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Modeling Nonlinear Wave Digital Elements
using the Lambert Function

Alberto Bernardini, Student Member, IEEE, Kurt J. Werner, Student Member, IEEE,
Augusto Sarti, Senior Member, IEEE, Julius O. Smith III, Member, IEEE

Abstract—A large class of transcendental equations involving
exponentials can be made explicit using the Lambert W function.
In the last fifteen years, this powerful mathematical tool has been
extensively used to find closed-form expressions for currents or
voltages in circuits containing diodes. Until now almost all the
studies about the W function in circuit analysis concern the
Kirchhoff (K) domain, while only few works in the literature
describe explicit models for diode circuits in the Wave Digital
(WD) domain. However explicit models of NonLinear Elements
(NLEs) in the WD domain are particularly desirable, especially
in order to avoid the use of iterative algorithms. This paper
explores the range of action of the W function in the WD domain;
it describes a procedure to search for explicit wave mappings,
for both one-port and multi-port NLEs containing diodes. WD
models, describing an arbitrary number of different parallel
and anti-parallel diodes, a transformerless ring modulator and
some BJT amplifier configurations, are derived. In particular,
an extended version of the BJT Ebers–Moll model, suitable for
implementing feedback between terminals, is introduced.

Index Terms—NonLinear Wave Digital Filters, Lambert Func-
tion, Diodes, Virtual Analog.

I. INTRODUCTION

WAVE Digital Filter (WDF) theory was introduced by
A. Fettweis [1] in the early 70s as a method for

designing digital filters through the discretization of analog
circuits. A WDF is the result of a linear mapping of circuit port
variables in the Kirchhoff (K) domain (voltages and currents)
onto variables in the Wave Digital (WD) domain (incident
and reflected waves). The presence of reactive components
in the circuit also requires a bilinear transformation (from
the Laplace domain to the Z domain) in the discretization
process. In compliance with circuit theory, components are
thought of as connected to each other through ports. A port
in the K domain is characterized by a pair of signals (current
I and voltage V , respectively). In the WD domain a port is
described by a different pair of wave signals (incident wave
a and reflected wave b, respectively). The mapping from a K
pair onto a WD pair is, in fact, linear and invertible:

a = V + IR0 , b = V − IR0︸ ︷︷ ︸
K–WD

, V = a+b
2 , I = a−b

2R0︸ ︷︷ ︸
WD–K

, (1)
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where R0 is a (non-zero) free parameter called “reference port
resistance”. Modeling WD networks requires balancing such
free parameters in a port-wise fashion, in order to avoid delay-
free loops and make the implementation computable.

Despite the initial motivations, the interest in WDF theory
has kept steadily strong throughout the decades, as it pro-
gressively shifted from filter design to circuit emulation, with
numerous new applications to sound synthesis through physi-
cal modeling [2] and virtual analog modeling [3]. In the WD
domain we can closely simulate the behavior of a reference
circuit in a modular and efficient fashion. Moreover, unlike
classical circuit simulation tools such as SPICE, WDFs ensure
that many of the good properties of the analog reference circuit
will be preserved. For example, passivity and losslessness of
analog circuits are preserved by their WD implementation [4].
Furthermore, the behavior of a WD implementation will be
insensitive to the quantization of coefficients. This means that
a WD implementation will be able to offer a good dynamic
range with modest accuracy requirements. In addition, the
sensitivity properties of WD implementations also guarantee
stability under mild conditions, producing structures that tend
to exhibit neither limit cycles nor zero-input parasitic oscilla-
tions [5]. Finally, this inherent robustness makes working in
the WD domain particularly suitable for interactive real-time
applications, where model parameters are altered on the fly,
as opposed to the off-line simulations performed by SPICE.
Moreover, parameter update turns out to be easier using WD
Structures (WDSs) w.r.t. other physical modeling approaches
developed for real-time applications, such as the nonlinear
state-space formulation, as discussed in [6]. As an example
of the major complexity of parameter update using nonlinear
state-space systems we refer to [7]. Originally conceived for
modeling a linear circuit, WDF theory turned out to be suitable
also for describing circuits containing NonLinear Elements
(NLEs) without and with memory [8], [9]. In particular,
relevant examples of nonlinear circuits in the WD domain for
virtual analog applications involve diodes [10]–[13], vacuum
tubes [14]–[17], BJTs [18], [19] as well as transformers [20].

Most classical WD implementations are tree-like structures
(e.g., Binary Connection Tree [21]). The leaves of such trees
are one-port linear elements, while the nodes are adaptors.
There are also some circuits that exhibit special interconnec-
tion topologies resulting in WDSs that are not binary-tree-like.
Such cases can be addressed using SPQR graph decomposition
[19], [22]–[24], which remaps the WDS into a tree through the
introduction of special (R-type) nodes. One inherent weakness
of WDSs is that they can only accommodate one NLE at a
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time (see [21]), which must be placed at the root of the tree.
Some strategies for overcoming this limitation are described in
[3] and consist, for example, of consolidating the NLEs of the
reference circuit into a single multi-port NLE. A first example
of application of this approach is presented in [17]. The
implementation of WD multi-port NLEs, however, very often
requires the solution of multidimensional systems of implicit
equations, which are very hard to turn into a set of explicit
WD equations. A possible remedy, adopted in [17], consists
of iteratively finding a solution of the system of equations at
every time step. This solution, however, is rather demanding
from the computational standpoint, and the convergence of
these iterative methods might raise some issues, particularly
as the dimensionality of the solution space increases. For these
reasons, explicit equations describing the NLE are generally
preferable. One method that goes in this direction is proposed
in [18] and is based on a piecewise linear approximation of the
consolidated NLE. In this work we take a completely different
route, seeking exact solutions for a specific class of NLEs.

