinear structures are

(super)acoustic in a global sense and this yields the minimal

M for their existence

M2 � M2
s ¼

f ð2jc � 1Þ
sð2jc � 3Þ þ

ð1� f Þð2jh � 1Þ
2jh � 3

� ��1

: (7)

Here, Ms, which satisfies S00ð0;MsÞ ¼ 0, is the true normal-

ized acoustic speed in the plasma system. Hence, the ratio

M=Ms is the true Mach number in the system, since the refer-

ence speed used in the normalization disappears from this ra-

tio. We note that, allowing for differing normalizations, this

result agrees with that of Ref. 24 for cold ions.

However, in order to have a solitary wave solution, one

needs to encounter a root of Sðu;MÞ outside and accessible

from u ¼ 0. Single roots give hill- or dip-like solitary waves;

whereas for double roots, u changes from one value at �1
to another at þ1, typical for double layers (potential kinks).

In the following sections, the existence domains for

supersolitons are analyzed in a systematic way, the other

types of nonlinear structures having been dealt with in previ-

ous papers.8,24 Furthermore, as shown previously, e.g., in

Refs. 8, 24, and 26–30, we also need

S000ð0;MsÞ ¼ 3
f ð2jc � 1Þ
sð2jc � 3Þ þ

ð1� f Þð2jh � 1Þ
2jh � 3

� �2

� f ð4j2
c � 1Þ

s2ð2jc � 3Þ2
� ð1� f Þð4j2

h � 1Þ
ð2jh � 3Þ2

; (8)

because the sign of S000ð0;MsÞ determines the sign of the

KdV-like solitons.26,27 By “KdV-like,” we mean that such

solitons have amplitudes which become arbitrarily small as

M! Ms, as do solutions of Korteweg-de Vries (KdV) equa-

tions.27 On the other hand, we call “nonKdV-like” those soli-

tons and double layers whose amplitudes remain finite

(nonzero) as M ! Ms.
6,8,9,26–29

To get a feeling for where interesting phenomena might

occur, we start the discussion by plotting in Fig. 1 how the

critical density fraction, fc, varies with s along the curve

S000ð0;MsÞ ¼ 0, for different values of jc and jh. Analogous

figures may be found for the double Boltzmann model in

Refs. 8, 12, and 13 and for the double j case in Ref. 24.

Inside these curves, S000ð0;MsÞ < 0, which yields negative

potential KdV-like solitons. On the other hand, outside

S000ð0;MsÞ ¼ 0, KdV-like solitons are positive. From (8), one

also notes that there is a j-dependent critical value sc for s

beyond which only S000ð0;MsÞ > 0 is possible, hence no po-

larity changes can occur and the KdV-like solitons are posi-

tive for all f. For s! 0, all curves start from f¼ 0 at the

lower end and reach an upper end, which depends on jc as

ð2jc þ 1Þ=ð6jc � 3Þ, and is hence contained between 1/3

(for jc ¼ 1) and 2/3 (for j ¼ 3=2). At the same time, the

comparison between the curves for jh ¼ 2 and jh ¼ 3, at the

same jc ¼ 2, show that the bulge in s where the coexistence

region ends becomes larger with jh. We have tested a whole

range of different combinations of jc and jh and found that

indeed sc becomes larger as jh is increased, at fixed jc.

Conversely, sc is reduced when jc is increased, at fixed jh.

For jc ¼ 2 and jh ¼ 1, we find that sc ¼ 0:55; while for

jc ¼ 1 and jh ¼ 2, that sc ¼ 0:037.

Modifications in jc and jh affect rather significantly the

graphs presented in Fig. 1, in a way which is far from being

intuitively obvious, and, unfortunately, cannot be pinpointed

in analytical expressions. That is why we have refrained

from giving, e.g., the explicit solutions for the branches

resulting from solving from (8) S000ð0;MsÞ ¼ 0 for f. These

would occupy almost half a page of algebra, contain large

and opaque square roots, and yield absolutely no insight.

Supersolitons require pseudopotentials with three local

extrema or two distinct wells between u ¼ 0 and a negative

or a positive root. It follows immediately from (5) that each

extremum in Sðu;MÞ must be reflected in a positive or nega-

tive extremum in the electric field, thereby generating the

characteristic signature of a supersoliton. We briefly recall

that, as M is increased, limits on the existence ranges for

supersolitons involve first double layers,5,6,8 which, if they

exist, are always lower limits, whereas coalescence of two of

the three local extrema, thereby merging the two pseudopo-

tential subwells, can act as lower or upper limits. The transi-

tion from double layers to supersolitons is continuous in

Mach number M=Ms, but the amplitudes jump in a discontin-

uous fashion from the double layer to beyond the inaccessi-

ble third root of the double layer pseudopotential. Further

details are given in Refs. 5 and 6. These limitations can be

drawn as curves in ff ;M=Msg or in ff ;ug parameter space,

showing the changes as f is increased. All this will be illus-

trated in more detail below.

