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A numerical model of a tanpura string is presented, based on a recently developed, stability-preserving way of
incorporating the non-smooth forces involved in the impactive distributed contact between the string and the bridge.
By de�ning and modelling the string-bridge contact over the full length of the bridge, the simulated vibrations can
be monitored through the force signals at both the bridge and the nut. As such it o�ers a reference model for both
measurements and sound synthesis. Simulations starting from di�erent types of initial conditions demonstrate that
the model reproduces the main characteristic feature of the tanpura, namely the sustained appearance of a precursor
in the force waveforms, carrying a band of overtones which decrease in frequency as the string vibrations decay.
Results obtained with the numerical model are used to examine, through comparison, the e�ect of the bridge and
of the thread on the vibrations.

1 Introduction
The tanpura is a fretless string instrument producing lively
sounding drones typical of the musical cultures of the Indian
subcontinent. It usually has four metal strings stretched over
a resonant body connected to a long, hollow neck [1, 2].
Like various other Eastern string instruments, its speci�c
overtone-rich sound results from the interaction of its strings
with a slightly curved bridge, but with the additional feature
of having a thin thread placed between the string and the
bridge (see Figure 1). The musician adjusts the position of
the thread - which is commonly made of silk or cotton - in
search of a desired javari, i.e. the drone-like sound e�ect.

The main mechanical principles involved in the
generation of a javari have been understood for some time.
Raman [1] already noted in 1921 that the string vibrations of
the tanpura and other Indian instruments will contain a full
series of overtones regardless of where the string is plucked
or mechanically held still, and attributed this phenomenon
correctly to the impactive interaction between the bridge and
the string. Burridge [3] provided a more detailed analysis
of sitar string vibrations, identifying two main stages, both
quasi-periodic. For the speci�c con�guration of a tanpura,
Valette et al. [4] showed that the placement of a thread
can be considered as creating a �two-point bridge�, which
periodically reinforces high frequency waves that travel
slightly ahead of waves of lower frequencies due to string
sti�ness.

Neverthless, time-domain simulations of the tanpura and
other ��at-bridge� string instruments have yet to advance
to a level that allows a detailed quantitative comparison
with experimental data; at the same time, physics-based
sound synthesis models do not display the same level
of realism as those of various other string instruments.
One possible reason for this is that vibrations of a string
interacting with a one-sided bridge constraint have mostly
been studied and synthesised under various simplifying
assumptions. For example, by de�ning the string-bridge
collisions as fully inelastic [3, 5, 6], or completely lossless
[7, 8], either of which may be a too severe simpli�cation.
In addition, string sti�ness and losses are often omitted,
but adding these to an existing formulation is relatively
simple. The complementary extension of de�ning the
contact as semi-elastic is less straightforward though,
because modelling impactive contact with repelling forces
- which are necessarily non-analytic functions of the
transversal displacement of the string - generally poses
considerable challenges with regard to the construction of
stable, convergent time-stepping schemes [9]. While various
simulation results have successfully been obtained (e.g. for
the sitar [10]), provably stable formulations of this kind
have yet to appear. A further indication of the need for a

Figure 1: Side-view of a tanpura bridge.

better approach to constructing time-stepping schemes is the
appearance of artefacts in the extracted signals, such as the
�spikes� visible in the nut force signals presented in [11].

This paper describes a numerical model of tanpura string
vibrations, based on a recently developed energy method
for modelling distributed contact in musical instruments
[12]. The proposed numerical formulation is derived by
discretising equations governing the transversal vibrations
of a sti� string stretched over a bridge as depicted in Figure
2. While previous studies on the tanpura have de�ned one
of the two terminations at the point where the string meets
the thread (A), in our model this falls at the position of
the connection with tuning bead (B). The rationale is to
explicitly model contact with the thread and with the bridge
over its full length, which allows the computation of the total
force on the bridge. In addition, it is of help in assessing
where the lower bound of the contact elasticity constants
should lie.

The structure of the paper is as follows: a dissipative
form of the power law de�ning a collision force and its
discretisation is brie�y discussed in Section 2. The equations
governing the system of geometry (B) in Figure 2 are then
presented in Section 3, followed by the formulation of
the numerical scheme in Section 4. The main results are
presented and discussed in Section 5.
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Figure 2: Tanpura string model con�gurations.



