Optimal Power Allocation for Multiuser Secure Communication in Cooperative Relaying Networks

Published in:
IEEE Wireless Communications Letters

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen’s academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Optimal Power Allocation for Multiuser Secure Communication in Cooperative Relaying Networks

Trung Q. Duong, Tiep M. Hoang, Chinmoy Kundu, Maged Elkashlan, and Arumugam Nallanathan

Abstract—We consider a cooperative relaying network in which a source communicates with a group of users in the presence of an eavesdropper. We assume that there are no source-user links and the group of users receive only retransmitted signal from the relay. Whereas, the eavesdropper receives both the original and retransmitted signals. Under these assumptions, we exploit the user selection technique to enhance the secure performance. We first find the optimal power allocation strategy when the source has the full channel state information (CSI) of all links. We then evaluate the security level through i) ergodic secrecy rate and ii) secrecy outage probability when having only the statistical knowledge of CSIs.

Index Terms—Physical layer security, secrecy capacity, decode-and-forward, best user selection.

I. INTRODUCTION

Physical layer security has emerged and attracted the attention of communication society widely over the past decades. To deal with the leakage effect, many efforts to guarantee the security of cooperative networks have been made so far. Particularly, selection techniques are studied for the purpose of selecting suitable nodes in order to perform effective and safe transmission. Such selection techniques can be relay selection [1], jamming selection [2], [3], antenna selection [4], and user selection [5]. In general, such diverse selection techniques have been widely studied in literature.

Among the aforementioned techniques, user selection is an appropriate scheme for multiuser communications [5]. It exploits cooperative users to capture the cooperative diversity from a user group and enhance system security. We thus employ the user selection technique for choosing the best link among all links from a single relay to multiple users. Compared to closely previous related works, the differences are major, for example [5] exploited the user selection technique but did not discuss the source-eavesdropper link; while [6] did not discuss the impact of multiple users although the model is similar to ours. In contrast, we consider a severe scenario with the existence of source-eavesdropper link but no source-user link. We note that the signals transmitted by S and R are intercepted by E. Moreover, we assume that the CSI of kD as well as that of E is available at S and R. Herein, the availability of the CSI of E is a commonly used assumption when E is an active user of the system and not the intended destination for confidential messages [3], [4].

The channel between X ∈ {S, R} and Y ∈ {R, kD, E} (with Y ̸= X) is assumed to suffer from block Rayleigh fading with the channel gain h_{XY} ∼ CN(0, \Omega_{XY})^1. Let γ_{XY} denote the instantaneous signal-to-noise ratio (SNR) at Y for the signal transmitted by X. Then, we have γ_{XY} = \frac{P_X}{\sigma_Y^2} |h_{XY}|^2 \sim \text{Exp}\left(\frac{P_X}{\Omega_{XY}}\right)^2 with P_X being the transmit power at X and N_Y being the additive white Gaussian noise at Y. By normalizing N_Y (i.e., N_Y = 0 dB), P_X can be understood as a replacement for \frac{P_X}{\Omega_{XY}}. As such, in the first time slot, we have γ_{SR} ∼ \text{Exp}(\tau_{SR}) and γ_{SE} ∼ \text{Exp}(\tau_{SE}) where \tau_{SR} = P_S\Omega_{SR} and \tau_{SE} = P_S\Omega_{SE}. Similarly, in the second time slot, we have γ_{RK} ∼ \text{Exp}(\tau_{RD}) and γ_{RE} ∼ \text{Exp}(\tau_{RE}) where \tau_{RD} = P_R\Omega_{RD} and \tau_{RE} = P_R\Omega_{RE}.

B. User Selection Criterion

In this paper, the best user link selection is proposed, in which the destination corresponding to \max_k \{γ_{RK}\} is selected.

1CN(0, \Omega) denotes a complex Gaussian variable with zero-mean and variance \Omega.