FIG. 1. Variation of the critical charge density fraction, fc, with s, along the

curve S000ð0;MsÞ ¼ 0, across which the polarity changes, for Boltzmann

(jc ¼ jh ¼ 1, solid red curve) and superthermal electrons. Typical j limits

have been plotted, for jc ¼ jh ¼ 3 (dashed gray curve), jc ¼ jh ¼ 2 (dotted

black curve), jc ¼ 2; jh ¼ 3 (long dashed blue curve), and jc ¼ jh ¼ 10

(dotted dashed green curve). Inside these curves, S000ð0;MsÞ < 0 (KdV-like

solitons are negative), while outside, S000ð0;MsÞ > 0 (with positive KdV-like

solitons).
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First, we note from (6) that Sðu;MÞ ! �1 (going as

�
ffiffiffiffiffiffi
juj

p
) for u! �1. This means that the number of nega-

tive roots, if they occur, must be even, given the convexity

imposed near u ¼ 0. While it is easy enough to find ranges

where negative double layers exist, for double Boltzmann

electrons8 or for all admissible jc and jh,24 there are no roots

with larger amplitudes beyond the negative double layers.

The latter possibility would require ultimately four negative

roots but the Sagdeev pseudopotential (6) does not contain

enough compositional parameters to allow for that. Hence,

there can be no negative supersolitons, but only the usual

solitons and double layers. As these have been amply investi-

gated in our earlier papers,8,24 we will omit the discussion of

what happens for negative potentials.

On the other hand, previous papers8,24 have shown that

(6) admits positive double layers for double Boltzmann elec-

trons8 and, indeed, for the whole range of admissible jc and

jh,24 but only for sufficiently small f and s. In particular,

when considering Boltzmann electrons, no positive double

layers have been found for s > sc but there are (supersoliton)

roots beyond the double layer amplitudes,8 provided

smin < s < sc. Here, smin denotes the minimum value of s to

allow for the existence of supersolitons. Unfortunately, this

has to be determined by numerical trial-and-error; and for

lower s, one might find positive double layers, but then with-

out a third root. This will be discussed further in the different

cases we illustrate. As to the case of strong superthermality,

at low j, roots beyond the double layers were not found,24

which would imply the absence of supersolitons.

However, returning briefly to the discussion of Fig. 1,

we see that for given jj and fixed s satisfying smin < s < sc,

there are two values for f where the polarity of the KdV-like

solitons change, at fc1 from positive to negative, and back to

positive at fc2. Since there cannot be negative supersolitons,

we need in principle to investigate three regimes for possible

positive supersolitons: two for smin < s < sc, namely 0 < f
< fc1 and f > fc2, and then 0 < f for sc < s < smax. Again,

increasing s too far above sc might cause the third root of a

double layer range to disappear, which signals the end of a

supersoliton range. We also add that we have been unable to

find positive nonKdV-like double layers, or a fortiori,
supersolitons.

To illustrate some of the underlying thinking, we show

in Fig. 2 three pseudopotentials, having, respectively, three

distinct positive roots (red solid curve), a double layer fol-

lowed by a third root (blue dashed curve), and a single root

followed by a double root (green dotted curve). These pseu-

dopotentials have been generated for a specific plasma com-

position, but at different values of M, which is increasing

from top to bottom. The values of f, s, jc, and jh are not

specified here, as the whole reasoning is generic.

Start with the assumption that there is a pseudopotential

with three distinct positive roots, before the infinite ion com-

pression limit at u‘i comes into play. Here, we note that only

the first root is accessible from the undisturbed conditions,

and hence this yields a normal soliton. The other roots pres-

ent no physical interest.

Using now the property that @S=@M < 0 (outside

u ¼ 0),30 indicating that at given u, the value of Sðu;MÞ
increases/decreases as M is decreased/increased, we can con-

tinuously deform the red solid curve into the green dotted

(decrease of M) or the blue dashed curve (increase of M).

This means that the first two roots can coalesce for a suffi-

cient increase of M, giving rise to a double layer. A slight

further increase yields a supersoliton, because the double

layer disappears and the distant third root is now accessible.

How long the supersoliton regime lasts as M is increased fur-

ther, depends on the interplay between the infinite ion com-

pression limit and the merging of the two subwells, the

cutoff being governed by whichever occurs at lower M.

Since u‘i increases with the square of M and the double root

of the blue dashed curve necessarily lies between the first

two roots of the red solid curve, a double layer hence exists

for the given plasma composition.

On the other hand, a sufficient decrease of M leads to

merging of the last two roots, but that is not physically rele-

vant as both are inaccessible. At the same time, the first ac-

cessible root is decreased, giving a soliton of lower

amplitude. Further decreases of M reduce the amplitude of

the soliton to zero for M ! Ms.

