Antibiotic susceptibility of planktonic- and biofilm-grown staphylococci isolated from implant-associated infections: should MBEC and nature of biofilm formation replace MIC?

Published in:
Journal of Medical Microbiology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 The Authors | Published by the Microbiology Society.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen’s University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:30. Jul. 2020
Antibiotic Susceptibility of Planktonic and Biofilm Grown Staphylococci Isolated from Implant Associated Infections: Should MBEC and Nature of Biofilm Formation Replace MIC?

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>JMM-D-16-00721R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Antibiotic Susceptibility of Planktonic and Biofilm Grown Staphylococci Isolated from Implant Associated Infections: Should MBEC and Nature of Biofilm Formation Replace MIC?</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Standard</td>
</tr>
<tr>
<td>Section/Category:</td>
<td>Clinical Microbiology</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Aaron J Brady, Ph.D
| | Queen's University Belfast
| | Belfast, UNITED KINGDOM |
| First Author: | Aaron J Brady, Ph.D |
| Order of Authors: | Aaron J Brady, Ph.D
| | Garry Laverty, PhD
| | Deirdre F Gilpin, PhD
| | Patricia Kearney, MD
| | Michael Tunney, PhD |

Abstract:

Purpose: The purpose of this study was to develop an alternative, more clinically relevant approach to susceptibility reporting for implant associated infections. Using 20 staphylococcal isolates, isolated from clinical implant infections, the majority (85%) demonstrated biofilm-forming capabilities. A significantly increased MBEC compared to MIC breakpoint was obtained, with MBEC values greater than 256 µg/mL for the majority of bacteria. Such a vast increase was also demonstrated for isolates defined as negligible biofilm formers via crystal violet staining, likely due to high protein content of biofilms confirmed by proteinase-K treatment.

Methodology: This study employed a variety of techniques to assess minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of isolates tested. In addition, the nature of bacterial biofilm across a range of clinical isolates was investigated using crystal violet staining, sodium metaperiodate and proteinase-K treatment and PCR analysis.

Results/Key findings: Infection of medical implants is associated with increased rates of infection and increased bacterial tolerance to antibiotic strategies. Clinical significance is due to the presence of pathogens attached to biomaterial surfaces, enclosed in an extracellular polymeric matrix termed the biofilm. This paper highlights the importance of defining the clinical susceptibility of implant associated infections in vitro using methods that are relevant to the biofilm phenotype in vivo, and highlights how current planktonic-based antimicrobial susceptibility tests are often misleading.

Conclusion: The use of biofilm-relevant susceptibility tests would improve patient outcomes by enabling correct antimicrobial regimens to be rapidly identified, reducing treatment failure and halting the spread of antimicrobial resistant strains.
Antibiotic Susceptibility of Planktonic and Biofilm Grown Staphylococci Isolated from Implant Associated Infections: Should MBEC and Nature of Biofilm Formation Replace MIC?

Brady AJ1,*, Laverty G1, Gilpin DF1, Kearney P2, Tunney MM1

1 School of Pharmacy, Queen’s University Belfast, Belfast, 97 Lisburn Road, Belfast, BT97BL, UK.

2 Antrim Area Laboratory, United Hospitals Trust, Antrim, BT41, United Kingdom

*Author for Correspondence

Dr Aaron J. Brady

School Of Pharmacy,
Queen's University Belfast
Medical Biology Centre
97 Lisburn Road
Belfast, BT9 7BL, UK
Tel: +44 (0) 7801 268394
Fax: +44 (0) 2890 247 794
Email: aaron.brady@qub.ac.uk
Abstract

Purpose: The purpose of this study was to develop an alternative, more clinically relevant approach to susceptibility reporting for implant associated infections. Using 20 staphylococcal isolates, isolated from clinical implant infections, the majority (85%) demonstrated biofilm-forming capabilities. A significantly increased MBEC compared to MIC breakpoint was obtained, with MBEC values greater than 256 µg/mL for the majority of bacteria. Such a vast increase was also demonstrated for isolates defined as negligible biofilm formers via crystal violet staining, likely due to high protein content of biofilms confirmed by proteinase-K treatment.