2\text{Exp}(m) denotes the exponential distribution with mean m.
for receiving the signal retransmitted by R. We use $k^*\text{D}$ to denote the selected/strongest D corresponding to the index $k^* = \max_k \gamma_{Rk}$. The instantaneous SNR for the R-$k^*\text{D}$ channel is therefore $\gamma_{Rk^*} = \max_k \gamma_{Rk}$.

Proposition 1. The CDF and PDF of γ_{Rk^*} can be, respectively, given by

$$F_{\gamma_{Rk^*}}(\gamma) = \left(1 - e^{-\gamma/\bar{\gamma}_{RD}}\right)^K = 1 - \sum_{k=1}^K e^{-(k/\bar{\gamma}_{RD})\gamma},$$

$$f_{\gamma_{Rk^*}}(\gamma) = dF_{\gamma_{Rk^*}}(\gamma)/d\gamma = \sum_{k=1}^K e^{-(k/\bar{\gamma}_{RD})\gamma}(-1)^{k-1}(\gamma).$$

(2)

where $\sum_k \gamma_k \triangleq \sum_{k=1}^K (1/\gamma_{RD})^{(-1)(k)}$.

III. INSTANTANEOUS SOURCE POWER ALLOCATION STRATEGY

In this section, we examine the instantaneous source power which maximizes the SR. It should also be noted that the SR is the difference between the capacity of the desired link and that of eavesdropping link. Thus, for realistic scenarios, we only consider the worst-case scenario where E is able to maximize the probability of successful eavesdropping.

The selected $k^*\text{D}$ only receives the signal retransmitted by R, the end-to-end capacity of the channel from S to $k^*\text{D}$ with the help of R is given by

$$C_{k^*} = (1/2) \log_2 (1 + \min \{\gamma_{SR}, \gamma_{Rk^*}\}).$$

(3)

While E receives both versions of x, the end-to-end capacity of the channel from S to E with the help of R is given by

$$C_E = (1/2) \log_2 (1 + \min \{\gamma_{SR}, \gamma_{SE} + \gamma_{RE}\}).$$

(4)

For the sake of convenience, we let $X \triangleq \min \{\gamma_{SR}, \gamma_{Rk^*}\}$ and $Y \triangleq \min \{\gamma_{SR}, \gamma_{SE} + \gamma_{RE}\}$.

We assume that CSIs of all channels are perfectly known (full CSIs). The instantaneous SR of the system can be defined as [6]

$$C_{\Delta} = |C_{k^*} - C_E|^+ = (1/2) \log_2 ((1 + X)/(1 + Y))^+$

(5)

where $[x]^+ = \max(0, x)$. We now consider finding the optimal transmit power P_N that maximizes the SR given the maximum transmit power P_{max} at S. Thus our SR maximization problem can be formulated as follows:

$$(\text{P1})$$ maximize $0 < P_S \leq P_{\text{max}}$

subject to $0 < P_R \leq P_{\text{max}}$,

$X = \min \{\gamma_{SR}, \gamma_{Rk^*}\}$,

$Y = \min \{\gamma_{SR}, \gamma_{SE} + \gamma_{RE}\}$.

Let us label event X as $X = \gamma_{SR} \iff |h_{SR}|^2 P_S \leq |h_{RE}|^2 P_R$, event Y as $Y = \gamma_{SR} \iff |h_{SE}|^2 P_S \geq (|h_{SR}|^2 - |h_{SE}|^2) P_S$, and event Z as $|h_{SR}|^2 \leq |h_{SE}|^2$ respectively. In contrast, X, Y, and Z denote events $X = \gamma_{Rk^*}$, $Y = \gamma_{SE} + \gamma_{RE}$, and $|h_{SR}|^2 > |h_{SE}|^2$ respectively.

Likewise, we label event M as $P_{\text{max}} \geq |h_{Rk^*}^2 P_R \triangleq P_M$ and event N as $P_{\text{max}} \geq |h_{SE}^2 - |h_{SR}|^2 P_S \triangleq P_N$ respectively. While M, N denote events $P_{\text{max}} < P_M$ and $P_{\text{max}} < P_N$ respectively.