As the j and s conditions where the third root disappears

cannot be established in an analytically meaningful way, we

have been forced to determine the appropriate j values by

numerical trial-and-error. As shown in Sec. IV, one can, in

fact, find supersolitons at very low j, but only in ranges other

than those that were investigated earlier.24

Before studying the characteristics of supersolitons in

strongly superthermal plasmas, however, we shall consider

in Sec. III the existence of positive supersolitons in plasmas

with two Boltzmann species, expanding on previous results.8

After that we will fast forward to jc ¼ 2 and j ¼ 3 in Sec.

IV, while we shall provide some remarks and details on in-

termediate j values, between 2 and infinity, in Sec. V.

III. BOLTZMANN ELECTRONS (jj fi‘)

To detect variations in the supersoliton existence

domains and amplitudes, we will consider two specific val-

ues for s, namely 0.09, as treated by Baluku et al.,8 and then

0.1, closer to sc ¼ 0:101, the critical temperature at which

fc1 ¼ fc2 and beyond which KdV-like solitons are always

positive. We hasten to add that we have been unable to find

positive double layers either in the second range f > fc2 for

FIG. 2. Example of pseudopotentials having three distinct positive roots (red

solid curve), a double layer followed by a third root (blue dashed curve) and

a single root followed by a double root (green dotted curve). From top to

bottom, the curves correspond to increasing M, for a fixed plasma composi-

tion (f, s, jc, and jh).
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smin < s < sc or in the range where s > sc, as was already

discussed earlier.8 The minimum value of s to allow for the

existence of supersolitons has been found to be smin ¼ 0:077.

Lower values imply unphysically small f, in effect, a vanish-

ingly small cool electron population.

A. Case s 5 0:09

Given that the presence of two subwells in the Sagdeev

pseudopotential is needed to have supersolitons, and that

double layers and the creation or destruction of two subwells

can introduce other boundaries, we will first delineate exis-

tence domains for supersolitons. This is done in Fig. 3 in

ff ;M=Msg and ff ;ug parameter space, upper and lower pan-

els, respectively, for s ¼ 0:09 and jc ¼ jh ¼ 1. It turns out

from the upper panel of Fig. 3 that the region where positive

supersolitons can be found has M values above the green dot-

ted curve (representing the occurrence of positive double

layers) or the full red curve (at the emergence of two sub-

wells, for f larger than the value ftr at which the three positive

roots coalesce in a triple root), and below the blue dashed

curve (merging of two subwells), as M=Ms increases. It is

seen that for this value of s, M is not far above the acoustic

speed Ms, and the cool electron fraction (f) is only a few

percent.

The lower Fig. 3 has the same coding of the curves, with

one essential difference: the introduction of the inaccessible

third root of the double layer pseudopotential serves as the

minimum amplitude for the supersolitons, indicated by the

dark yellow curve with long dashes. We shall adhere to the

same styles for the curves in subsequent existence diagrams

when s, jc, and jh are varied. The amplitudes of the superso-

litons lie within the region delimited by this long-dashed

curve, the continuous red curve and the blue dashed curve.

Comparing the green dotted curve (double layers) and the

dark yellow long-dashed curve, we see how big the jump in

potential is from the double layer amplitude to the first

supersoliton associated with the (now accessible) third root.

Once we know where supersolitons can be found, it is

easy to pick appropriate f and M=Ms values and generate plots

of pseudopotentials and their associated hodographs. Not

wanting to overload the paper, we will restrict ourselves in

this subsection to one typical example, as illustrated in Fig. 4.

We thus have in the upper panel of Fig. 4 pseudopotentials

with a standard soliton (blue dotted curve), a double layer

(green dashed curve), and a supersoliton (red solid curve), for

f¼ 0.01. There being no negative supersolitons, the negative

u domain has been omitted, here and further below. Our

results agree with those of Baluku et al.8 in their Fig. 4. In par-

ticular, the double layer velocity M=Ms ¼ 1:0345 has been

recovered, even though we have used a different normaliza-

tion. To avoid too much clutter, we did not repeat all the

hodographs. However, the big jump in potential to the first

supersoliton is again manifested here, following on an

increase of only about 0.6% in M=Ms. We also note that in

both figures, the existence domains represent a very narrow

region, albeit covering a range of values of the two variables

considered.

FIG. 3. Upper panel: The region where positive supersolitons can be found

is above the green dotted curve (occurrence of negative double layers) or the

full red curve (emergence of two subwells), and below the blue dashed curve

(merging of two subwells), for s ¼ 0:09 and jc ¼ jh ¼ 1, in the parameter

space ff ;M=Msg. Lower panel: In terms of the amplitudes, the curves have

the same coding as in the upper panel, with the addition of the dark yellow

long-dashed curve, corresponding to the third root of the double layer pseu-

dopotentials and giving the minimum supersoliton amplitude.