Methodology: This study employed a variety of techniques to assess minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of isolates tested. In addition, the nature of bacterial biofilm across a range of clinical isolates was investigated using crystal violet staining, sodium metaperiodate and proteinase-K treatment and PCR analysis.

Results/Key findings: Infection of medical implants is associated with increased rates of infection and increased bacterial tolerance to antibiotic strategies. Clinical significance is due to the presence of pathogens attached to biomaterial surfaces, enclosed in an extracellular polymeric matrix termed the biofilm. This paper highlights the importance of defining the clinical susceptibility of implant associated infections in vitro using methods that are relevant to the biofilm phenotype in vivo, and highlights how current planktonic-based antimicrobial susceptibility tests are often misleading.

Conclusion: The use of biofilm-relevant susceptibility tests would improve patient outcomes by enabling correct antimicrobial regimens to be rapidly identified, reducing treatment failure and halting the spread of antimicrobial resistant strains.

Keywords: Antibiotic susceptibility; Antibiotic resistance; Biofilms; Biomaterials; Indwelling devices
Introduction

Infection of indwelling medical devices are commonly caused by multi-drug resistant pathogens. The implant surface provides an optimum environment for microbial attachment and growth, with numerous benefits to microorganisms including increased availability of nutrients; likelihood of survival, maturation and potential for symbiotic relationships (1). This results in failure of treatment, increased spread of resistant pathogens, device removal, morbidity and increased mortality (2). A recent UK government report outlined that without significant investment in new therapies, deaths due to infection are predicted to rise to more than 10 million deaths by 2050, a figure greater than cancer (3). Pathogen susceptibility is typically determined by the minimum inhibitory concentration (MIC) as recommended either by the British Society for Antimicrobial Chemotherapy (BSAC) or the Clinical and Laboratory Standards Institute (CLSI) guidelines (4). However, successful treatment of indwelling devices usually requires eradication of the bacterial pathogens growing in a biofilm. Biofilm associated infection is extremely difficult to eradicate and as a result, treatment commonly fails. Therefore, despite their high cost to healthcare and the economy, infections of implants remain unsolved and an ongoing burden (5).

The fundamental function of *in vitro* antimicrobial susceptibility tests (AST) in clinical laboratories is to provide the prescriber with accurate information on appropriate antimicrobial therapy (6). However, although effective against bacteria *in vitro*, it is well established that concentrations of antibiotics used in standard AST are not predictive of the concentrations required to eradicate infections associated with indwelling devices (7,8). In addition, studies have shown that sub-inhibitory concentration of antibiotics can both stimulate and impede biofilm formation further confusing the issue of appropriate treatment (9-11). Therefore, certain studies have suggested that a minimum biofilm eradication concentration (MBEC) would be more indicative of the antibiotic concentration required to eliminate bacteria in biofilm (12).
In addition to determining the MBEC, it would be clinically useful to characterise the degree and nature of the bacterial biofilm and the total biomass present by e.g. crystal violet (CV) staining (13) and treatment with sodium metaperiodate and proteinase-K respectively (14,15). This could, in turn, be used to inform the clinician treating the biofilm infection. For example, protease-directed therapy could be used as a means of eradicating those isolates which have been shown to possess considerable protein-mediated biofilm. Furthermore, using PCR it is also possible to identify those isolates which possess the ica operon which codes for production of enzymes required for bacterial adhesion by means of polysaccharide intracellular adhesin (PIA) synthesis.

This study aimed to determine the susceptibility of 20 clinical staphylococcal isolates, cultured from indwelling human devices, to a range of antibacterial agents when grown planktonically and in biofilm. In addition, we sought to determine the degree and nature of biofilm formation of the retrieved isolates and investigate the relationship between degree and mechanism of biofilm formation, possession of the ica operon and antibiotic susceptibility with a view to an alternative method of susceptibility reporting.

