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For the computation of limit cycle oscillations (LCO) at tra nsonic speeds, CFD is re-
quired to capture the nonlinear ow features present. The Ha rmonic Balance method pro-
vides an e�ective means for the computation of LCOs and this p aper exploits its e�ciency
to investigate the impact of variability (both structural a nd aerodynamic) on the aeroe-
lastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled
with the structural equations and is validated against time marching analyses. Polynomial
chaos expansions are employed for the stochastic investiga tion as a faster alternative to
Monte Carlo analysis. Adaptive sampling is employed when di scontinuities are present.
Uncertainties in aerodynamic parameters are looked at �rst followed by the inclusion of
structural variability. Results show the nonlinear e�ect o f Mach number and it's interac-
tion with the structural parameters on supercritical LCOs. The bifurcation boundaries are
well captured by the polynomial chaos.

Nomenclature

Latin symbols
D Harmonic Balance operator
M Mach number
L n L2 norm of residual
NH number of harmonics in Fourier expansion
R CFD ux residual
t time
U velocity
Vs velocity index
W vector of conserved ow variables
Y pitch/plunge displacements and velocities

Greek Symbols
� air density
� pseudo time
! fundamental solution frequency

Subscripts and Superscripts
() � in pitch dof
()h in plunge dof
() s state-space matrix
()0 reference value
()1 free-stream value
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I. Introduction

Flutter testing is a crucial stage in the design of an aircraft; however, ight testing can be both costly and
dangerous. Hence simulation is becoming more inuential in the designand certi�cation of modern aircraft.
Due to the range of ow conditions experienced within the ight envelope and the intrinsic variability
associated with the manufacture of an aircraft, the need for stochastic analysis in the computational model
is clear.1

Marqueset al demonstrated that structural variability can have a signi�cant imp act on the utter predic-
tions of various transonic wing and aircraft con�gurations.2, 3 When nonlinearities are present, the amplitude
of oscillations can become limited and limit cycle oscillations (LCO) are observed. This is a problem of con-
siderable practical interest and is well documented forin-service aircraft. 4, 5

The presence of nonlinearities, either structural or aerodynamic, poses additional challenges both in
terms of complexity and computational resources, these requirements can be exacerbated by the need for
probabilistic analysis. Hence, to address this issue, a Harmonic Balance (HB) based method is implemented
for the LCO simulation. The HB method can o�er over one order of magnitude reduction in computational
e�ort when compared against time domain methods.5{8 An overview of di�erent variations of the Harmonic
Balance method, such as high-dimensional, incremental, or elliptic HB methods is given by Dimitriadis.9

Here the HB CFD solver is based on the Euler equations and follows thehigh-dimensional HB formulation
developed by Hallet al.10 The CFD-CSD coupling is performed through the communication of aerodynamic
forces and structural displacements between the CFD solver andstructural equations. The probabilistic
analysis is based on non-intrusive polynomial chaos expansions (PCE) which o�er an attractive technique
for uncertainty quanti�cation at a reduced cost with respect to M onte Carlo analysis.11 PCE has been
successfully applied to aeroelastic problems including the uncertainty quanti�cation of LCO predictions. 12, 13

In this work, a description of the CFD ow solver and aeroelastic equations of motion is presented.
Following this the implementation of the Harmonic Balance method is described. The HB formulation is
applied in conjunction with the PCE to investigate the stochastic response of a 2dof aerofoil when subject to
uncertainties in aerodynamic and structural parameters. Results consist of:- �rstly, aerodynamic parameters
are investigated such as velocity and altitude, secondly, structural variability is included in a variety of forms.