FIG. 4. Upper panel: Pseudopotentials for f¼ 0.01, s ¼ 0:09, and jc ¼ jh

¼ 1, showing a standard soliton (blue dotted curve, M=Ms ¼ 1:0340), a

double layer (green dashed curve, M=Ms ¼ 1:0345), and a supersoliton (red

solid curve, M=Ms ¼ 1:0351). There being no negative supersolitons, the

negative u domain has been omitted. Middle panel: Hodographs, plotting

du=dx as functions of u. Thin dashed curves in gray indicate ranges which

are not accessible from the undisturbed conditions. Lower panel:

Supersoliton potential (left) and electric field (right) profiles, associated with

the pseudopotential shown by the red solid curve in the upper panel.
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In the middle panel of Fig. 4, the hodographs are pre-

sented, plotting du=dx as functions of u, with the same

curve coding as in the upper panel, and also in similar figures

below. Thin dashed curves in gray indicate ranges, which are

not accessible from the undisturbed conditions, and this illus-

trates how the jump in amplitude comes about, from the dou-

ble layer to the supersoliton amplitude. When the two

subwells merge, as M=Ms is increased, the supersoliton

range ends, but ordinary solitons are possible for larger

M=Ms, until the third root disappears upon encountering the

infinite ion compression associated with u‘i.

The lower panel of Fig. 4 then shows the electrostatic

potential (left) and electric field (right) profiles of the positive

supersoliton associated with the pseudopotential shown by the

red solid curve in the upper panel. The small bulges on the

potential profile might easily be overlooked, but the wiggles on

the electric field are very prominent, and distinguish it from the

standard bipolar pulse seen in many space observations.31,32

B. Case s 5 0:1 < sc 5 0:101

An analogous discussion can be given for smaller or

larger s, but we cannot go beyond sc ¼ 0:101, at least, we

have been unable to find supersolitons there. We thus pick

s ¼ 0:1 and produce Fig. 5, with similar boundary curves as

in Sec. III A. Obvious differences are that the existence

ranges are shifted to higher f, but to speeds only marginally

above Ms, and reduced amplitudes. Whereas in Fig. 4, it was

easy to produce a supersoliton of amplitude around 0.4, it is

now difficult to exceed 0.15, as illustrated in Fig. 6 for

f¼ 0.055. The supersoliton potential and electric field pro-

files shown in the lower panel of Fig. 6 are not very different

from those in Fig. 4, except that, consistent with the lower

speed, the amplitudes are smaller and the widths larger, a

combination of properties that is common to many solitons.

However, the bulges on the supersoliton itself are now very

slender, so that if one were to peruse only the soliton poten-

tial profile, one would be forgiven for regarding it as being

normal. The electric field, however, is still very distinctive,

but is an order of magnitude smaller than in the previous

example.

IV. STRONGLY SUPERTHERMAL ELECTRONS
(jc 5 2; jh 5 3)

We shall now treat a case of strongly superthermal elec-

trons, with jc ¼ 2 and jh ¼ 3, which has not been discussed

before in the new light of supersolitons, to the best of our

knowledge. This model was investigated by Baluku and

Hellberg,24 but they were unable to identify parameter

ranges where a third root would occur beyond the (positive)

double layers.

A. Case s 5 0:33

The choice s ¼ 0:33 obeys not only s < sc ¼ 0:347, as

can be noted from Fig. 1, but also s > smin ¼ 0:269, a mini-

mum value established in an empirical way, at the lower

limit of numerical accuracy. Hence, there are two ranges for

the positive KdV structures: 0 < f < 0:105 and 0:255 < f .

Both ranges support positive double layers, but for the lower

range, 0 < f < fc1 ¼ 0:105, the double layer pseudopoten-

tials have no other positive roots, as these are cut off due to

infinite ion compression at u‘i. Thus, unlike the case of

Boltzmann electrons, this lower range of f does not support

supersolitons.

In contrast, in the upper range, starting at fc2 ¼ 0:255,

pseudopotentials admit positive double layers plus a root

FIG. 5. Existence ranges in the parameter spaces ff ;M=Msg (upper panel)

and ff ;ug (lower panel), for s ¼ 0:1 and jc ¼ jh ¼ 1, with the same curve

conventions as in Fig. 3.

FIG. 6. Upper panel: Pseudopotentials for f¼ 0.055, s ¼ 0:1, and jc ¼ jh

¼ 1, showing a double layer (green dashed curve, M=Ms ¼ 1:0010) and a

supersoliton (red solid curve, M=Ms ¼ 1:0011). Middle and lower panels: As

in Fig. 4.
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beyond those, hence supersolitons, but the double layer

range ends at f¼ 0.290 when all three roots coalesce in a tri-

ple root. In the tiny range 0:290 < f < 0:291, the supersoli-

ton existence is limited between the emergence or

disappearance of the two subwells needed to sustain them.