In circuit theory, there exists a wide class of nonlinearities
that exhibits an exponential behavior (e.g., diodes). A good
property of many exponential equations is that they can be
explicitly solved using the Lambert W function [25]. Banwell
and Jayakumar [26] first exploited this property by finding
a closed-form expression for the current that passes through
a diode in series with a resistance and a voltage generator.
Banwell also derived explicit solutions for currents in some
circuits containing BJTs [27]. In the WD domain the W
function was used in [11] to find a wave mapping of a one-
port NLE representing the Shockley diode model. In this
manuscript we start from Banwell’s approach and explore
its applicability to WD circuit models. With this purpose in
mind, we define a new family of multi-port exponential NLEs
characterized by explicit wave mappings.

Section II defines the W function and focuses on its use in
the analysis of diode circuits. Section III describes a procedure
for deriving explicit wave mappings of one-port exponential
NLEs and presents a new WD model of an arbitrary bank of
different parallel and anti-parallel diodes. Section IV extends
the procedure of Section III to the multi-port case, by introduc-
ing a new type of port that is necessary for modeling multi-
port elements. We then present a new family of multi-port
exponential NLEs and describe some Simplified Models that
are useful to widen the class of implementable circuits. Section
V presents some examples of application focused on, but not
limited to, audio circuitry, such as the asymmetrical electrical
damper (used in envelope generation), the ring modulator
(a common audio effect) and three configurations of BJT
amplifiers. In particular we introduce an extended version
of the Ebers–Moll model of the BJT, which is suitable for
implementing the feedback between terminals. Section VI
concludes this paper.

II. LAMBERT FUNCTION BACKGROUND IN DIODE
CIRCUITS ANALYSIS

The so called Lambert function W (z) is a well known set of
functions of the complex variable z [25], which is implicitly

defined by the exponential equation

z = W (z)eW (z) ∀z ∈ C . (2)

In this work we will restrict the domain of the W function,
turning z into a real variable x, so that also W (x) becomes
real. In particular we will exploit an application of the W
function proposed in [25], which allows us to find an explicit
solution of exponential equations of the form

pθy+β = cy + d (3)

with p > 0, c, θ 6= 0, d and β real parameters and y a real
variable. These equations, in fact, can be solved in closed form
with respect to the variable y as

y = −W (− θ ln pc pβ−
�d
c )

θ ln p
− d

c
. (4)

For the evaluation of W (x) we suggest the same iterative
approach mentioned in [11] and described in [28], as it is
suitable for real time circuit simulation purposes. According
to such approach we can write

Wk+1(x) =


ln x
Wk(x)

if x ≥ e

xe−Wk(x) if x < e

(5)

where Wk+1(x) is an improved solution w.r.t. Wk(x) and
k = 0, 1, 2 . . . is the iteration index. The initial values W0(x)
can be precisely computed using mathematical softwares, e.g.
MATLAB or Mathematica, and then tabulated in a lookup
table with the needed granularity. This iterative approach
provides high flexibility in terms of computational complexity,
as the number of iterations can be adjusted in order to optimize
the trade-off between the desired accuracy and the available
computational time. A remarkable advantage in using W (x)
in exponential circuit models is that we can use the same
lookup table for many different nonlinearities, minimizing the
required storage resources.

A. Applications in the K Domain

The W function made its first appearance in circuit theory
with the work of Banwell and Jayakumar [26], which derived a
closed-form expression of the current flowing through a diode
connected to a voltage source VE and a series resistance RE ,
as in Fig. 4(a). In the Shockley model the relationship between
diode current I and voltage V is

I = Is

(
e
V
�Vt − 1

)
(6)

where e is Napier’s number, Vt is the thermal voltage, η is the
ideality factor and Is is the saturation current of the diode.
The problem approached in [26] was finding a closed-form
expression for the current I , which satisfies both the Shockley
model (6) and the K law V = VE −REI . The solution

I =
ηVt
RE

W

(
IsRE
ηVt

e
VE+REIs

�Vt

)
− Is , (7)

proposed in [26], is usually referred to as Generalized Diode
Equation (GDE). This result was later extended by Banwell
by considering VE and RE as a generic resistive Thévenin
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RE

D1 DNVE

Fig. 1. Multi-exponential
Junction Model.

!1RE !NRE

VE

DND1

Fig. 2. Alternative Multi-exponential Junc-
tion Model.

equivalent [27]. He considered some BJT circuits, whose
linear parts can be reduced to Thévenin equivalents, and found
analytical solutions.

The study of circuits with diodes is quite common in the
photovoltaic field, as the typical models for ideal solar cells
involve a parallel bank of diodes, representing the silicon
p–n junction, in parallel with a current source. In order to
describe real solar cells, a series resistance and a parallel shunt
resistance are often added to the model. This is, therefore, one
case where the GDE can be put into use. The GDE was, in
fact, applied to the solar cell model in [29] and an explicit
solution for the current passing through a single exponential
junction with a parasitic series and two parasitic parallel shunt
resistances was found. Following these results, techniques for
estimating solar cell parameters exploiting the W function
[30]–[32] were developed. New analytical methods for extract-
ing diode parameters [33], [34] were proposed shortly after.