Materials and Method

Reagents

CV powder, glacial acetic acid, JumpStart® Taq Polymerase, methanol, sodium metaperiodate, proteinase-K, oxacillin, tetracycline and vancomycin were obtained from Sigma-Aldrich (Gillingham, Dorset, United Kingdom). ica primers (16) were obtained from Operon Biotechnologies (Cologne, Germany). DEPC-treated water was obtained from Ambion (Warrington, UK). Müeller Hinton Agar (MHA), Müeller Hinton Broth (MHB) and Tryptone Soya Broth (TSB) were obtained from Oxoid (Basingstoke, UK). E-tests® were obtained from Bio-Stat (Stockport, UK). Benzylpenicillin as Crystapen® was obtained from Britannia Pharmaceuticals Ltd.
Clindamycin as clindamycin hydrochloride was obtained from Taresh Ltd (Banbridge, Northern Ireland).

Bacterial Isolates

Nine coagulase-negative staphylococci (CoNS) and three meticillin-sensitive *Staphylococcus aureus* (MSSA) clinical isolates (B1-B12) obtained from patient samples were provided by the Microbiology Department, Belfast City Hospital, Belfast Health and Social Care Trust. A further eight clinical CoNS isolates (B24-B71) were cultured following surgical removal of catheters as previously described (17). Details of site of culture are provided in Table 1. Eleven of the twenty total isolates were chosen to determine susceptibility of both CoNS and *S. aureus* isolates growing as biofilm, and isolates cultured from a range of indwelling clinical devices growing as biofilm (Tables 1 and 4). For all isolates tested, a negative control of sterile TSB was included.

Planktonic Susceptibility Testing

Antimicrobial susceptibility of all isolates was determined using the CLSI disk diffusion (DD) method and E-test® strips (18).

Quantification of Biofilm Formation

Bacterial biofilms were grown and classified in sterile Nune™ 96-well microtitre plates (VWR International, Leicestershire, UK) as previously described (13), using TSB as a growth medium. Sterile TSB was also used as a negative control. Absorbance at 590nm was then measured using a Tecan Sunrise® plate reader (Tecan, Theale, Reading, United Kingdom). ODc was defined as three standard deviations above the mean optical density of the negative control (13).
Biofilm forming ability of the strains was classified as follows:

- \(\text{OD} \leq \text{OD}_c \) = non adherent (0)
- \(\text{OD}_c < \text{OD} \leq 2 \times \text{OD}_c \) = weakly adherent (+)
- \(2 \times \text{OD}_c < \text{OD} \leq 4 \times \text{OD}_c \) = moderately adherent (++)
- \(4 \times \text{OD}_c < \text{OD} \) = strongly adherent (+++)

Antimicrobial Susceptibility of Bacterial Isolates in Biofilm

Bacterial biofilms were grown in 96-well trays using TSB as previously described (13). Following overnight incubation to allow biofilm growth, the 96-well trays were washed gently with sterile PBS to remove any non-adherent bacteria. Each isolate was then exposed to five antibiotics (penicillin, oxacillin, clindamycin, tetracycline and vancomycin) ranging in doubling concentrations from 4 \(\mu \text{g/mL} \) – 256 \(\mu \text{g/mL} \). The specific isolates chosen were to allow comparison of both CoNS and *S. aureus* isolates and isolates cultured from a range of indwelling clinical devices. For all isolates tested, positive and negative controls were included.

Detection of the Mechanism of Biofilm Formation

Bacterial biofilms were grown in 96-well trays using TSB as previously described (13). Sodium metaperiodate (NaIO\(_4\)) and proteinase-K have previously been shown to degrade polysaccharide and protein-mediated biofilms respectively (19,20). Specifically, as demonstrated by Wang *et al.* (15), if the polysaccharide-1, 6-N-acetyl-D-glucosamine mediates biofilm formation, treatment with metaperiodate will result in biofilm dispersal. In contrast, if biofilm formation is protein-mediated, treatment with metaperiodate will have no effect, whereas treatment with proteinase-K will result in biofilm disruption and dispersal.