The infinite ion compression limit does not come into play

for the supersolitons, but it will ultimately limit the existence

range of the ordinary solitons which are found beyond the

supersoliton range, at increasing M for a given f. It has there-

fore been omitted from all graphs where the limit due to u‘i

does not play a role in the supersoliton discussion.

Existence diagrams are shown in Fig. 7, which indicate

that the range for double layers starts for f¼ 0.255 at zero

amplitude when M=Ms ¼ 1, since we are dealing with KdV-

like solitons and double layers. It is interesting that the shape

of the existence region differs significantly from that found

in Sec. III. This follows because, here, the existence range

increases from the critical cool density (here, fc2), at which

S000ð0;MsÞ changes sign, as M is increased, whereas for the

Boltzmann case, the supersoliton range in f decreases from

the relevant critical value, fc1, with increasing M.

Pseudopotentials with a positive double layer (dashed

green curve) and with a supersoliton (solid red curve) are

given in the upper panel of Fig. 8, for f¼ 0.289 (close to the

upper limit), s ¼ 0:33; jc ¼ 2 and jh ¼ 3. As in Sec. III, the

middle panel of Fig. 8 gives the corresponding hodographs,

where again the nonaccessible part of the double layer hodo-

graph has been drawn in light gray.

An important feature to note is that, even though the

supersolitons are barely superacoustic, they cannot be

described by reductive perturbation theory, even when they

are, as here, KdV-like and might have small amplitudes.

The positive supersoliton potential profile (left) and

electric field (right) associated with the pseudopotential

shown by the red solid curve in the upper panel of Fig. 8 are

shown in the lower panel. When comparing these profiles

with those produced in Sec. III for Boltzmann electrons,

given in Figs. 4 and 6, we note that the profiles are quite sim-

ilar, but the associated electric field is weak, an order of

magnitude smaller than the example in Sec. III A but of the

same order as that in Sec. III B, in line with the very low

value of (M/Ms) � 1.

At this stage, we want to point out that we have also car-

ried out the corresponding computations for s ¼ 0:34, at the

same j values. The main difference is a shift to slightly

higher f (in the upper range) and higher amplitudes and

Mach number. Returning briefly to the perceived lack of

third roots beyond the double layer, commented upon in an

earlier paper,24 it appears that, following on the approach

used in Ref. 8, only the lower f range was properly investi-

gated. Thus, the supersoliton range discussed here was not

found in Ref. 24.

B. Case s 5 0:36

It is clear from Fig. 1 that for jc ¼ 2 and jh ¼ 3, posi-

tive KdV-like solitons could occur for s > sc ¼ 0:347. In

searching for supersolitons, we have thus also explored this

range, choosing s ¼ 0:36 as an example. Unlike studies of

the Boltzmann case by Ref. 24 and in Sec. III, we have now

found both positive double layers and supersolitons. In trying

to see whether there might be an upper value, smax, we have

found no limitation, having tested numerically up to unphysi-

cally large values such as 0.7, a temperature ratio that is

clearly too large to sustain an acceptable distinction between

the two electron populations.

FIG. 7. For s ¼ 0:33; jc ¼ 2, and jh ¼ 3, the region where positive super-

solitons can be found, in terms of M and of u, with the same curve conven-

tions as in Fig. 3. The double layer range 0 < f < 0:105 has been omitted

for graphical clarity, as it yields no supersolitons.

FIG. 8. Upper panel: Pseudopotentials for f¼ 0.289, s ¼ 0:33; jc ¼ 2, and

jh ¼ 3, showing a double layer (green dashed curve, M=Ms ¼ 1:00093) and

a supersoliton (red solid curve, M=Ms ¼ 1:000097). Middle and lower pan-

els: As in Fig. 4.
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The procedure is by now quite standard and starts by

finding existence ranges for pseudopotentials with positive

double layers and their possible third roots. Since we are no

longer in the coexistence domain, we find positive double

layers for very low f up to when the triple root is encountered

at ftr ¼ 0:262. However, the double layer pseudopotentials

do not necessarily have a third root. In fact, it only appears

from f¼ 0.208 onwards. For lower values of f, the infinite

compression limit at u‘i prevents such roots from occurring.

A further associated effect is that the lower limit in soliton

speed now exceeds the acoustic speed, unlike the behaviour

in the other cases reported above. In addition to the onset of

supersolitons beyond a double layer, there is a tiny range

0:262 < f < 0:265 where the emergence and coalescence of

two subwells define the existence range for supersolitons.