Once events are coupled together, new joint events arise. For the sake of convenience, we provide Tables I and II, which present the new joint conditions below.

TABLE I

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>$0 \leq P_S < P_{\text{max}}$</td>
</tr>
<tr>
<td>$0 < P_M < P_{\text{max}}$</td>
<td>$0 \leq P_S < P_{\text{max}}$</td>
</tr>
<tr>
<td>Y</td>
<td>$0 \leq P_N < P_{\text{max}}$</td>
</tr>
<tr>
<td>$0 \leq P_S < P_{\text{max}}$</td>
<td>$0 \leq P_S < P_{\text{max}}$</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Z</th>
<th>Z and N</th>
<th>Z and N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>$0 \leq P_S < P_{\text{max}}$</td>
<td>$0 \leq P_N \leq P_{\text{max}}$</td>
</tr>
<tr>
<td>$0 \leq P_N < P_{\text{max}}$</td>
<td>$0 \leq P_S < P_{\text{max}}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Scenario 1 ($X \cap Y)$: The objective function becomes $U(P_S) = \frac{1}{1 + \gamma_{SR}}$, which leads to $C_{\Delta} = 0$ regardless of P_S and P_R. It reveals that if any transmission is performed, it is not effective. Thus, S should not transmit signal, i.e., $P_S^{(1)} = 0$.

2) Scenario 2 ($X \cap \gamma$): The objective function becomes

$$U(P_S) = \frac{1}{1 + \gamma_{SR} + \gamma_{RE}}.$$

The first order derivative of $U(P_S)$ is then shown as $\frac{\partial U(P_S)}{\partial P_S} = \frac{\gamma_{RE} h_{RE}^2 \gamma_{SR}^2 + h_{SE}^2 h_{SE}^2 - |h_{SR}|^4}{(1 + |h_{SR}|^2)^2}$.

Thus, $U(P_S)$ is a monotonically non-decreasing function when

$$(|h_{SE}^2 - |h_{SR}|^2)|/|h_{SR}|^2 P_S \leq P_R.$$

Moreover, from Tables I and II we can see that the joint event $X \cap \gamma$ occurs if and only if the event X, Y, and N occur simultaneously. Due to $Z \Rightarrow |h_{SR}|^2 > |h_{SE}|^2$ and $0 \leq P_R$, the condition (6) is always true. In this case, $U(P_S)$ is always monotonically non-decreasing, thus P_S should be allocated its largest possible value. Looking back to Tables I and II, we deduce that the optimal value of P_S, i.e., P_S^{opt}, is divided into two cases: i) If the event $M \cap \gamma$ occurs, then $P_S^{opt} = P_M$; ii) If the event $M \cap \gamma$ occurs, then $P_S^{opt} = P_{\text{max}}$. In other words, the optimal transmit power in this scenario is given by

$P_S^{(2)} = \min \{P_M, P_{\text{max}}\}$.

3) Scenario 3 ($X \cap \gamma$): The objective function becomes $U(P_S) = \frac{1}{1 + |h_{SR}|^2}$, which decreases inversely with P_S. Thus, $U(P_S)$ gets maximum when P_S reaches its minimum. Using Tables I and II, we can readily find that the optimal transmit power in the scenario $X \cap \gamma$ is given by $P_S^{(3)} = \max(0, P_M)$.

4) Scenario 4 ($X \cap \gamma$): The objective function becomes $U(P_S) = \frac{1}{1 + |h_{SR}|^2}$, which decreases inversely with P_S. Similar to the scenario $X \cap \gamma$, we can find the optimal transmit power by using Tables I and II, that is $P_S^{(4)} = \max \{P_M, P_{\text{N}}\}$.