2 Impactive contact with damping
A well-known dissipative form of a power law for the contact
force Fb between an object positioned at y with a barrier
positioned below it at yb is that by Hunt and Crossley [13]:

Fb = k�(yb � y)��
�
1 � r

�y
�t

�
, (1)

where � is the exponent, k is a sti�ness-like term, and �y�
denotes h(y) • y, where h is the Heaviside step function. The
amount of damping is controlled through the coe�cient r.
As explained in [14], the lossless version of this power law
can be discretised in stable form by �rst writing the force as
a derivate of the potential energy, which equals

V(y) =
k
� + 1

�(yb � y)�+1�. (2)

This approach is readily extended to the above Hunt-Crossley
form, by writing (1) as

Fb = �
�V
�y
+ r
�V
�t
, (3)

and discretising using mid-point-in-time derivative
approximations:

Fn+ 1
2

b = �
V(yn+1) � V(yn)

yn+1 � yn + r
V(yn+1) � V(yn)

�t
, (4)

where n is the time index. This equation can be written into a
form suitable for use in a numerical model simulating vibro-
impact phenomena after subsitution of (2). In application to
modelling distributed contact, as in the following section, the
force term in these equations is replaced with force density,
potential energy is replaced with potential energy density,
and sti�ness becomes sti�ness per unit length.

3 Governing equations
Considering a sti�, lossy vibrating tanpura string with
external force terms due to contact with the bridge (supscript
�b�), a cotton thread (supscript �c�), and a plucking �nger
(supscript �f�), the equation of motion in space-time
coordinates (x, t) can be stated as

�A
�2y
�t2
=

�
�
�2y
�x2 � EI

�4y
�x4

� �
1 � �

�
�t

�
� �A�

�y
�t

+ Fb(x, t) + Fc(x, t) + Ff (x, t), (5)

where �, A, �, E and I denote string mass density, cross-
section, tension, Young�s modulus, and moment of inertia,
respectively, and where � and � represent loss parameters.
The respective force densities acting upon the string are,
within their speci�c spatial domains,

Fb(x, t) =
�
kb

�
yb(x) � y(x, t)

� � �
1 � rb

�y
�t

�
, (6a)

Fc(x, t) =
�
kc

�
yc(x) � y(x, t)

� � �
1 � rc

�y
�t

�
, (6b)

Ff(x, t) =
�
kf

�
yf(x) � y(x, t)

� � �
1 � rf

�y
�t

�
, (6c)

and zero outside their domains. These expressions
essentially represent Hunt-Crossley contact laws with unity

exponents. Some justi�cation for the choice � = 1 can be
found in the measurement of elastic deformation of strings,
such as carried out by Taguti for the silk string of the biwa
[7]. A further consideration is that choosing � = 1 with
su�ciently high k values is the simplest way of avoiding
unrealistically deep compression. For a string of length L,
the boundary conditions are:

y(0, t) = yTB,
�
�2y
�t2

	

x=0
= 0, (7a)

y(L, t) = 0,
�
�2y
�t2

	

x=L
= 0, (7b)

where yTB denotes the vertical position of the left-end
support (see (B) in Figure 2). The bridge pro�le yb(x) is
taken here as measured by Guettler [15], with its maximum
positioned at x = 46.5mm, y = 0mm. The terms yc(x)
and yf(x) represent the shapes of the cotton thread and the
plucking �nger, respectively, both of which are de�ned as
parabolic. At the start of any simulation, the initial state of
the string is �rst solved by letting the initial vibrations due
to contact forces decay. The string is then excited by setting
the �nger spring constant kf to zero. Using T to denote the
kinetic component, the system energy is:

H =

 L

0

�
T (p)+Vt(u)+Vs(v)+Vb(y)+Vc(y)+Vf(y)

�
dx

(8)
where the energy densities are zero outside the respective
domains and otherwise

T (p) =
p2

2�A
, Vt(u) =

1
2
�u2,

Vs(u) =
1
2

EIv2, Vb(y) =
kb

2

�
(yb � y)2

�
, (9)

Vc(y) =
kc

2

�
(yc � y)2

�
, Vf(y) =

kf

2

�
(yf � y)2

�
,

and where

p = �A
�y
�t
, u =

�y
�x
, v =

�2y
�x2 . (10)

We may now, following a path similar to that of the lossless
formulation in [12], rewrite the system dynamics in terms of
its energy densities and losses per unit length as follows

�p
�t
=
�
�x

�
�V�
�u

�
�
�2

�x2

�
�Vs

�v

�
�
�Vb

�y
�
�Vc

�y
�
�Vf

�y

� ��
�3y
�t�x2 + EI�

�5y
�t�x4 � �A�

�y
�t

+ rb
�Vb

�t
+ rc
�Vc

�t
+ +rf

�Vf

�t
, (11a)

�y
�t
=
�T
�p
. (11b)

The total force on the bridge is

Fb(t) =

 L

0

�
Fb(x, t) + Fc(x, t)