II. Harmonic Balance CFD Flow Solver

II.A. Flow equations

The ow solver used in this work follows that described by Yao and Marques.14 Consider the semi-discrete
form of the three-dimensional Euler equations:
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Equation (1) is solved by marching forward in time implicitly by solving the discrete nonlinear set of equa-
tions:

W n +1 � W n

� t
= � R

�
W n +1 �

(3)

with the residual at the next time step, R n +1 approximated by linearisation with respect to time, t:

R n +1 � R n +
@R
@W

� W (4)
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where � W = W n +1 � W n . The convective ux terms contained in the residual, R are discretised using a
Roe ux function 15 and MUSCL extrapolation16 to achieve 2nd order accuracy with a Van Albada limiter in
place to ensure monotonic solutions around shock waves.17 The solution of eq. (3) is found using aLUSGS
scheme.18

II.B. Harmonic Balance Formulation

The implementation of the HB is described by Woodgate and Badcock19 and is summarised next. Consider
the semi-discrete form of eq. (1) as a system of ordinary di�erential equations:

I (t) =
dW (t)

dt
+ R (t) = 0 (5)

Assuming periodicity, the solution, W and residual, R of eq. (5) can be represented as truncated Fourier
series with NH harmonics and a fundamental frequency! .

W (t) � Ŵ 0 +
N HX

n =1

(Ŵ 2n � 1 cos(n!t ) + Ŵ 2n sin(n!t )) (6)

R (t) � R̂ 0 +
N HX

n =1

(R̂ 2n � 1 cos(n!t ) + R̂ 2n sin(n!t )) (7)

Likewise, eq. (5) can also be expressed as a Fourier series as:

I (t) � Î 0 +
N HX

n =1

(Î 2n � 1 cos(n!t ) + Î 2n sin(n!t )) (8)

The orthogonality of the Fourier series allows thebalancing of individual harmonics leading to:

Î 0 = R̂ 0 = 0 (9)

Î 2n � 1 = !n Ŵ 2n + R̂ 2n � 1 = 0 (10)

Î 2n = � !n Ŵ 2n +1 + R̂ 2n = 0 (11)

This is a system of 2NH + 1 equations and can conveniently be expressed in matrix form:

! A Ŵ + R̂ = 0 (12)

whereŴ and R̂ are the vectors of Fourier coe�cients. A can be found in reference.7 To avoid to expressing
the Fourier coe�cients in R̂ as functions ofŴ the system is cast back into the time domain as proposed by
Hall et al.10 The Fourier coe�cients are related to time domain solutions using a constant transformation
matrix which yields:

Ŵ = EW hb R̂ = ER hb (13)

whereW hb and R hb represent the ow variable and residual values at 2NH + 1 discrete, equally spaced time
intervals over one temporal period. The transformation matrix, E is also found in reference.7 Substituting
the terms in eq. (13) into (12) and pre-multiplying by E � 1 yields:

! DW hb + R hb = 0 (14)

where D = E � 1AE , the elements inD can be de�ned as:

D i;j =
2

2NH + 1

N HX

k=1

�
k sin

�
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2NH + 1

��
(15)

A pseudo time derivative term is added to allow eq. (14) to be pseudo time-marched to convergence:

dW hb

d�
+ ! DW hb + R hb = 0 (16)

As mentioned earlier aLUSGS scheme is employed in this work. Note that the Fourier coe�cients still can
be obtained by pre-multiplying solution vector by the transformatio n matrix, E and the ow �eld at any
discrete time point throughout the oscillation period can be found by reconstructing the Fourier series and
evaluating it for the desired time value.
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III. Aeroelastic Formulation

The equations of motion for a pitch/plunge aerofoil system with no damping as described by Yao and
Marques14 can be expressed as:
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Equation (17) can be transformed into state-space form:
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Applying the Harmonic Balance formulation to Eq. (18) gives:

! DY hb � (A sY hb + B sF) = 0 (19)

where D is the same HB operator as described before. Again, as in eq. (16) pseudo time marching is used
to solve eq. (19):

dY hb

d�
+ ! DY hb � (A sY hb + B sF) = 0 (20)

Equation (16) together with eq. (20) represent the nonlinear coupled aeroelastic system. When solving the
aeroelastic system of equations, at each iteration, the generalised aerodynamic forces are computed using eq.
(16), which will feed into eq. (20). The solution from eq. (20) will provide new generalised displacement and
grid velocities to eq. (16). To �nd the LCO condition, eq. (20) is solved for a given combination of [!; f ],
then transfer the displacements back to the uid system. The frequency is updated by minimising the L2
norm of the residual of eq. (20), using the following expression:

@L n

@!
=

�
! DY hb �

@F
@!

