The social acceptance of wind energy: Where we stand and the path ahead

Document Version:
Other version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 The Authors

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:12. Feb. 2020
The social acceptance of wind energy

Where we stand and the path ahead

Geraint Ellis
School of Natural and Built Environment, Queen’s University, Belfast
g.ellis@qub.ac.uk

Gianluca Ferraro
Joint Research Centre, European Commission
The Social Acceptance of Wind Energy: Where we stand and the path ahead

- Review of literature on social acceptance of wind energy undertaken for the European Commission’s Joint Research Centre in late 2016.
- Report aimed to provide evidence support for EU policy.
- Reviews key conceptual issues and main drivers of community concerns including attitudes, impacts and governance of wind energy projects.
- Also focuses on future research and key implications for policy and practice.

Research into Social Acceptance of Wind Energy

Most common European countries affiliated with 'wind energy' and 'community' research outputs, 1995-2015.

- Emphasis on peer-reviewed research, some grey literature
- Key searches + snowballing
- Focus on European context
- C.230 studies

Source: Scopus
Social Acceptance: Conceptual Issues

- From a bi-lateral society-technology relationship to a more complex concept.
- Energy as a social-technical system.
- Relationships between communities and turbines are dynamic, context specific & complex.
- Tendency to focus on individual projects and therefore open to isolated ‘fixes’.
- Concept has strong resonance with a many actors and creates an important space for debate and enquiry.
- It must also engage a range of other concepts including: power, justice, place attachment.

(from Wüstenhagen et al 2007)
Contexts of Social Acceptance

‘Universal’ factors:
Technological performance (noise, efficiency, cost); alternative technologies; references to wider narratives (climate change, energy security etc).

‘Political/Regulatory’ factors:
Trust; appropriateness of policy; compensation/subsidies; identification of ‘acceptable’ locations; defining expectations of stakeholders.

‘Project specific’ factors:
Project size; physical location; cumulative impacts; community make-up and attitudes; developer behaviour.
Community Attitudes

- Large body of research that has examined the attitudes of host communities, mostly based on individual & isolated case studies;
- Perspectives from range of disciplines;
- Body of evidence that indicates the influence of:
 - Individual attributes (demography etc);
 - Relationships (with developers etc);
 - Context (landscape, actors etc);
 - Perceptions of process;
 - Perceived impacts.
- However, methods have constrained understanding of the complexity and dynamic nature of individual disputes, link between action and attitude and wider structural elements of the energy system.

From Wolsink 2007
Governance of wind energy projects

- The way in which projects are regulated shape levels of social acceptance.
- Governance factors also influence:
 - Perceived costs and benefits of projects.
 - Opportunities for benefit sharing
 - Procedural justice and participation
 - Effectiveness of the broad policy environment to take account of community concerns
Summary of influences on social acceptance

<table>
<thead>
<tr>
<th>Issue</th>
<th>Key influences</th>
</tr>
</thead>
</table>
| **Individual attitudes** | • Age, gender etc
• Strength of place attachment
• Political beliefs and voting preferences
• Emotional response
• Prior experience of wind turbines
| **Key influences** | • Attitudes to environmental issues
• Psychological factors including perception of social norms
• Individual roles (consumer, landowner etc)
• Familiarity with wind energy |
| **Relationships** | • Type and level of social capital
• Trust in government other public agencies and developers
• Proximity to, and visibility of, turbines
• Technology-society relationships
| **Key influences** | • Time, reflecting the dynamic nature of social acceptance
• National-local policy
• Regulator-Developer links
• Discourses within and between communities |
| **Contextual issues** | • Policy regimes
• Project design – turbine height, colour number and massing
• Place attachment
| **Key influences** | • Range and mix of actors
• Ownership of proposed project
• Specific siting issues
• Cumulative impacts |
| **Perceived impacts** | • Noise
• Landscape
• Shadow flicker
• Property values
• Level of economic benefit
• Bio-diversity: bats, birds
• Infrasound
| **Key influences** | • Navigation lights
• Health concerns
• Levels of economic benefits
• Disruption of ‘place’
• Efficiency of turbines and wind energy
• Distributive justice |
| **Process-related issues** | • Trust in institutions involved
• Transparency and openness
• Procedural justice
• Expectations and aspirations of public participation
• Availability and quality of information
| **Key influences** | • Power in the participation process
• Value places on lay and expert knowledge
• Timing
• Discourses of community, developer, regulatory bodies
• Fait accompli |
Implications for future research

- Effective insights on *why* but *how* remains a major challenge;
- Is social acceptance the best conceptual frame?
- Alternative concepts are there?
- The dominance of discrete case studies and poor comparability;
- Common research protocols need for more methodological innovation;
- A better understanding of context, not just objectors;
- The potential of a complex socio-ecological model of acceptance;
- Developing a more coherent and diverse community of researchers.
Examples of future specific research areas

- Other models of ownership of wind resource ‘assets’;
- More robust assessment of the ‘fair process effect’;
- Drivers of ‘trust’;
- Further analysis of acceptance effects of community benefit schemes;
- Wider dynamics of acceptance, including developer focussed research;
- Communication, media and the mediation of acceptance;
- Comparative analysis of other forms of infrastructure development.
Implications for Policy and Practice

• A more reflexive research-practice relationship;
• New ways of securing knowledge exchange and co-production of evidence and innovation;
• Need to engage more complex understanding of site specific acceptance issues - no simple ‘fixes’;
• Acceptance as an part of system transformation and energy transition, with the state in a key steering role;
• Trust building measures, deliberation and intermediaries;
• Awareness of the impact of language and dominant frames (NIMBY...);
• Noisy projects or noisy neighbours?
• Translating energy policy into meaningful outcomes for communities and the role of planning;
• Examining ownership structures.
Conclusions

• Wide and eclectic body of research delivered key insights on why there may be low levels of social acceptance of wind projects;
• Less success in translating into how to increase a social acceptance;
• This reflects its complexity and context-specific nature;
• Some focused initiatives needed, but acceptance should ultimately be seen as related to structural issues of energy transition.