Following overnight incubation the plates were washed twice with 150\(\mu \text{L} \) sterile PBS. Plates were then simultaneously treated as follows:
Plate 1: Following discarding of the supernatant and washing, each well was filled with 200µL 40mM NaIO₄ solution and incubated for a further 24 hours at 4°C. After incubation, the NaIO₄ solution was discarded and the wells washed thoroughly with PBS. The 96-well plates were dried and stained with CV as described above. Absorbance was then measured at 590nm.

Plate 2: Following discarding of supernatant and washing, each well was filled with 200µL of a proteinase-K solution (1mg/mL in 100 mM tris(hydroxymethyl)aminomethane) and incubated for 4 hours at 37°C. After incubation, the proteinase-K solution was discarded and the wells washed thoroughly with PBS. The 96-well plates were dried and stained with CV as described above. Absorbance was then measured at 590nm.

Detection of ica Gene

A polymerase chain reaction (PCR) assay to detect the gene products of the ica operon was carried out using conditions as previously described (16). PCR products of the expected size were visualised using gel electrophoresis and a UV-transilluminator (Gel-Doc, BioRad, Hertfordshire, UK). In addition to the test isolates, the RP62A (ATCC 35984) S. epidermidis isolate (known to form biofilms) was used as a reference biofilm-forming organism.

Statistical analysis

Statistical analysis was conducted where appropriate using a one-way analysis of variance (ANOVA). In all analyses, a p value < 0.05 denoted statistical significance. Statistical analysis was performed using the SPSS® software package.
Results

Planktonic Susceptibility Testing

The antibacterial susceptibility of each isolate to the 10 antibiotics routinely used in the Belfast City Hospital Microbiology Department is outlined in the antibiogram (Table 2). The number of isolates sensitive to each antibiotic is also shown in Table 2. Of the 20 isolates tested, two (B1 and B24) were susceptible to all 10 antibiotics according to CLSI breakpoint guidelines. A further nine isolates showed resistance to only one antibiotic and in all of these, the antibiotic was either penicillin or erythromycin. In addition, two of the tested isolates (B37 and B5) were resistant to two and three antibiotics, respectively. Two isolates (B3 and B9) were resistant to five antibiotics while a further five isolates were resistant to six of the 10 tested antibiotics. Of the three *S. aureus* isolates tested, each was susceptible to all antibiotics with the exception of penicillin. As shown in Table 2, vancomycin and teicoplanin proved to be most effective with all isolates demonstrating susceptibility to both antibiotics. Conversely, penicillin was the least effective antibiotic with only six of the 20 isolates (30%) demonstrating susceptibility. In addition, erythromycin also demonstrated limited efficacy with only 8 of the 20 isolates (40%) reported as susceptible.

Quantification of Biofilm Formation

Results of biofilm detection are shown in Table 3. Sixteen (80%) of the isolates tested were biofilm formers. Of these 16, 8 isolates proved to be weakly (+) adherent, two isolates moderately (++) adherent and a further six strongly (+++) adherent. Of the six isolates that demonstrated strongly adherent biofilm formation all possessed the icaA, icaB and icaC operons (Table 5).

Antimicrobial Susceptibility of Bacterial Isolates in Biofilm

The antibacterial susceptibility of 11 of the clinical isolates growing in biofilm to five antibiotics is shown in Table 4. Of 11 isolates tested, 9 were resistant to all five antibiotics at the highest
concentration tested (256 µg/mL). Only isolate B1, with MBEC values of 32 µg/mL and 256 µg/mL for clindamycin and vancomycin respectively, and isolate B11 with an MBEC value of 32 µg/mL for vancomycin displayed any sensitivity when grown in biofilm.

Mechanism of Biofilm Formation

Results of the CV staining after treatment with NaIO₄ and proteinase-K are shown in Fig. 1. Statistical analysis of the results using a one-way ANOVA test revealed a significant reduction (p < 0.05) in absorbance after treatment with both NaIO₄ and proteinase-K, in comparison with untreated biofilm. Of the 20 isolates tested, 11 showed a decrease in absorbance in comparison with untreated biofilm, after treatment with sodium metaperiodate. In addition, 15 of the 20 isolates showed a decrease in absorbance in comparison with untreated biofilm after treatment with proteinase-K.