The end-to-end capacity of the channel from S to E with the participation of R originates from the formulation of the mutual information associated with Protocol II in [7]. A summary of this formulation is as follows: Let r_1 and r_2 be the transmission rates over the first and second time slots, respectively. Firstly, for successful decoding at R, the constraint (C1), i.e., $r_1 \leq \log_2 (1 + \gamma_{SR}) \triangleq r_{\text{max}}^\gamma$, needs to be satisfied. Secondly, the three nodes (S, R, E) form a multiple-access channel (MAC) [8], [9] in which E is the common receiver/eavesdropper, thus there are three constraints on r_1, r_2, and $r_1 + r_2$ for successful decoding at E. These three constraints, however, can be further shortened to the constraint (C2), i.e., $r_1 \leq \log_2 (1 + \gamma_{SE} + \gamma_{RE}) \triangleq r_{\text{max}}^\gamma$, because S is silent during the second time slot ($r_2 = 0$). Finally, combining (C1) with (C2) and using the fact that transmission occurs over two time slots, (4) can be easily deduced from [7].
Finally, the constraint $0 < P_S \leq P_{\text{max}}$ of (P1) is equivalent to $P_S \in \left\{ P_S^{(i)} \mid i = 1, 2, 3, 4 \right\}$, i.e.,

(P1) \quad \text{maximize} \quad \begin{array}{l}
0 < P_S \leq P_{\text{max}} \\
U(P_S)
\end{array}
\iff (P2) \quad \text{maximize} \quad \begin{array}{l}
P_S \in \left\{ P_S^{(i)} \mid i = 1, 2, 3, 4 \right\} \\
U(P_S)
\end{array}

As such, (P2) can be readily solved by choosing the optimal $P_S^{(i)}$, $i \in \{1, 2, 3, 4\}$, so that $U(P_S^{(i)})$ is maximal.

IV. PERFORMANCE ANALYSIS

In this section, we evaluate the secure performance of our system model through two metrics: i) ergodic SR and ii) SOP. These two metrics are derived without requiring the knowledge of the instantaneous CSIs.

A. Ergodic Secrecy Rate

The ergodic SR in bits/s/Hz is given by

$$
(C) = (2 \ln 2)^{-1} E_{\gamma_{SR}} \{ E_{Y|\gamma_{SR}} [\omega_1(y, \gamma) | \gamma_{SR} = \gamma] \}
$$

$$
= (2 \ln 2)^{-1} E_{\gamma_{SR}} \{ \omega_2(\gamma) \}
$$

(7)

where

$$
\omega_1(y, \gamma) \triangleq \int_0^\infty \left[\ln \left(1 + \frac{1 + x}{1 + y} \right) \right]^+ f_X|\gamma_{SR}(x|\gamma) dx,
$$

$$
\omega_2(\gamma) \triangleq \int_0^\infty \omega_1(y, \gamma) f_Y|\gamma_{SR}(y|\gamma) dy.
$$

(8)

The second equality of (7) follows from that $X|\gamma_{SR}$ and $Y|\gamma_{SR}$ are independent. Their distributions are respectively shown in Propositions 2 and 3.

Proposition 2. The CDF of $X|\gamma_{SR} = \min \{ \gamma_{SR}, \gamma_{RE} \mid \gamma_{SR} = \gamma \}$ is given by

$$
F_{X|\gamma_{SR}}(x) = \begin{cases}
F_{\gamma_{RE}}(x), & \text{if } x < \gamma \\
1, & \text{if } x \geq \gamma
\end{cases}
$$

(10)

It is noted that $X|\gamma_{SR}$ is a mixed random variable, thus its PDF can be calculated as [10, Chapter 3]

$$
f_{X|\gamma_{SR}}(x) = f_{\gamma_{RE}}(x) + [1 - f_{\gamma_{RE}}(\gamma)] \delta(x - \gamma),
$$

(11)

if $x \leq \gamma$, where $\delta(x - \gamma)$ is a Dirac delta function in x.