�
dx. (12)

This expression can be used as a �rst approximation to
the sound produced by the instrument. Another signal that
is useful to extract from simulations - as it allows direct
comparison with earlier studies on tanpura string vibrations
[4, 2, 11] - is the force that the string exerts on the nut:

Fn(t) = EI
�
�3y
�x3

	

x=L
� �

�
�y
�x

	

x=L
. (13)



4 Numerical formulation
Denoting the spatial and temporal step with �x and
�t, respectively, the string state is discretised as
yn

m � y(m�x, n�t). Applying di�erence operators as in
[12], the system without contact forces can be written in
matrix form as

qn+1 � qn = �D

�

1 +
2�
�t

�
yn+1 +

�
1 �

2�
�t

�
yn

�

�
��t
2

�
yn+1 � yn

�
(14a)

yn+1 � yn = qn+1 + qn, (14b)

where qn = �t/(2�A)pn, and where D is a square symmetric
matrix representing all spatial di�erentiation involved [12],
with numerical versions of the boundary conditions de�ning
the elements at and near the corners. Note that in this case
the condition in (7a) of a �lowered left support� has to be
incorporated. The system can be solved at each time step by
�nding the root s of the function

F =

�

1 +
��t
2

�
I +

�
1 +

2�
�t

�
D

�
s + 2 (Dyn � qn) (15)

and subsequently updating the string displacement vector
and scaled momentum vector with

yn+1 = yn + s, qn+1 = s � qn. (16)

Now adding contact forces to the system, force density terms
at the bridge, thread, and �nger are computed at separate
grids for each element, using the spatial stepsizes �xb, �xc,
and �xf, respectively. Hence a way of translating between
the string grid and each of these separate grids is required.
To this purpose, third-order Lagrange interpolation matrices
are used as follows:

flyn
b = I byn, flyn

c = I cyn, flyn
f = I fyn. (17)

Note that interpolation is a necessary tool in accurate
positioning of the thread, the bridge, and the �nger. The
(scaled) contact forces are formulated at these points, for
example for the bridge we have, from (4):

flf n+ 1
2

b,i = ��b
�(yb,i � flyn

b,i � flsb,i)2� � �(yb,i � flyn
b,i)

2�
flsb,i

+ 	b
�
�(yb,i � flyn

b,i � flsb,i)2� � �(yb,i � flyn
b,i)

2�
�
, (18)

with �b = (kb�t2)/(2�A) and 	b = (kbrb�t)/(2�A), and where

flsb,i = flyn+1
b,i � flyn

b,i. (19)

The forces can be translated back to the string spatial
coordinates using a corresponding downsampling
interpolant:

f n+ 1
2

b = I �b flf n+ 1
2

b . (20)

This can be done without a�ecting energy conservation
for zero damping if the scaled conjugate is used as the
downsampling interpolant [9]:

I �b =
�
�xb

�x

�
I t

b. (21)

With the added contact forces, (15) becomes

F =

�

1 +
��t
2

�
I +

�
1 +

2�
�t

�
D

�
s + 2 (Dyn � qn)

� f n+ 1
2

b � f n+ 1
2

c � f n+ 1
2

f . (22)

where the added force terms are non-linear functions of
s, and where the respective interpolated versions of s are
computed in the same way as for y:

flsb = I bs, flsc = I cs, flsf = I fs. (23)

Equation (22) can be solved at each time step with the multi-
dimensional Newton-Rhapson method, using the Jacobian

J =

�

1 +
��t
2

�
I +

�
1 +

2�
�t

�
D

�
+I �bCbI b+I �cCcI c+I �f CfI f,

(24)
where Cb, Cc, and Cf are diagonal matrices with elements

�
cb,i,i

�
=
� flf n+ 1

2
b,i

� flsb,i
,

�
cc, j, j

�
=
� flf n+ 1

2
c, j

� flsc, j
,

�
cf,k,k

�
=
� flf n+ 1

2
f,k

� flsf,k
.

(25)

5 Simulation results
To obtain representative string parameters, the diameter
(d = 0.3 mm) and length (L = 668 mm) of the third string
of a small travelling tanpura were measured. Taking into
account the fundamental frequency of the speaking length
of the string as well as the mass density and Young�s
modulus of steel, the tension and sti�ness terms were set
accordingly to � = 31.47 N m�1 and EI = 8.35 × 10�5

N m2, with �A = 5.58 × 10�4 Kg m�1. The damping
parameters were set to � = 0.6 s�1 and � = 7 × 10�9 s,
which results in a frequency-dependent decay pattern which
approximately matches that observed when the string is left
in free vibration (i.e. without string-bridge interaction). The
bridge and thread contact elasticity coe�cients are chosen
as kb = kc = 1 × 108 N m�2, which ensures that the e�ective
compression does not exceed 5% of the string diameter.
The contact damping coe�cients are set to rb = rc = 0.1
and and rf = 1. The numerical parameters are as follows:
�t = 1/176.4 ms, �x = 3 1

3 mm, �xb = 0.18 mm, �xc = 0.15
mm, and �xf = 1 mm.