Detection of ica Genes

Following PCR, the resulting amplicons were observed using UV trans-illumination. Bands corresponding to the expected size of icaA, icaB and icaC gene products were observed at 814, 526 and 989 base pairs [Fig. 2(a)-2(c)]. Upon analysis of PCR products, 9 out of 20 isolates tested displayed the icaA gene, 9 out of 20 isolates tested displayed the icaB gene and 9 out of 20 isolates tested displayed the icaC gene. Notably, the icaABC genes detected were all in the same isolates.

Discussion

The colonisation of indwelling medical devices by bacteria growing in biofilm is thought to be the major contributing factor in the pathogenesis of device-related infections (21). This is in part due to the high innate resistance of these organisms to antimicrobial therapy and also due to the further increased resistance to even the highest concentrations of antibiotics when growing as a biofilm,
notably when the organism possesses an ica operon (22-26). Given this relationship between bacteria in biofilm and increased resistance to antibiotic therapy, the ability of 20 isolates retrieved from indwelling devices to form biofilms was investigated, together with their resistance to conventional antimicrobial therapy.

It is important to provide information on the MBEC to clinicians for several reasons. Currently lab reports only show antibiotic sensitivity to planktonic bacteria. Therefore to be accurate they could include a caveat indicating that this may not be a true reflection of the situation in the biofilm. Otherwise the lab report is not providing valid information. It could also be a means of educating the clinical team on interpreting lab results, as this should be done with due consideration of the clinical situation.

As expected, the 20 isolates tested demonstrated a scope of planktonic susceptibility to the 10 antibiotics tested; all isolates were susceptible to both glycopeptide antibiotics (vancomycin and teicoplanin). This is similar to previous studies which have also reported 100% susceptibility of Gram-positive isolates to vancomycin when tested planktonically (27). Of the remaining antibiotics, the variation in susceptibility can be explained by inter-species variation. Similar to the findings in this study, erythromycin resistance in staphylococcal species has previously been reported as varying from 0% in S. lugdunensis to almost 90% in S. haemolyticus (28). In addition to planktonic susceptibility as determined by the DD method, 11 of the retrieved isolates were selected to determine their antimicrobial susceptibility when grown in biofilm. As with other studies, the results reported here confirm that when in biofilm, staphylococcal isolates display resistance to antimicrobial concentrations greater than 10-1000 times greater than that of MIC breakpoints (29,30). It is of clinical significance that the isolates tested in this study were chosen to reflect typical bacterial isolates from different sites and a range of implanted devices. Therefore,
the MBEC results reported in this study demonstrate that this greatly elevated MBEC value, in comparison with established MIC breakpoints, is completely independent of any specific implant or location. Furthermore, the 11 isolates tested also displayed a variation in degree of biofilm formation from non-adherent (-) to strongly adherent (+++). As virtually all the isolates in this study displayed an MBEC of >256 µg/mL, this suggests that, although the previously described CV method (13) classifies four isolates (B2, B4, B10 and B37) as non-biofilm forming, they are able to adhere to an implant surface to some extent and subsequently form a biofilm structure. A possible explanation for this could be that charged CV stain is retained following interaction with negatively charged teichoic acids in polysaccharide-mediated biofilm but to a much lesser extent in protein-mediated biofilm. Furthermore, studies have reported that protein synthesis plays a role in early biofilm formation as well as having a role in interactions with an abiotic surface (31). Therefore, those isolates which reported negligible biofilm could in fact possess a protein-based biofilm structure which displays minimal CV absorbance. A further explanation could be simply due to phenotypic variation of different bacteria in biofilm. Previous studies have reported that the amount of biofilm produced by individual S. epidermidis isolates displayed considerable phenotypical variation and that this biofilm was regulated by several factors (19,32-34). Therefore, it is possible that, depending on the degree and constitution of the biofilm, the CV could be physically or chemically prevented from giving an accurate indication of the true extent of biofilm present. In addition, the biofilm could become more saccharide (sugary) in nature in the presence of antibiotics versus a more proteinaceous one when unchallenged.