Real semiconductor p–n junctions, are known to exhibit
multiple simultaneous conduction mechanisms, usually de-
scribed with multi-exponential models, characterized by a
parallel bank of diodes with different ideality factors and
saturation currents as shown in [35], [36]. In these works the
junction model with N conduction mechanisms presented in
Fig. 1 is approximated by the alternative model in Fig. 2. The
global Thévenin resistance RE is replaced by N individual
series resistances λnRE being 1 ≤ n ≤ N . λn are positive
real parameters that must be tuned carefully in order to obtain
the best approximation. The alternative model is equivalent to
the original one only if all the diodes are identical and we
set λn = N for each branch. In the other cases, however,
we can still obtain good approximations. Using the alternative
model, an exact closed-form solution for the currents passing
through the diodes can be found [35], [36]. The resistances
λnRE allow us to compute the currents passing through each
individual branch using the GDE (7). The individual currents
can then be summed in order to find the explicit global solution

I =

N∑
n=1

ηnVt
λnRE

W

(
IsnλnRE
ηnVt

e
VE+�nREIsn

�nVt

)
− Isn . (8)

B. Applications in the WD Domain

Not much effort has been devoted to the development of
applications of the W function in the WD domain. In [11]
an explicit one-port WD version of the Shockley model (6) is
obtained substituting (1) in (6) and using the W function:

b = a+ 2R0Is − 2nVtW

(
R0Is
nVt

e
R0Is+a
nVt

)
. (9)

In addition, in [11] a one-port diode clipper model containing
two identical anti-parallel diodes is presented, where only one
of the two diodes is conducting at any time. This way the
port current can be approximated with the forward current
passing through the conducting diode, while ignoring the
reverse leakage current of the other diode. The resulting wave
mapping is

b = sgn(a)
(
|a|+ 2R0Is − 2nVtW

(
R0Is
nVt

e
R0Is+jaj
nVt

))
,

(10)
where sgn(a) is a function returning the sign of a and suggests
which diode is conducting. In [37] an improvement of this
model of the diode clipper is proposed. Both in [11] and in
[37] the diodes characterizing the NLE are assumed to be equal
(i.e., same ideality factor and saturation current). In this paper
we will discuss the more general case where diodes are not
necessarily identical.

III. EXPLICIT WD MODELS OF ONE-PORT NLES

In order to search for an explicit wave mapping that de-
scribes a one-port NLE containing exponentials, we can start
from its description in the K domain and then repurpose it
in the WD domain. One common way to do so is writing
the K port variables directly as (1), but often this substitution
leads to complicated systems to solve. One general procedure
for determining explicit wave mappings in a straightforward
fashion consists of three main steps. We first write the port
current, or the port voltage, as

I =
a− V
R0

, V = a−R0I . (11)

We then rearrange the system, searching an equation that fits
the general form (3) presented in [25]. The unknown variable
y can either be V or I , depending on how the substitution was
performed. If we succeed in turning the system in the form
(3), we obtain an explicit solution for y using (4). We can
finally compute the reflected wave using

b = 2V − a or b = a− 2R0I . (12)

When dealing with one-port NLEs we can often resort to
exploiting what we refer to as the “K Domain Analogy”
(KDA), which consists of replacing the circuit that the NLE
connects to with its Thévenin equivalent, and deriving from
this simplified representation the corresponding wave map-
ping. More specifically, if VE is the voltage generator of the
Thévenin equivalent and RE its series resistance, as shown
in Fig. 4, setting VE = a and RE = R0, the K equations
describing the one-port element in series to the Thévenin
equivalent become identical to (11). Therefore, if we already
have K equations expressing I or V of a one-port NLE in
series to a Thévenin equivalent, we could skip the first two
steps of the procedure and derive the correspondent wave
mapping, by simply setting VE = a, RE = R0 and then
using (12).

A. Derivation of the Diode Model using the KDA

Let us now apply the KDA to the same circuit that was
analyzed in [26]. Starting from the GDE (7), we derive an
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explicit equation, expressing the port voltage V as a function
of the incident wave a = VE and the reference port resistance
R0 = RE :

V = a− ηVtW
(
IsR0

ηVt
e
a+R0Is
�Vt

)
+R0Is . (13)

Finally, substituting (13) in (12), we obtain exactly the same
result presented in [11] (eq. (9)) while skipping all the algebra
needed in the second step of the procedure.

B. Parallel and Anti-Parallel Bank of Diodes Model

We apply the KDA to the multi-exponential model repre-
sented in Fig. 1, where the NLE is a parallel bank of N diodes.
As discussed in [35] and [36] we cannot compute the global
current I of the model in Fig. 1 with explicit equations, but we
can do it using the alternative model in Fig. 2. So starting from
equation (8), we easily derive the following wave mapping:

b = a− 2R0

∑N
n=1

[
ηnVt
λnR0

W

(
λnR0Isn
ηnVt

e
a+�nR0Isn

�nVt

)
− Isn

]
(14)

where ηn and Isn are the ideality factor and the saturation
current of the nth diode, R0 is the reference port resistance and
λn is its multiplicative factor relative to the nth branch. When
N = 1 and λ1 = 1, the scattering equation (14) coincides
with (9). Notice that this result could not have been obtained
by blindly applying the three-step-procedure described at the
beginning of this Section, as any of the terms that play the
role of y in eq. (3) are neither port currents nor port voltages.
In this case, in fact, the “y variables” are the currents passing
through each diode branch, which all contribute to the global
port current of the NLE. This, however, does not affect the
generality of the three-step-procedure as its validity relies on
the fact that R0 is split into N series resistances λnR0 to
begin with. Both a parallel bank of diodes, such as the one in
Fig. 1; and a parallel bank of diodes with a series resistance
in each branch, such as the one in Fig. 2; can be described in
the WD domain by the wave mapping (14).
Combining eq. (14) with eq. (10), we derive an even more
general wave mapping describing an arbitrary number of
different parallel and anti-parallel diodes:

b = a− 2R0Θ+(a)
∑N
n=1

ηnVt
λnR0

W

(
λnR0Isn
ηnVt

e
jaj+�nR0Isn

�nVt

)
− Isn

−2R0Θ−(a)
∑N+M
m=N+1

ηmVt
λmR0

W

(
λmR0Ism
ηmVt

e
jaj+�mR0Ism

�mVt

)
− Ism

(15)
where Θ+(a) and Θ−(a) are two functions defined as

Θ+(a) =

{
1 if a ≥ 0
0 if a < 0

Θ−(a) =

{
0 if a ≥ 0
−1 if a < 0

.