� T

[! DY hb � (A sY hb + B sF)] (21)

where @L n =@! is the derivative of the L2 norm with respect to the frequency,! . The frequency is updated
every ni iterations. This reduces the amount of expensive computations ofthe derivative term, @F=@!thus
reducing the computational cost.

IV. Results

IV.A. HB Validation

For validation of the HB solver, comparisons were made against the time domain solutions presented by
Yao and Marques.14 Figure 1 shows the performance of the aeroelastic HB solver with di�erent numbers of
harmonics. Three harmonics are needed to accuracy replicate thetime domain result, however one harmonic
gives a reasonable approximation of the response and is employed throughout the remainder of this work.
The behaviour in Fig. 1 represents supercritical LCO growth and is observed with increasingVelocity Index
which is given by:

Vs =
U1

b! �
p

�
(22)

The de�nition of the Velocity Index relates both aerodynamic and structural properties of the problem and
the response of the system when changed depends on what components within eq. (22) remain constant. In
this case the supercritical LCO is generated by a change in naturalfrequency in the pitch dof, ! � . For the
remainder of this work, we consider the highest amplitude point in Fig. 1 as the deterministic case which
uncertainty is imposed ie. ! � remains constant. The input parameters for this deterministic condition are
shown in Table 1.
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(a) LCO pitch amplitude vs. Velocity index
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Figure 1. Comparison of HB and time marching solutions at Mach no. = 0.8

Table 1. Deterministic parameters

Parameter Value

Static unbalance, x � 0:25
Radius of gyration about elastic axis,r �

2 0:75
Distance from elastic axis to centre chord,ah =b � 0:6
Frequency ratio, ! h =! � 0:5
Mach number, M 0:8
Speed of sound 340:294
Mass ratio, � 75
Velocity index, Vs 0:8

IV.B. Aerodynamic Variability

Uncertainty in the airow can have a signi�cant impact on the moveme nt of the aerofoil. Here we consider
two aerodynamic parameters:- the density and the Mach number/velocity. Uniform distributions are applied
to all uncertain parameters and 5th order polynomial chaos expansions using 82 samples are used. Figures
2(a) and 2(b) shows the e�ects of a� 10% variation in free-stream density and Figs 2(c) and 2(d) show a
� 1% variation in Mach number/velocity. Results for plunge are not shown in this work as they follow the
same trends as the results for pitch.

The changes in density scale the aerodynamic forces acting on the aerofoil but do not a�ect the ow-
features. As a result, an almost linear relationship between amplitude and density is exhibited, a � 10%
change in density induces a similar change in LCO amplitude,+9 :70%

� 8:23% on the deterministic amplitude of
2:427� . When Mach number is varied, a much greater change in amplitude is observed. A � 1% variation
produces a +35 :8%

� 61:2% e�ect on amplitude emphasising how sensitive the aeroelastic interaction is to Mach
number. The decrease in amplitude caused by an increase in Mach number is counter-intuitive; as the Mach
number increases, the shock wave shifts backwards and changesthe position of centre of force with respect
to the elastic axis of the aerofoil, this changes the pitching moment and increases the stability of the aerofoil
in a quadratic manner. The growth and translation of the shock wave is visible in Fig. 3.

As the density does not change the aerodynamic forces in a nonlinear manner only the Mach number will
be considered when the structural variability is introduced.
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