5.1 Quasi-Helmholz motion
Figure 3 shows snapshots of the string motion for an initial
condition that matches the shape of the �rst mode of the
string; this is achieved by re-de�ning the shape of the
�nger. In the plots, the more recent states are represented
by colour-intensive curves, with the colour-tone fading out
for the earlier string states. It can be observed that the
bridge collisions force the string to gradually take on a more
triangular shape, indicating the excitation of the other modes
of vibration. A Helmholz-like motion emerges, as illustrated
by the appearance of a kink that travels along the string,
as indicated by the arrows in Figure 3(c). Similar �ndings
have been presented in [11] and in studies of various other
string-bridge con�gurations [3, 8].
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Figure 3: Snapshots of the string vibration, with the �rst mode initial condition, for the 1st (a), 17th (b), and 33rd (c) period of
oscillation. The arrows in (c) indicate the movement of the kink, indicative of a Helmholtz-like motion.
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Figure 4: Evolution of the nut force signal for two di�erent initial conditions: top: �rst mode shape, bottom: �nger pluck shape.

Figure 5: Spectral evolution for di�erent initial conditions and bridge con�gurations.



5.2 Precursive wave generation
Figure 4 plots instances of the nut force signal for the
��rst mode shape� and the ��nger pluck� cases. For both
initial conditions, a gradual development toward having one
sustained precursor per cycle is observed. As explained in
[4], this precursor is a packet of high-frequencies arriving
at the nut before the lower frequencies due to the string
sti�ness. The precursor keeps being �fed� once per cycle
with high-frequency components through the non-linear
interaction at the bridge end, which destroys the symmetry of
the force waveform periods. In the case of the plucked �nger,
the precursor that originally appears in the other half of the
waveform gradually fades out due to frequency-dependent
losses.

5.3 In�uence of the bridge and the thread
Figure 5 shows the spectral evolution of the nut force signal
obtained from the simulation for both initial conditions, and
for three di�erent bridge con�gurations. For the two plots on
the left, the bridge sti�ness per unit length kb is set to zero for
x > xc, where xc = 40mm is the position of the the thread.
This means that the speaking length of the string is free to
vibrate, resulting in independently decaying modes, with no
energy conversion from the fundamental to any of the other
modes.

With the bridge and thread in place (i.e. the full model),
all modes are excited for both initial conditions, and the
precursor can be observed as a formant region with a spectral
centroid that varies over time. For the plucked �nger case,
at �rst the formant frequency decays, then brie�y stays
approximately constant, followed by a period of slower
decay. The appearance of these distinct regimes in the
formant centre frequency pattern is in accordance with the
analysis of experimentally obtained nut force signals in [4].

Finally, the two plots on the right-hand side show the
spectral evolution when no cotton thread is present in the
system. In the real instrument, the removal of the thread
or even a small adjustment of its position will result in a
much reduced formant/precursor e�ect, with the sound being
more similar to that of a string freely vibrating (i.e with no
impactive bridge interaction). However, as seen in the plots,
the model still produces vibrations with a strong formant-
like feature in the spectrum. A possible explanation is that -
unlike in the presented model - the vibrations of a real string
are not restricted to the vertical plane. That is, a level of
coupling between the two transversal polarisations, either at
end points or through distributed non-linear coupling (i.e.
�string whirling�) is common to all string instruments. The
vertical string motion does not contribute to collisions with
the bridge, so with the added plane of motion, there may
be more tight conditions for triggering a strong javari. In
the light of this notion it is worthwhile noting that Raman�s
studies include photographic evidence of the string de�ection
being equally prominent in both planes for string vibrations
with a javari [16].

6 Conclusions
A numerical model for simulation of tanpura string
vibrations has been presented. The results generated
with the simulations are qualitatively in agreement with
measurements and �ndings from earlier studies, but they
also reveal that the model fails to predict the e�ect of
removing the thread. Further research could establish which
re�nements and extensions would be needed to address
this discrepancy. Examples of nut and bridge force signals
are supplied in audio format on the accompanying website
(www.somasa.qub.ac.uk/ � mvanwalstijn/isma14 ).
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