The NLE described by eq. (15) is depicted in Fig. 3. If all
diodes are identical, λn = N and λm = M , (15) reduces
to (10). In general, the wave mapping (15) should be used
carefully in extreme cases in which N � M or M � N ,
as the reverse bias saturation currents might be not negligible.
By the way, (15) could be used for deriving a WD model of
a solar cell with a multi-exponential junction [35], [36]. In
Section V other possible applications of (15) are shown.

I

λ1R0

D1

−

V

+

λNR0

DN

λNR0

DN DN+1

λN+1R0

DN+M

λN+MR0

I

λ1R0

D1

−

V

+

λNR0

DN

λNR0

DN DN+1

λN+1R0

DN+M

λN+MR0

Fig. 3. One-Port NLE characterized by a Parallel Bank of N + M Diodes
with Opposite Polarities.

IV. EXPLICIT WD MODELS OF MULTI-PORT NLES

In this Section we focus on the modeling of multi-port
NLEs. In particular, we present an extension to the multi-
port case of the procedure proposed in Section III for deriving
a new family of NLEs in the WD domain (using explicit
wave mappings). We finally offer a definition of Simplified
Models, which are approximations of circuits containing non-
conducting diodes. These models can be useful to widen the
class of circuits that can be implemented in the WD domain.

A. Sign Conventions for Port Variables in n-terminal NLEs

Each port of a generic NLE has two prongs, which share the
same value of current (the current through one prong equals
the current through the other one), called port current, which
has a well-defined reference orientation. In this work we define
the coupled port voltage variable according to the passive
sign convention as shown in Fig. 3. In traditional one-port
NLEs the port current enters the NLE and passes through it.
When it comes to defining the ports of a multi-terminal NLE,
the situation can easily become more complicated. Instead of
defining waves with reference to the NLE, it will often be
more practical to define them with reference to the load that is
connected to the NLE, rather than with reference to the NLE
itself. This results in a change of the reference orientation
of the port current as it enters the load instead of the NLE.
The change of the reference orientation of the port current
implies a change of the roles of the incident and the reflected
waves (a and b). For this reason we will need to flip the sign
of the waves when defining the port current. This fact was
already pointed out in [17]. In order to clarify this, let us first
consider the simplest case of a circuit with a one-port NLE
in Fig. 4(a) and the relative WD implementation in Fig. 4(b).
This is a configuration where port variables can be defined
with reference the NLE (port current entering the NLE). When
port variables are defined this way, we will refer to the port
as a Port of the First Type (PFT). The 3-terminal NLE in
Fig. 5(a), on the other hand, cannot be easily described using
PFTs. In this case it is more convenient to define port variables
with reference to the loads that are connected to the NLE, i.e.,
to pick the reference port currents as entering such loads, as
done in [17]. This means interpreting the port configuration as
shown in Fig. 5(b). As we can see, two of such ports connect
to each other through a prong (ground), which is not a terminal
of the NLE. When a port current is defined as directed outward
with respect to the NLE, as in the case of Fig. 5(a), we will
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talk about a Port of the Second Type (PST). While the two
prongs of a PFT are always, by definition, terminals of the
NLE that we are modeling, in the case of a PST one of the
two prongs might not be a terminal of the NLE. In this case
it is often useful to choose ground as common external prong
of many ports. We can deduce, therefore, that the number of
ports N of a generic n-terminal NLE with n > 2 may vary
according to the topology of the reference circuit in the range
1 ≤ N ≤ Nmax, where

Nmax(n) =
n(n+ 1)

2
=

(
n+ 1

2

)
. (16)

In the light of this in Section V we will present a novel model
for a generic 3-terminal BJT with Nmax(3) = 6 ports (31).

In order to accommodate PFTs and PSTs we will adopt the
following notation for port voltages and port currents:

V =
a+ b

2
I = δp

a− b
2R0

(17)

where δp = 1 when in the case of a PFT and δp = −1 in the
case of a PST. In general, a NLE is modeled using either all
PFTs or PSTs.

NLE

I

V

RE Vout

VE

(a) Schematic (b) WDS (c) WDS

Fig. 4. One-port NLE modeled using one PFT. The WDS in 4(b) refers to
Subsection IV-A. The WDS in 4(c) refers to Subsection V-A.

NLE

I1

V1

I2

V2

I3

V3

NLE

I1

V1

I2

V2

I3

V3

(a)

NLE

1 I1
1

I2

2

I3

3

V2 V3

V1

NLE

1 I1
1

I2

2

I3

3

V2 V3

V1

(b)

Fig. 5. 5(a) shows a 3-terminal NLE that cannot be easily modeled using
3 PFTs. In 5(b) we have the same NLE shown in 5(a) modeled using three
PSTs; two of such ports have a common external prong (ground), which is
not one of the 3 terminals of the NLE.

B. WD Multi-port NLEs Derivation

In this Subsection we will describe how to derive WD
exponential and explicit multi-port models. We will begin with
the simplest case of a NLE made of only one subcircuit and
then we will address the general case of a NLE made of K sub-
circuits that can be independently analyzed. For instance, the
circuit in Fig. 7 has a NLE containing K = 2 independently
analyzable subcircuits, which are the two separated diodes.

