The role of salt and shear on the storage and assembly of spider silk proteins

Published in:
Journal of structural biology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
NOTICE: this is the author’s version of a work that was accepted for publication in *Journal of Structural Biology*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Journal of Structural Biology*, [VOL170, ISSUE2, (May, 2010)] DOI: 10.1016/j.jsb.2009.12.027

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 19. Apr. 2022
Appendix A. Supplementary data.

Table 1

\[\beta\]-sheet content of the aggregates of \((AQ)_{12}NR3\), \((AQ)_{24}\) and \((AQ)_{24}NR3\) (formed at pH 7 in the presence of 50 mM NaCl and shear stress) estimated using OPUS secondary structure determination software (PLS Quant 2) based on infrared absorption between 1730.8 and 1594.8 cm\(^{-1}\). For the aggregates formed in the presence of shear, the values of \(\beta\)-sheet content displayed were recorded at three different orientations (0°/45°/90° respectively) relative to the long axis of the fibrous aggregates.

<table>
<thead>
<tr>
<th>Position of polarizer relative to the long axis of the fiber</th>
<th>((AQ)_{12}NR3)</th>
<th>((AQ)_{24})</th>
<th>((AQ)_{24}NR3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>28.39</td>
<td>29.09</td>
<td>35.14</td>
</tr>
<tr>
<td>45°</td>
<td>28.26</td>
<td>33.15</td>
<td>34.48</td>
</tr>
<tr>
<td>90°</td>
<td>26.11</td>
<td>30.74</td>
<td>34.21</td>
</tr>
</tbody>
</table>