Proposition 3. Let $Y_0 = \gamma_{SE} + \gamma_{RE}$, then the CDF and PDF of Y_0 can be, respectively, given by

$$
F_{Y_0}(y) = 1 - \frac{(\gamma_{SE} - \gamma_{RE}) e^{-y/\tau_{SE}}}{\gamma_{SE} - \gamma_{RE}},
$$

(12)

$$
f_{Y_0}(y) = \left(e^{-y/\gamma_{SE}} - e^{-y/\gamma_{RE}} \right) \left(\gamma_{SE} - \gamma_{RE} \right)^{-1}.
$$

(13)

Let $Y|\gamma_{SR} = \min \{ \gamma_{SR}, Y_0 \mid \gamma_{SR} = \gamma \}$, we can obtain the CDF and the PDF of $Y|\gamma_{SR}$ by replacing γ_{RE} in (10)-(11) with Y_0.

Substituting (11) into (8) and using the sifting property of Dirac delta function, we have

$$
\omega_1(y, \gamma) = \sum_k e^{\frac{k}{\tau_{RD}}} \left[E_1 \left(\frac{k(1 + y)}{\tau_{RD}} \right) - E_1 \left(\frac{k(1 + \gamma)}{\tau_{RD}} \right) \right]
$$

(14)

Finally, we have

$$
\omega_1(y, \gamma) = \sum_k e^{\frac{k}{\tau_{RD}}} \left[E_1 \left(\frac{k(1 + y)}{\tau_{RD}} \right) - E_1 \left(\frac{k(1 + \gamma)}{\tau_{RD}} \right) \right]
$$

(14)

B. Secrecy Outage Probability

The SOP is given by

$$
P_{\text{out}}(\zeta) = P \{ C_{\Delta} \leq R \} = \int_0^\infty P(\gamma, \zeta) f_{\gamma_{SR}}(\gamma) d\gamma
$$

(17)

where $\zeta = 2^{2R} - 1$ and the term $P(\gamma, \zeta)$ is defined as

$$
P(\gamma, \zeta) \triangleq P \{ X - (\zeta + 1) Y \leq \zeta \mid \gamma_{SR} = \gamma \}
$$

$$
= \int_0^\infty F_{X|\gamma_{SR}} \left(\left(\zeta + 1 \right) y + \zeta \right)
\times \left[f_{Y_0}(y) + (1 - f_{Y_0}(\gamma)) \delta(y - \gamma) \right] dy
$$

(18)

where $f_{Y|\gamma_{SR}}(y|\gamma)$, along with $f_{Y_0}(y)$, is presented in Proposition 3. Combining (18) with (10), we then have two cases:

- If $0 \leq \gamma \leq \zeta$, we deduce from (10) that $F_{X|\gamma_{SR}} \left((\zeta + 1) y + \zeta \right) = 1$ and hence (18) becomes

$$
P(\gamma, \zeta) = F_{Y_0}(\gamma) + (1 - F_{Y_0}(\gamma)) = 1.
$$

(19)

- If $\zeta < \gamma < \infty$, we deduce from (10) that $F_{X|\gamma_{SR}} \left((\zeta + 1) y + \zeta \right) = 0$ and hence (18) becomes

$$
P(\gamma, \zeta) = F_{Y_0}(\gamma) \left(1 - F_{Y_0}(\gamma) \right)
$$

(18)

Finally, substituting (15) into (7) and using [11, Eq. (5.231.2)], we obtain the ergodic SR as shown at the bottom of the next page.
where

\[
\mathcal{J}(\gamma, \zeta) = \left[\frac{1}{\gamma_{SE}} - \frac{1}{\gamma_{RE}} \right]^{-1} \sum_k e^{-\frac{k}{\gamma_{RD}}} \times \left\{ 1 - e^{-\left(\frac{k(-\zeta)}{\gamma_{RD}} + \frac{\zeta - \gamma_{RD}}{\gamma_{SE}} \right)} \right\} \left[\frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SE}} \right]^{-1}
\]