Let us first consider the simplest case of a single subcircuit
and assume that the whole NLE be connected to the rest of the

circuit through N ports, which in this Subsection are indicated
with integers 1, 2, . . . , N . Let us derive a system of equations
describing the subcircuit in the K domain. We then express
the Kirchhoff variables of the generic port x with 1 ≤ x ≤ N ,
using one of the two formulas:

Ix = δpx
ax − Vx
R0x

, Vx = ax − δpxR0xIx . (18)

We refer to the unknown variable as y, which is either a
port voltage or a port current. In order to find explicit wave
mappings we need to express each port variable as a linear
function of y. If the unknown variable is a port voltage, e.g.
y = V1, then each port voltage Vx must satisfy the equation

Vx = τxV1 + ρx , (19)

where τx and ρx are scalar functions of the in-
cident waves and the reference port resistances, i.e.
they can be written as τx (a1, . . . , aN , R01, . . . , R0N ) and
ρx (a1, . . . , aN , R01, . . . , R0N ). Similarly, if the unknown
variable is a port current, e.g. y = I1, then each port current
Ix must satisfy the equation

Ix = ζxI1 + νx , (20)

where, again, ζx and νx are scalar functions, which
can be written as ζx (a1, . . . , aN , R01, . . . , R0N ) and
νx (a1, . . . , aN , R01, . . . , R0N ).
By defining V = [V1, . . . , VN ]T , � = [1, τ1, . . . , τN ]T ,
� = [0, ρ1, . . . , ρN ]T , y = [V1, 1]T , we obtain a matrix
formulation of the mutual relations between port voltages:

V =
[
� �

]
y . (21)

Similarly, by defining I = [I1, . . . , IN ]T , � =
[1, ζ1, . . . , ζN ]T , � = [0, ν1, . . . , νN ]T , y = [I1, 1]T , we
obtain:

I =
[
� �

]
y . (22)

Then, starting from the derived mutual relations between
port variables, we search an equation fitting the form (3),
analogously to what done in the one-port case III. This
will allow us to obtain an explicit solution for y in the
form (4). Let us define the vector of the incident waves as
a = [a1, . . . , aN ]T ; the vector of the reflected waves as
b = [b1, . . . , bN ]T ; and the diagonal matrix of reference port
resistancesR0 = diag(R01, . . . , R0N ). Writing b as a function
of V or I we obtain, respectively,

b = 2V − a and b = a− δp 2R0 I . (23)

Let us now consider the more general case in which the
NLE is constituted of K independently analyzable subcircuits
as, for instance, the NLE in Fig. 7 where K = 2. In this case
the derivation described before would be applied separately
for each subcircuit. Let us assume that each subcircuit has
Nk ports, so that the total number of ports of the NLE
is
∑K
k=1Nk. In general, we will end up with N explicit

scattering vector functions in one of the two forms (23).
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C. Simplified Models of NLEs with diodes

Simplified Models (SMs) approximate the behavior of NLEs
eliminating diodes which are “not conducting” (i.e., which
ones are currently not operating in the first quadrant of
their IV characteristics). Such models are based on what we
know about the mutual relations between terminal potentials.
Thanks to this simplification we can transform many NLEs
that could not be modeled with explicit wave mappings into
something that now belongs to the family of NLEs described
in Subsection IV-B. In order for this approach to be effective,
we might need to approximate the target NLE with different
SMs, which take turn depending on how the mutual relations
between the potentials of the terminals change. An example

Vc − Vin
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Rout
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VC
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Vin

2
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IA
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IB

VB

A B

D C

Vout
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2
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Vin

2
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Fig. 6. Parker’s Model of a Transformer-less Ring Modulator. The output
voltage is Vout = VB � VC .
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(a) Schematic (b) WDS

Fig. 7. Ring Modulator SM for Vc > 0. The WDS in Fig. 7(b) refers only
to the subcircuit with the generator Vc + Vin=2. The complementary WDS
referring to the subcircuit with Vc � Vin=2 is similar.

of use of SMs is the transformerless ring modulator model of
Fig. 6 [38]. In a traditional ring modulator, if we denote the
modulator waveform by Vin and the carrier waveform by Vc,
the voltage at the two input nodes is given by Vc +Vin/2 and
Vc − Vin/2. The circuit of Fig. 6 can be approximated using
two different SMs. The first model (Fig. 7) describes the ring
modulator when Vc > 0, in which case we remove the non-
conducting diodes DCA and DBD. Similarly, when Vc < 0,
we remove DAB and DDC . This, indeed, is an approximation
because the actual voltages applied to the diodes are also
affected by the contribution of both Vin/2 and the resistive
voltage loss on Rin. However, in this particular example,
we can assume Vin � Vc, therefore this approximation is
expected not to significantly affect the circuit behavior.

While identifying SMs is readily done through visual circuit
inspection, the selection of which SM is active during the
WD simulation might not be as straightforward. The problem,
in fact, is to select which SM is active at any time using
just the values of incident waves a. The state of activation of
a diode depends on the sign of the voltage at its terminals,

which must be derived from the port voltages V , which, in
turn, must be derived from a. As V generally depends on a
and b, this might prove tricky. However, in some cases, the
information we need on V can be derived from properties
of a only, e.g. sgn(a). Examples are the ring modulator WD
model in Section V-C and the one-ports characterized by the
wave mappings 10 and 15. A similar discussion about one-port
NLEs is also given in [37] where a diode-clipper is analyzed.
Here we extend that discussion to the multi-port case.