Several studies have reported that sub-optimal use of certain drugs, such as tetracycline and nafcillin may lead to increased biofilm formation by means of upregulation of certain genes responsible for intracellular adhesion (11,29). As the ability to form a biofilm in microtiter plates has a strong correlation with the ability of S. epidermidis to cause disease in a clinical setting it also
is reasonable to assume that these findings would be similar to results encountered *in vivo* and be of clinical significance (35,36). Despite the 20 isolates showing variation in biofilm formation, as determined by CV staining, the MBEC values showed similar levels of resistance. To further investigate this, the mechanism of biofilm formation was investigated. Numerous studies have reported that staphylococcal biofilm formation occurs *via* a cell-surface interaction that is mediated by a number of factors such as surface proteins (37), extracellular proteins (38), PIA (39) and an autolysin encoded by the *atLE* gene (40). Of these factors, it is recognised that, in the majority of isolates, biofilm formation is mediated by production of PIA, synthesised by enzymes encoded by the *ica* operon (41). It is clear from the results of the current study that PIA does play a substantial role in biofilm formation. However, it is equally apparent that a proteinaceous mechanism also plays a fundamental role in biofilm formation of certain isolates. These findings are in agreement with previous studies for both *S. epidermidis* (42,43) and *S. aureus* (44-46). Furthermore, it has also been reported that protein factors are sufficient for biofilm formation in *S. epidermidis* isolates (20). In addition, studies have demonstrated that certain clinical staphylococcal isolates are biofilm positive and *ica* negative (47) while previous studies have reported the presence of extracellular DNA as an important factor for biofilm formation in *P. aeruginosa*, *Streptococcus intermedius* and *Streptococcus mutans* (48,49). In those isolates (e.g. B51 and B71) that displayed absorption (*A*₅₉₀) after both proteinase-K and NaIO₄ treatment it may be the case that, as previously reported, extracellular DNA may contribute to the biofilm formation (47). To date, numerous studies have reported the importance of PIA, synthesised by *icaADBC*-encoded proteins, in staphylococcal biofilm formation. Furthermore, recent studies have found a strong correlation between presence of the *ica* operon and strong to intermediate biofilm formation (26). It is therefore unsurprising that of the six isolates that demonstrated strongly adherent biofilm formation all possessed the *icaA*, *icaB* and *icaC* operons, confirming the suggestion that *icaADBC* is widespread in clinically significant *S. epidermidis* isolates (16,20,29). In addition to those isolates which were positive for
the icaA, icaB and icaC operons there are also isolates present which, although negative for these
operons did produce a detectable biofilm. Although unusual, this phenotype has been previously
reported, notably in a nosocomial setting (47). Under antibiotic selective pressure, normal biofilm
negative/ica negative isolates are able to develop the biofilm positive/ica negative phenotype which
subsequently is more resistant to vancomycin than biofilm positive/ica positive isolates.
Conversely, isolates B9 and B11 are ica positive, yet only form weak biofilms. In these instances
it is possible that, although the ica gene is present, for some unknown reason it is not fully
expressed.

The highly resistant nature of the isolates in biofilm tested in this study indicate that all clinical
isolates associated with indwelling devices, even in the absence of the ica gene, are still able to
form some sort of adherent structure which resists conventional antimicrobial therapy.

Conclusion

Although limited to 20 clinical staphylococcal isolates, the results of this study clearly indicate that
although these isolates demonstrated MIC susceptibility when exposed to antibiotic therapy, they
displayed a much higher MBEC when grown in biofilm. As biofilms are related to the majority of
infectious diseases (50) and are recognised as playing a fundamental role in infections associated
with indwelling devices, it may be necessary to employ the MBEC as a clinical breakpoint when
treating certain biofilm infections as opposed to current MIC breakpoints.