Together, the range where supersolitons exist is

0:208 < f < 0:265. This is shown in the existence diagrams

in Fig. 9. Starting from the lowest value of f, one finds that

the supersolitons are initially (over a very narrow range of f)
limited not by the coalescence of the two subwells, but by in-

finite ion compression. The more usual limit only plays a

role when the infinite ion compression occurs at higher val-

ues of M=Ms or u.

A particular example is illustrated in Fig. 10 for

f¼ 0.26, s ¼ 0:36; jc ¼ 2 and jh ¼ 3, for pseudopotentials

with a double layer (green dashed curve) and a supersoliton

(red solid curve). As was done before, the middle panel gives

the corresponding hodographs. The supersoliton profile (left)

and electric field (right) of the positive supersoliton associ-

ated with the pseudopotential shown by the red solid curve

are shown in the lower panel of Fig. 10. Overall, these fig-

ures are similar to those found in Sec. IV A.

V. MODERATELY SUPERTHERMAL ELECTRONS
(jc 5 jh 5 10)

To illustrate how the transition occurs from the

Boltzmann picture in Sec. III to the strongly superthermal

picture in Sec. IV, we will now investigate appropriate mod-

erate j values, taking as a typical example, jc ¼ jh ¼ 10.

For such relatively large values of the spectral indices, plas-

mas are often deemed to be “quasi-Maxwellian.”

Nonetheless, it turns out that the results differ from those of

both Secs. III and IV. As we will show, positive supersoli-

tons can now be found in each of the three possible parame-

ter ranges. From the calculations that underpin the curves in

Fig. 1, we infer that sc ¼ 0:11438. In addition, it turns out

that in this case, there are both lower and upper bounds on s,

with smin ¼ 0:1133 and smax ¼ 0:1239. Thus, there is only a

narrow range in temperature ratio in which supersolitons can

be found.

We would like to add in parentheses that we have thor-

oughly investigated plasmas with superthermal electrons for

the values jc ¼ jh ¼ 2, 3, and 6. However, such models

lead to existence diagrams, pseudopotential examples, and

supersoliton potential and electric field profiles which,

FIG. 9. For s ¼ 0:36; jc ¼ 2, and jh ¼ 3, the regions are coded as in Fig. 3.

In the upper and lower panels, the double layer range has been omitted for

f < 0:2, in the interest of graphical clarity. It is, however, included in the

middle panel to show clearly that double layers exist over a wide range. The

thin gray line represents the infinite ion compression limit.

FIG. 10. Upper panel: Pseudopotentials for f¼ 0.26, s ¼ 0:36; jc ¼ 2, and

jh ¼ 3, showing a double layer (green dashed curve, M=Ms ¼ 1:0027) and a

supersoliton (red solid curve, M=Ms ¼ 1:0028). Middle and lower panels:

As in Fig. 4.
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qualitatively, resemble much of what we have discussed in

Sec. IV.

A. Case s 5 0:114

We first consider an example that is just below, but very

close to the critical temperature, i.e., s ¼ 0:114�0:11438 ¼ sc.

This is in principle analogous to the double Boltzmann case

of Sec. III and Ref. 8. Following the same procedure as in

previous sections, we note that fc1 ¼ 0:091 and fc2 ¼ 0:115.

Unlike for the Boltzmann case, one now finds that in both

ranges (f < fc1 and f > fc2) there are positive double layers

and supersolitons, albeit that the upper range turns out to be

very limited, 0:115 < f < 0:117, but it does indeed exist, as

shown in Fig. 11.

In the intermediate range, fc1 < f < fc2, positive solitons

can only be nonKdV-like, and they start at the acoustic speed

with finite amplitude. Their minimum amplitudes are shown

by the dotted yellow curve in part (b) of Fig. 11, a curve

computed from the sole positive root of Sðu;MsÞ in that f
range. In fact, this curve in the intermediate range of f con-

nects the two minimum positive supersoliton amplitude limits

found in the two adjacent ranges of f. For reasons of analytical

continuity, these nonKdV-like positive solitons have minimal

amplitudes, which go smoothly over into the amplitude curves

of the third positive root when there are positive KdV-like

double layers, to the left and right! Otherwise, a small shift in

f across the KdV/nonKdV-like boundary would cause an

unphysical jump in soliton amplitudes between neighbouring f
regions. There are no positive nonKdV-like double layers and

hence no supersolitons of that form. On the other hand, in the

range fc1 ¼ 0:091 < f < fc2 ¼ 0:115, there are negative dou-

ble layers that limit the negative KdV-like soliton range, but

that is outside the focus of this paper on supersolitons. We

note that the overall shape of the existence region is reminis-

cent of that in Sec. III, but, as discussed above, it is interrupted

by the region where the KdV-like solitons reverse polarity. In

addition, it is seen that the existence domain is a very narrow

strip in parameter space.