In general, the K–WD map for a generic N -port element
can be written in matrix form as[

a
b

]
= T

[
V
I

]
with T =

[
EN R0

EN −R0

]
, (24)

whereEN is the (N×N) identity matrix. The K–WD transfor-
mation 24, characterized by matrix T is, in fact, independent
of the internal complexity of the multi-port element, as it is
performed in a port-wise fashion. Therefore, considering the
IV characteristics at each port, we can use (24) to check if
the mutual relations between elements of the vector V are
mapped onto corresponding mutual relations between elements
of the vector a. Similarly to what we did in [37] for the one-
port case, we provide a geometric interpretation of the K–WD
transformation, which can be useful to relate a to the needed
information on V . If we apply the QR decomposition on T
we obtain T = QR, where the two (2N × 2N) matrices Q
and R are generally of the form

Q =

[
1√
2
EN

−1√
2
EN

1√
2
EN

1√
2
EN

]
R =

[√
2EN ON

ON −
√

2R0

]
(25)

where ON is an (N × N) matrix of zeros, therefore R is
diagonal (as R0 is diagonal as well). Through (25) we can
interpret the K–WD transformation as a non-uniform scaling
of the N characteristics (through the matrix R) followed by a
rotation of −π/4 (through the matrixQ), which is independent
of the port resistance values. If a priori techniques are not
sufficient for inferring which diodes are conducting, on line
methods should be developed, based on the past simulation
parameters. However the formalization of general methods for
deriving such information is beyond the scope of this work and
deserves future research.

V. EXAMPLES OF APPLICATIONS

In this Section we propose some implementations of typical
circuits containing diodes or BJTs. The first two examples
are possible applications of the new one-port NLEs presented
in III-B. The other examples show different multi-port NLEs
belonging to the new family of NLEs described in IV-B,
where Simplified Models (SMs) are exploited. In particular,
we discuss the case of a transformerless ring modulator and
some BJT amplifier configurations, which take advantage of a
new 6-port general model of the BJT. This is a model that is
suitable for dealing with feedback between the BJT terminals.
In each simulation we evaluate W (x) using the MATLAB
function lambertw and we use a sample rate of 96 kHz.
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A. Half-Wave Rectifier with N Different Parallel Diodes

We employ the NLE depicted in Fig. 2 and characterized
by the wave mapping (14) for designing a parametric Half-
Wave Rectifier (HWR) with a bank of different parallel diodes.
The simple reference circuit, consisting of a real sinusoidal
voltage generator VE(t) = gE(sin(2π f0E t)) in series with
a resistance RE = 8 Ω and the one-port NLE, is shown
in Fig. 4(a). The NLE is modeled using one PFT. In this
Subsection we assume the real voltage generator VE has
an internal series resistance Rs. The WD implementation is
drawn in Fig. 4(c). In order to accurately model the NLE,
we need to properly select the λn parameters in (14). The
simplest situation is when the N diodes are identical. In this
case, as already mentioned in Subsection III-B, we should
set λn = N . In more complex scenarios the N parallel
diodes have different parameter values. As an example, we
set N = 2, Rs = 3 Ω, RE = 1 Ω, gE = 10 V, f0E = 80
Hz, Is1 = Is2 = 10−12 A and different ideality factors;
η1 = 0.5 an η2 = 1. Experimentally we found that, setting
λ1 = λ2 = 1.892, the WD model grasps the circuit behavior.
Fig. 8 shows the comparison between the WD and SPICE
output voltage signals.

2 4 6 8 10 12

Fig. 8. HWR output voltage (WDS vs SPICE). The upper subplot shows
the profile of Vout in the time domain. The subplot in the middle shows a
zooming of the same curve near the zero-axis, where the nonlinear behavior is
more pronounced. The last subplot represents Vout in the frequency domain.

B. Electrical Damper

We can use (15) to implement an electrical damper with
different attack and release time constants. The reference

I

R2

V

R1

Vin

Rin

CoutVout

I

R2

V

R1

Vin

Rin

CoutVout

(a) Schematic (b) WDS

Fig. 9. Asymmetric Electrical Damper.

circuit and the relative WDS are represented in Fig. 9. A
WD implementation of the electrical damper, realized with a

different approach, was already presented in [10]. In our im-
plementation diodes and their series resistances are embedded
in the NLE. The NLE is modeled using one PFT. The output
voltage is detected across the capacitor Cin in series to the
NLE. The square wave of the input voltage generator is defined
as Vin(t) = Vbias + gin(sgn(sin(2π f0in t))). The coefficients
λN and λM , which multiply the reference port resistance of
the NLE, are tuned in order to match as accurately as possible
the resistances R1 and R2, which in our reference circuit
are 4 Ω and 1 Ω, respectively. The circuit parameters and the
corresponding actual values of the WD simulation are: gin = 5
V, f0in = 80 Hz, Cin = 1.8 10−4 F, ηN = 1, ηM = 1,
Vbias = −6 V, λn1 = 3.3, λm1 = 1.44, Vt = 25 10−3 V,
IsN = 10−12 A and IsM = 10−12 A. Fig. 10 shows the output
voltage profile; the good behavior of the WDS is verified
comparing it to a SPICE simulation.

0.02 0.025 0.03 0.035 0.04 0.045

Fig. 10. Asymmetric Electrical Damper output voltage in the time domain
and in the frequency domain (WDS vs. SPICE).