Although MBEC tests would incur additional laboratory costs and would be prohibitive on
processing all central venous catheter (CVC) samples it could be offered on a basis of clinical need
where it was imperative to keep the CVC in situ. This may occur when a patient is seriously ill and
there is no other means of vascular access. It may also aid clinical decision making to either stop

340 toxic antibiotics or extend the range of antibiotics tested for the MBEC. In addition, biofilm may

341 be present while the patient is asymptotic. However, the patient may be starting chemotherapy

342 which will compromise their immunity and if the MBEC is known it could direct the empirical

343 antibiotic therapy when infection occurs in the agranulocytosis phase.

344

345 By developing a technique to include degree of biofilm formation in conjunction with mechanism

346 of biofilm formation, it may be possible to tailor regimens, such as protease therapy, for difficult

347 to eradicate biofilm-mediated infections. This would serve to more closely replicate clinical

348 infection in vitro, improving: the ability to diagnose the presence and nature of biofilm infection;

349 the validity of antibiotic(s) prescribed; clinical outcomes and reducing the threat of antimicrobial

350 resistance.

351

352 **Acknowledgements**

353 A.B. was funded by a European Social Fund Grant. The supply of bacterial isolates by

354 Department of Microbiology, Belfast Health and Social Care Trust is gratefully

355 acknowledged.

356

357 **Conflicts of Interest**

358 The authors declare no conflicts of interest.
References

Table 1 Sites from which clinical isolates were cultured, including abbreviations.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Abbreviation</th>
<th>Location of isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1, B24, B37, B48, B49, B51, B63, B64, B71</td>
<td>CAPD</td>
<td>Continuous Ambulatory Peritoneal Dialysis Catheter or Fluid</td>
</tr>
<tr>
<td>B2, B3, B5, B6, B8, B9</td>
<td>CLT</td>
<td>Central Line Tip</td>
</tr>
<tr>
<td>B4</td>
<td>PCT</td>
<td>PermCath Tip</td>
</tr>
<tr>
<td>B7</td>
<td>ELT</td>
<td>Epidural Line Tip</td>
</tr>
<tr>
<td>B10</td>
<td>JLT</td>
<td>Jugular Line Tip</td>
</tr>
<tr>
<td>B11</td>
<td>VT</td>
<td>Venflon Tip</td>
</tr>
<tr>
<td>B12</td>
<td>FLT</td>
<td>Femoral Line Tip</td>
</tr>
</tbody>
</table>
Table 2 Antibiogram showing antibiotic susceptibility data for all isolates

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Organism</th>
<th>Penicillin</th>
<th>Oxacillin</th>
<th>Erythromycin</th>
<th>Clindamycin</th>
<th>Fusidic Acid</th>
<th>Tetracycline</th>
<th>Gentamicin</th>
<th>Vancomycin</th>
<th>Teicoplanin</th>
<th>Ciprofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>CoNS</td>
<td>S</td>
</tr>
<tr>
<td>B2</td>
<td>S.aureus</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B3</td>
<td>CoNS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B4</td>
<td>S.aureus</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B5</td>
<td>CoNS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B6</td>
<td>CoNS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>B7</td>
<td>CoNS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B8</td>
<td>CoNS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B9</td>
<td>CoNS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>B10</td>
<td>S.aureus</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B11</td>
<td>CoNS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>B12</td>
<td>CoNS</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>B24</td>
<td>CoNS</td>
<td>S</td>
</tr>
<tr>
<td>B37</td>
<td>CoNS</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B48</td>
<td>CoNS</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B49</td>
<td>CoNS</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B51</td>
<td>CoNS</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B63</td>
<td>CoNS</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B64</td>
<td>CoNS</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>B71</td>
<td>CoNS</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>
Table 3 Source of isolate tested and degree of biofilm formation based on classification described by Stepanovic et al. (2000). OD₅₀ = 0.255