Proceeding to analyze the integral (17) with the help of (19)–(20), we can rewrite (17) as

\[
P_{\text{out}}(\zeta) = 1 - I_1(\zeta) + I_2(\zeta)
\]

where

\[
I_1(\zeta) = \frac{1}{\gamma_{SR} + (\zeta + 1) \gamma_{SE} + (\zeta + 1) \gamma_{RE}},
\]

\[
I_2(\zeta) = \left[\frac{1}{\gamma_{SR}} - \frac{1}{\gamma_{RE}} \right]^{-1} \sum_k e^{-\left(\frac{k}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right)} \times \left\{ \frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SE}} \right\}^{-1}
\]

Proceeding to analyze the integral (18) with the help of (19)–(20), we can rewrite (18) as

\[
P_{\text{out}}(\zeta) = 1 - I_1(\zeta) + I_2(\zeta)
\]

where

\[
I_1(\zeta) = \left[\frac{1}{\gamma_{SE} - \gamma_{RE}} \right]^{-1} \sum_k e^{-\left(\frac{k}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right)} \times \left\{ \frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SE}} \right\}^{-1}
\]

\[
I_2(\zeta) = \left[\frac{1}{\gamma_{SR}} - \frac{1}{\gamma_{RE}} \right]^{-1} \sum_k e^{-\left(\frac{k}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right)} \times \left\{ \frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SE}} \right\}^{-1}
\]

\[
I_3(\zeta) = \left[\frac{1}{\gamma_{SR}} - \frac{1}{\gamma_{RE}} \right]^{-1} \sum_k e^{-\left(\frac{k}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right)} \times \left\{ \frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SE}} \right\}^{-1}
\]

Fig. 1 shows the ergodic SR \(\langle C \rangle \) while Fig. 2 shows the SOP \(p_{\text{out}} \). In both figures, we use the same parameters \(\Omega_{SR} = 80, \Omega_{RD} = 50, \Omega_{RE} = 20, \Omega_{SE} = \{0, 10\}, \Omega_{RE} = \{10, 40\}, \) and \(K = \{5, 10\} \). These figures show that \(\langle C \rangle \) increases with \(K \), whereas \(p_{\text{out}} \) decreases inversely with \(K \). This observation reveals that the performance of the system can be improved as the number of users increases. In addition, if there is no direct link S-E (i.e., \(\Omega_{SE} = 0 \)), then \(\langle C \rangle \) reaches its peak at \(P_S = P_{\text{max}} \) and \(p_{\text{out}} \) gets minimum at \(P_S = P_{\text{max}} \) as well. However, this observation does not hold for the case of having direct link S-E (i.e., \(\Omega_{SE} \neq 0 \)).

VI. CONCLUSIONS

In this section, we provide some numerical results to validate analytical results. Unless specifically stated, we set parameters \(\frac{P_{\text{max}}}{N_0} = 40 \text{ dB} \) and \(\frac{P_0}{N_0} \approx 26.99 \text{ dB} \). Recall that \(\frac{P_0}{N_0} \) is considered as \(P_S \) due to \(N_0 \) being set to 0 dB.

\[
\langle C \rangle = (2 \ln 2)^{-1} \left(\frac{1}{\gamma_{SE}} - \frac{1}{\gamma_{RE}} \right)^{-1} e^{\gamma_{SR}} \sum_k e^{-\left(\frac{k}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right)} \times \left\{ \frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SE}} \right\}^{-1}
\]

\[
- \left(\frac{1}{\gamma_{SE}} e^{\gamma_{RE}} \left(\frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right) \right) e^{\gamma_{SE}} \left(\frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right) - E_1 \left(\frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right)
\]

\[
+ \left(\frac{1}{\gamma_{SE}} e^{\gamma_{RE}} \left(\frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right) \right) e^{\gamma_{SE}} \left(\frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right) - E_1 \left(\frac{1}{\gamma_{RD}} + \frac{1}{\gamma_{SR}} \right)
\]

REFERENCES