C. Ring Modulator

In this Subsection we present an implementation of the ring
modulator characterized by higher accuracy w.r.t. the existing
solutions in the literature on WDFs [18]. We model the NLE
using 4 PSTs, named A, B, C and D. The port voltages are
the four terminal potentials: VA, VB , VC and VD. We use two
SMs; one for Vc > 0 and one for Vc < 0. Hereafter we analyze
in detail the subcircuit of the first SM (Fig. 7) containing diode
DAB . The subcircuit is described by the system of equations:{

IB = Is(e
VAB
�Vt − 1)

IA = −IB .
(26)

Let us choose IB = y as independent port variable; therefore,
according to (20), we can express the port current IA as a
linear function of IB by writing IA = −IB . So in this example
the parameters of equation (20) are simply ζB = −1 and
νB = 0. Writing port voltages as functions of incident waves,
port currents and port resistances, according to (18), we obtain:

IB = Is

(
e
aA�aB�IB(R0A+R0B)

�Vt − 1

)
. (27)

Eq. (27) is attributable to the form (3), setting

y = IB θ = − (R0A +R0B) / (ηVt) p = e
β = (aA − aB) / (ηVt) c = 1/Is d = 1 .

(28)
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Then through (4) we derive an explicit expression for IB . The
wave mappings for ports A and B are found using (23)

bB = aB + 2R0BIB , bA = aA + 2R0AIA . (29)

The wave mappings for ports C and D are derived like-
wise. The equations characterizing the complementary SM
are similar to those already shown. The choice of the most
suitable SM at each iteration step is performed according
to the considerations explained in Section IV-C. When Vc
approaches to 0 the signs of aA and aD may not agree. In
this case the sign of one incident wave is chosen, e.g. aA,
and a small error is introduced. The smaller the magnitude of
Vin w.r.t. the amplitude of Vc, the smaller the error. In our
simulation we chose the circuit parameters in such a way to
obtain comparable results to [38]: gin = 1 V, f0in = 500
Hz, Rin = 80 Ω, gc = 1 V, f0c = 1500 Hz, Rout = 106 Ω,
η = 2.19, Is = 10−12 A and Vt = 26 10−3 V. Notice that
Vin(t) = gin(sin(2π f0in t)) and Vc(t) = gc(sin(2π f0c t)),
therefore with this choice of parameters the condition of
having Vin � Vc is not satisfied. Nonetheless, even in these
conditions, the WD model shows a good agreement with a
SPICE simulation, as shown in Fig. 11. The mismatch is
concentrated near zero crossings where the switching between
SMs takes place. In addition SMs ignore the reverse-bias
currents, which are not negligible near the zero-axis.

0 0.5 1 1.5 2 2.5 3

Fig. 11. Ring Modulator output voltage in the time domain and in the
frequency domain (WDS vs. SPICE).

D. Bipolar Junction Transistor Amplifiers

For modeling an n–p–n BJT we refer to the large signal
Ebers–Moll model (EMM) [39] of Fig. 12. We choose the
reference direction of currents IC , IE and IB , referring to
Collector, Emitter and Base terminals respectively, as outgoing

B

CE

IBE IBC

αrIBC αfIBE

B

CE

IBE IBC

αrIBC αfIBE

Fig. 12. Ebers Moll Model.

(e.g. see Fig. 13(a)), so that the EMM is described by the
system of equations: IE = IBE − αrIBC

IC = IBC − αfIBE
IE + IB + IC = 0 ,

(30)

where

IBE = IEs

(
e
VBE
�Vt − 1

)
, IBC = ICs

(
e
VBC
�Vt − 1

)
,

being IEs and ICs the saturation currents of the two diodes
described by the Shockley model (6). The BJT can be char-
acterized by different numbers of PSTs, depending on the
topology of the reference circuit. The presence of feedback
can increase the number of ports up to 6 (16): 3 port voltages
being potentials at terminals (VC , VB and VE) and 3 port
voltages being differences of potentials between terminals
(VCE = VC − VE , VCB = VC − VB and VEB = VE − VB).
Adding feedback currents to the classical EMM, we obtain an
Extended Ebers–Moll model (EEMM) of the BJT with 6 PSTs
(named E, B, C, CE, CB and EB): IE = IBE − αrIBC + ICE − IEB

IC = IBC − αfIBE − ICE − ICB
IE + IB + IC = 0 ,

(31)

where ICE , IEB and ICB are the port currents passing through
the loads of the three feedback ports. We can employ SMs to
approximate the EMM and the EEMM. If the Collector–Base
junction is reverse-biased the corresponding diode is removed.
The same is done if the Emitter–Base junction is reverse-
biased. It can be verified that a parametrization leading to an
explicit model based on the W function can be found only
for SMs of the EEMM with up to 3 ports. Such 3 ports
can be either the 3 terminal-ground ports E, C and B, as
in Fig. 13, or 2 of them and a feedback port having the 2
“active” terminals as prongs, as in Fig. 15. We notice that if
one of the 3 potentials at terminals is zero, we end up with a
degenerate case, since the remaining 2 terminal-ground ports
and the 2 corresponding feedback ports have their respective
pairs of prongs in common, as in Fig. 17. In Table I we
show the parameterizations that can be used for finding explicit
wave mappings of some SMs of the EEMM in relevant BJT
amplifier configurations. In each row of Table I is specified
which port variable is chosen as dependent variable y and
also the expression of the other parameters in eq. 3.