A particular example of a supersoliton, illustrative of

those found in the lower range (f < fc1) is shown in Fig. 12

for f¼ 0.01 and s ¼ 0:114, for pseudopotentials with a dou-

ble layer (green dashed curve) and a supersoliton (red solid

curve). For graphical clarity, the deep wells of the Sagdeev

pseudopotentials have been cut out from Fig. 12. The super-

soliton profile (left) and electric field (right) of the positive

supersoliton of the pseudopotential shown by the red solid

curve in Fig. 12.

The big jump from the double layer amplitude to the

smallest supersoliton is again seen not only in part (b) of

FIG. 11. Existence regions in Mach number and amplitude space, in parts

(a) and (b), respectively, for s ¼ 0:114 and jc ¼ jh ¼ 10, with the same

curve coding as in Fig. 9. A magnification of part (b) is presented in part (c)

for the lower and in part (d) for the higher f ranges.

FIG. 12. Upper panel: Pseudopotentials for f¼ 0.01, s ¼ 0:114, and jc ¼ jh

¼ 10, showing a double layer (green dashed curve, M=Ms ¼ 1:0052) and a

supersoliton (red solid curve, M=Ms ¼ 1:0054). Middle and lower panels: As

in Fig. 4.
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Fig. 11, but also on the Sagdeev potential and the hodograph

plots in Fig. 12. On the other hand, the deep but narrow sec-

ond well in the Sagdeev potential curve is reflected in the

large bulge on the right of the hodograph and in the large

and spiky narrow electric field signature, with only a rela-

tively small wiggle. In addition, it is seen that the potential

profile is strongly distorted from the classic soliton shape,

because of the strong localized electric field.

We next consider an example of a supersoliton from the

upper range of f, namely, f¼ 0.117 and s ¼ 0:114. This is

very close to the upper limit of the supersoliton range in f at

this s. As a result, it is expected from Fig. 11 that both the

double layer amplitude and the potential jump to the superso-

liton are relatively small (each of order 0.01). This is illus-

trated in Fig. 13 by pseudopotentials with a double layer

(green dashed curve) and a supersoliton (red solid curve).

The associated supersoliton potential profile (left) and elec-

tric field (right) are shown.

The large hodograph bulge again arises from the deep

second Sagdeev pseudopotential well. However, the very

weak potential amplitude is now an order of magnitude

smaller, and the profile width two orders larger, than in the

previous case. As a result, the electric field is much smaller

and less spiky, although the relatively deep Sagdeev well of

Fig. 13 is still reflected in the distorted soliton shape and the

fact that the electric field wiggles are relatively small.

B. Case s 5 0:12

We finally consider a temperature ratio beyond the criti-

cal value, namely, s ¼ 0:12, where we clearly have that

sc < s < smax ¼ 0:1239. In this region, all positive solitons

are KdV-like, and the double layer range runs from very

FIG. 13. Upper panel: Pseudopotentials for f¼ 0.117, s ¼ 0:114, and jc ¼ jh

¼ 10, showing a double layer (green dashed curve, M=Ms ¼ 1:0052) and a

supersoliton (red solid curve, M=Ms ¼ 1:0054). Middle and lower panels: As

in Fig. 4.

FIG. 14. Existence region in Mach number (upper panel) and amplitude

(lower panel) space for s ¼ 0:12 and jc ¼ jh ¼ 10, with the same curve

coding as in Fig. 9. A magnification of the higher end of the existence curves

is presented in the middle panel, for M=Ms.

FIG. 15. Upper panel: Pseudopotentials for f¼ 0.055, s ¼ 0:12, and jc ¼ jh

¼ 10, showing a double layer (green dashed curve, M=Ms ¼ 1:0052) and a

supersoliton (red solid curve, M=Ms ¼ 1:0054). Middle and lower panels: As

in Fig. 4.
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small f (for instance, 0.001) up to f¼ 0.0614, where a triple

root is encountered.

Including the parameter values where the lower limit

arises from the forming of a secondary Sagdeev well, the

range where supersolitons exist is 0 < f < 0:0677. This is

shown in the existence diagrams in Fig. 14, which parallel

those of Sec. IV B.

A typical supersoliton case is given in Fig. 15 for

f¼ 0.055, s ¼ 0:12, and jc ¼ jh ¼ 10, for pseudopotentials

with a double layer (green dashed curve) and a supersoliton

(red solid curve). The lower panel of Fig. 15 gives the corre-

sponding hodographs. The supersoliton profile (left) and

electric field (right) of the positive supersoliton associated

with the pseudopotential shown by the red solid curve in Fig.

15 are shown. As one might expect, these figures are remi-

niscent of those found in the region s > sc for the strongly

nonthermal case of Sec. IV B.