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Organism</th>
<th>Source</th>
<th>Biofilm Formation</th>
<th>Absorbance (A₅₉₀)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>CoNS</td>
<td>CAPD</td>
<td>+</td>
<td>0.340</td>
</tr>
<tr>
<td>B2</td>
<td>S. aureus</td>
<td>CLT</td>
<td>-</td>
<td>0.220</td>
</tr>
<tr>
<td>B3</td>
<td>CoNS</td>
<td>CLT</td>
<td>++</td>
<td>0.775</td>
</tr>
<tr>
<td>B4</td>
<td>S. aureus</td>
<td>PCT</td>
<td>-</td>
<td>0.211</td>
</tr>
<tr>
<td>B5</td>
<td>CoNS</td>
<td>CLT</td>
<td>+</td>
<td>0.453</td>
</tr>
<tr>
<td>B6</td>
<td>CoNS</td>
<td>CLT</td>
<td>+++</td>
<td>2.762</td>
</tr>
<tr>
<td>B7</td>
<td>CoNS</td>
<td>ELT</td>
<td>+</td>
<td>0.284</td>
</tr>
<tr>
<td>B8</td>
<td>CoNS</td>
<td>CLT</td>
<td>+</td>
<td>0.308</td>
</tr>
<tr>
<td>B9</td>
<td>CoNS</td>
<td>CLT</td>
<td>+</td>
<td>0.272</td>
</tr>
<tr>
<td>B10</td>
<td>S. aureus</td>
<td>JLT</td>
<td>-</td>
<td>0.164</td>
</tr>
<tr>
<td>B11</td>
<td>CoNS</td>
<td>VT</td>
<td>+</td>
<td>0.261</td>
</tr>
<tr>
<td>B12</td>
<td>CoNS</td>
<td>FLT</td>
<td>+</td>
<td>0.269</td>
</tr>
<tr>
<td>B24</td>
<td>CoNS</td>
<td>CAPD</td>
<td>+++</td>
<td>1.956</td>
</tr>
<tr>
<td>B37</td>
<td>CoNS</td>
<td>CAPD</td>
<td>-</td>
<td>0.230</td>
</tr>
<tr>
<td>B48</td>
<td>CoNS</td>
<td>CAPD</td>
<td>+</td>
<td>0.344</td>
</tr>
<tr>
<td>B49</td>
<td>CoNS</td>
<td>CAPD</td>
<td>+++</td>
<td>2.169</td>
</tr>
<tr>
<td>B51</td>
<td>CoNS</td>
<td>CAPD</td>
<td>+++</td>
<td>2.440</td>
</tr>
<tr>
<td>B63</td>
<td>CoNS</td>
<td>CAPD</td>
<td>++</td>
<td>0.659</td>
</tr>
<tr>
<td>B64</td>
<td>CoNS</td>
<td>CAPD</td>
<td>+++</td>
<td>1.242</td>
</tr>
<tr>
<td>B71</td>
<td>CoNS</td>
<td>CAPD</td>
<td>+++</td>
<td>3.720</td>
</tr>
</tbody>
</table>
Table 4 MBEC (µg/mL) of bacterial isolates in biofilm

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Antibiotic</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Penicillin</td>
<td>Oxacillin</td>
<td>Clindamycin</td>
<td>Tetracycline</td>
<td>Vancomycin</td>
</tr>
<tr>
<td>B1</td>
<td>>256</td>
<td>>256</td>
<td>32</td>
<td>>256</td>
<td>256</td>
</tr>
<tr>
<td>B2</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>B4</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>B6</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>B10</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>B11</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>32</td>
</tr>
<tr>
<td>B24</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>B37</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>B48</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>B51</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
</tr>
<tr>
<td>B71</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
<td>>256</td>
</tr>
</tbody>
</table>

Table 5 Key of isolates in Figures 4a-4c

<table>
<thead>
<tr>
<th>Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolate</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B5</td>
<td>B6</td>
<td>B7</td>
<td>B8</td>
<td>B9</td>
<td>B10</td>
<td>B11</td>
</tr>
<tr>
<td>Ica operon</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Number</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Isolate</td>
<td>B12</td>
<td>B24</td>
<td>B37</td>
<td>B48</td>
<td>B49</td>
<td>B51</td>
<td>B63</td>
<td>B64</td>
<td>B71</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>Ica operon</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Figure 1

Click here to download Figure Mechanism of biofilm formation as determined by CV staining.docx
Figure 2c