1) Common Collector BJT Amplifier: A 3-port NLE is used
for implementing the BJT in the amplifier of Fig. 13. The first
SM of Table I is employed together with a “specular” SM
describing the BJT when the Emitter–Base junction is reverse-
biased. Vbias is set to 0 V in order to test the amplifier in
cutoff mode. The other parameter values of the simulation
are gin = 1.5 V, f0in = 200 Hz, Rin = 1 Ω, Vg = 15
V, Rg = 2 Ω, Rout = 5000 Ω, Vt = 25 10−3 V, η = 1,
IEs = ICs = 45 10−14 A, αf = 0.9 and αr = 0.8.
Fig. 14 shows the voltage across Rout, comparing the WD
model output with a SPICE simulation. We notice that the
contribute of the reversed biased Collector-Base junction is
not completely negligible and this fact results in a smaller
amplitude of the output voltage in SPICE.
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TABLE I
BJT SIMPLIFIED MODELS IN COMMON AMPLIFIER CONFIGURATIONS

Simplified Model Linear Dependences among Port Voltages or Port Currents and General Form Parametrization
BJT with a reverse biased
Collector–Base junction
in a Common Collector
(or Emitter Follower) am-
plifier configuration im-
plemented as a 3-port
NLE.

B

E

C

αfIBE

IBE

B

E

C

αfIBE

IBE

y = IE = IBE IB = (�f � 1)y IC = ��fy

� =
R0B(�f�1)�R0E

�Vt
� = aB

�Vt
� aE
�Vt

c = 1
IEs

d = 1 p = e

bE = aE + 2R0EIE bB = aB + 2R0BIB bC = aC + 2R0CIC

BJT with a reverse
biased Collector–Base
junction in a Common
Emitter amplifier with
feedback configuration
implemented as a 3-port
NLE.

B

E

C

αfIBE

IBE

B

E

C

αfIBE

IBE

y = VB VC =
y

� �f
R0B

+ 1
R0CB

�
+aC

�
1��f
R0C

�
�
aB�f
R0B

+
aCB
R0CB

(1��f )=R0C+1=R0CB
VCB = VC � y

� = 1
�Vt

� = 0 p = e c = �1
IEs

�
1

R0B
+

�f=R0B+1=R0CB

1��f+R0C=R0CB

�

d = 1
IEs

 
aB
R0B

�
�f

1��f+R0C=R0CB
+ 1
�

+ aC
R0C

�
�f�1

1��f+R0C=R0CB+1

�
� aCB=R0CB

1��f+
R0C
R0CB

!
+ 1

bB = 2VB � aB bC = 2VC � aC bCB = 2VCB � aCB

BJT with a reverse bi-
ased Emitter–Base junc-
tion in a Common Emit-
ter amplifier with feed-
back configuration imple-
mented as a 3-port NLE.

B

E

C

αrIBC

IBC

B

E

C

αrIBC

IBC
y = VB VC =

y
�

1
�rR0B

+ 1
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�
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�
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aCB
R0CB
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�
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�Vt

�
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1�1=�r+R0C=R0CB
+ aB

�r
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R0CB

�
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�
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+

1=(�rR0B)+1=R0CB
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BJT with a reverse biased
Emitter–Base junction in
a Common Base ampli-
fier configuration imple-
mented as a 2-port NLE.
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Fig. 13. BJT Common Collector Amplifier.

2) Common Emitter BJT Amplifier with Base–Collector
Feedback: A 3-port NLE employing both the second and the
third SM of Table I is used for implementing the BJT in the
amplifier of Fig. 15. The simulation parameters are: gin = 1.5
V, f0in = 200 Hz, Rin = 1000 Ω, Vbias = 2.3 V, Vg = 15
V, Rg = 1 Ω, RfBC = 400 Ω and Rout = 8 Ω. The missing
values are the same of V-D1. Fig. 16 shows the output current
through Rout. Also in this case the contribute of the reversed

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Fig. 14. BJT Common Collector Amplifier output voltage in the time domain
and in the frequency domain (WDS vs. SPICE).

biased Collector-Base junction is not negligible and it results
in a larger amplitude of the output current in SPICE.

3) Common Base BJT Amplifier: A 2-port NLE employing
the fourth SM of Table I is used for implementing the amplifier
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Fig. 15. BJT Common Emitter Amplifier with base–collector feedback.
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Fig. 16. BJT Common Emitter Amplifier output current in the time domain
and in the frequency domain (WDS vs. SPICE).

of Fig. 17. The simulation parameters are: gin = 5 V,
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(a) Schematic (b) WDS

Fig. 17. BJT Common Base Amplifier.

f0in = 200 Hz, Rin = 15 Ω, Vbias = −12.5 V, Vg = 90
V, Rg = 15 Ω and Rout = 85 Ω. The missing values are
the same of V-D1. Fig. 18 shows the voltage across Rout.
In this case the mismatch w.r.t. to SPICE is smaller, since in
the Common-Base configuration, the contribute of the reverse
biased Emitter-Base junction has a low impact on Vout.

VI. CONCLUSIONS AND FUTURE WORK

In this work we explored the use of the Lambert W function
in the WD domain for explicitly modeling exponential NLEs.
We derived a new one-port wave mapping describing an
arbitrary number of different parallel and antiparallel diodes.
We also defined a new family of explicit WD models of multi-
port NLEs. We tested our models in a number of applications,
including a transformerless ring modulator. We also introduced
the novel 6-port EEMM model of the BJT, which allows us
to describe the BJT in all the amplifier configurations that

0 0.002 0.004 0.006 0.008 0.01 0.012

Fig. 18. BJT Common Base Amplifier output voltage in the time domain and
in the frequency domain (WDS vs. SPICE).

include feedback. Comparing our results to SPICE outputs we
found second order mismatches, as we are forced to trade
some accuracy for the possibility of finding a closed-form
solution. Although perfect waveform reconstruction is not
always required in virtual analog modeling, we need to be
careful about unwanted artifacts, as they could be perceivable.
As far as future developments are concerned, we are planning
to widen the family of WD multi-port NLEs in such a way to
include exponential NLEs with memory.
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