VI. CONCLUSIONS

We have reached the following conclusions:

1. For Maxwellian electrons, the double layer range starts,

as f, the relative cool electron density, is increased, from

ftr, where pseudopotentials have a positive triple root,

and ends at fc1 when M! Ms and the double layer am-

plitude goes to zero, as long as smin < s < sc, where

s ¼ Tc=Th. In this whole range ftr < f < fc1, the double

layer pseudopotentials have a third (inaccessible) root,

which serves as the minimum amplitude for supersoli-

tons. There is, in addition, a limited range f < ftr where

supersolitons occur, between emergence and merging of

two distinct subwells, a range initiated at the merger of

all three local extrema. In the ranges f > fc2 (for

smin < s < sc) and s > sc, there are no positive double

layers nor supersolitons.

2. At the opposite end of the scale, where the two-

temperature electrons present a hard spectrum for low j,

as is typical of, for instance, Saturn’s magnetosphere,

there are two ranges in f for smin < s < sc where double

layers are found: 0 < f < fc1 and fc2 < f < ftr. In the

lower range, the infinite ion compression limit prevents a

third root from occurring, hence there can be no supersoli-

tons. However, the double layer pseudopotentials do have

a third root in the upper f range, and hence supersolitons

can exist, up to where the three local extrema coalesce,

just beyond ftr. We note that for this low-kappa case, the

triple root occurs at the end of the upper f range, whereas

for Boltzmann electrons, it initiated the double layer

range for low f. Moreover, when s > sc, there are now

double layers in the range 0 < f < ftr. Supersolitons occur

in the higher part of this range, when the ion compression

no longer prevents a third root from occurring. This result

contradicts an earlier report by Ref. 24 who did not find

any supersolitons for this plasma model. It appears that

they explored only the Boltzmann-like lower range in f
for s < sc, discussed above. Furthermore, supersolitons

are also found in j-distributed plasmas for sc < s < smax.

For the Saturnian case, no obvious physically realistic

value of smax was found, but smax decreases as the jj are

increased, and for the intermediate case (jj ¼ 10), the

range in s is very narrow.

3. The transition between the two extreme cases of

Boltzmann and hard spectrum electron populations occurs

around jc ¼ jh ¼ 10, when there are double layers on

both f ranges for smin < s < sc, and the triple root is

shifted from the lower to the upper range. This starts with

a minute upper double layer range, for smin < s < sc but s
very close to sc. This also signals the existence of super-

solitons in both ranges, although initially the supersoliton

range for fc2 < f < ftr is mostly symbolic, with very small

amplitudes, and M barely above Ms, and their determina-

tion is at the limit of numerical accuracy and physical

acceptability. As jc and jh are further decreased, the

range for 0 < f < fc1 retains the double layer existence,

but loses the possibility of having a third root, i.e., allow-

ing supersolitons to exist.

4. What seems to be the case is that for Boltzmann and high-

j electrons (the latter usually considered as quasi-

Maxwellian), one finds that the triple root at ftr initiates

the double layer range in the lower f range, for

smin < s < sc. There are no other double layer ranges.

When increasing the superthermal content of the distribu-

tion (decreasing j), as soon as the triple root shifts from

the lower to the upper range and ends the double layer

range, one can have double layers with a third root for all

three f ranges. Further decreases of j kill the third root of

the lower range (0 < f < fc1), but the upper range

(fc2 < f < ftr) retains it, for smin < s < sc. This is also the

case for the higher part of the range f < ftr, when

sc < s < smax. Unfortunately, the precise values of smin

and smax depend in a nontrivial way on jc and jh, and

have therefore to be determined in a numerical trial-and-

error fashion, which provides no physical insight. For

very low kappa, there does not seem to be a physically ac-

ceptable smax.

5. It is common in space observations to find plasmas with

two-temperature electrons,33,34 and to find kappa distribu-

tions.35 In the earlier work of Ref. 24, no supersolitons

were found for a strongly nonthermal two-temperature

plasma typical of Saturn’s magnetosphere.23 It thus left

open the question of how common supersolitons may be

in space environments, other than those with a double

Boltzmann distribution. However, our findings now show

that supersolitons should be observable in two-electron-

temperature space plasmas over the complete range of

kappa values from Boltzmann to a very hard spectrum,

albeit for low cool electron fractions, narrow ranges in

(f, M) space and, in some cases, in temperature ratio, s.

6. The model discussed in this paper can be converted,

with the appropriate changes in normalizations and

polarities, to describe, e.g., dust-acoustic supersolitons

in a plasma with cold negative dust and two-temperature

Boltzmann or j-distributed ions, when almost all elec-

trons have been accreted onto the dust. Compared to our

earlier supersoliton papers,5,6 the present model has a

quite different composition, but together they illustrate

that one can find supersolitons in widely varying three-

component plasmas.
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Finally, we reiterate the fact that, although in some

instances one finds supersolitons that have small normalized

amplitudes and are only barely super-acoustic (with M=Ms

only marginally above 1), the supersoliton phenomenon can-

not be recovered from a KdV approach.
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