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 ���

The Qarun Lake in the Faiyum Oasis (Egypt) provides a unique record of Holocene ���

environmental and climate change in an arid area largely void of fossil proxy records. ���

Multiple lithological, palaeontological. and geochemical proxies and 32 radiocarbon dates ���

from the 26-m long core FA-1 provide a time-series of the lake transformation. Our results ���

confirm that a permanent lake in the Holocene appeared at ~10 cal. ka BP. The finely-�	�

laminated lake sediments consist of diatomite, in which diatoms and ostracods together with �
�

lower concentrations of ions indicate a freshwater environment at the end of the early and ���

middle Holocene. This was closely associated with regular inflows of the Nile water during ���

flood seasons, when the Intertropical Convergence Zone (ITCZ) migrated northwards in ���

Africa, although it has probably never reached the Faiyum Oasis. Local rainfalls, possibly ���

connected with a northern atmospheric circulation, could have been important during winter. ���

Several phases in the lake evolution are recognized, represented by oscillations between deep ���



� �

open freshwater conditions during more humid climate and shallow fresh to brackish water ���

during drier episodes. After a long freshwater phase, the lake setting has become more ���

brackish since ~6.2 cal. ka BP as indicated by diatoms and increasing contents of evaporite �	�

ions in the sediment. This clearly shows that since that time the lake has become occasionally �
�

partly desiccated. It resulted from a reduced discharge of the Nile. In the late Holocene the ���

lake was mostly brackish turning gradually into a saline lake. This natural process was ���

interrupted about 2.3 cal. ka BP when a man-made canal facilitated water inflow from the ���

Nile. The examined FA-1 core can be used as the reference age model of climate change in ���

the Holocene and its impact on development and decline of ancient civilisations in north-���

eastern Africa. ���
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Palaeoclimatic and geoarchaeological data confirm that transformations of natural ���

environment in north-eastern Africa during the Holocene were caused by climate �	�

fluctuations. They stimulated the development and collapse of past human cultures and �
�

civilisations in the Nile drainage basin (e.g. Kuper & Kröpelin 2006; Schild & Wendorf ���

2013; Welc & Marks 2014). Long-term south-north migration of the Intertropical ���

Convergence Zone (ITCZ) during early and middle Holocene seems to have been responsible ���

for a major climate change in the northern Nile drainage basin (e.g. Overpeck et al. 1996; ���

Abell & Hoelzmann 2000; Arz et al. 2003; Hoelzmann et al. 2004; Nicoll 2004; Kröpelin et ���

al. 2008; Welc & Marks 2014). ���

The study area of the Faiyum Oasis is presently located in a desert zone, but this region ���

experienced varying degrees of aridity during the Holocene (cf. Kuper & Kröpelin 2006; ���

Schild & Wendorf 2013). Lake deposits in the Faiyum Oasis are a unique archive of late �	�

Quaternary palaeoclimate data for the northern part of the Nile basin (Flower et al. 2012; �
�

Marks et al. 2016). Regular water inflows from the Nile into the Faiyum Oasis in the ���

Holocene resulted from the Indian summer monsoon system in northern Africa that activated ���

seasonal floods in the northern Nile (Weldeab et al. 2007; Woodward et al. 2007; Revel et al. ���

2014). In the centre of the Faiyum Oasis, a vast freshwater reservoir has formed due to ���

seasonal hydrological connection with the Nile (cf. Fig. 1). The relic of this ancient lake ���

survived until the present as the saline and shallow Qarun Lake (Wendorf & Schild 1976; ���

Flower et al. 2012, 2013; Zalat 2015; Marks et al. 2016). ���

The dynamics of hydrological and climatic changes in the Nile drainage basin are ���

reflected in the lithological. and geochemical. characteristics of sediments in the Faiyum �	�

Oasis where the lake filled a central part of the depression. Because the Faiyum Oasis was �
�

located outside the northern extent of the monsoon rainfalls in the Holocene (cf. Williams et ���

al. 2000; McCorriston 2006), the lake sediments must have reflected mostly local ���
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hydroclimatic conditions. The lake level fluctuations were highly dependent on the frequency ���

of inflows of the Nile water and the Nile discharge was controlled by the intensity of the ���

remote precipitation regime in the Ethiopian Highlands where two main tributaries of the ���

Nile originate i.e. the Blue Nile and the Atbara rivers (Baioumy et al. 2010; Hassan et al. ���

2011). During the Holocene the northernmost part of Egypt and the Red Sea have also been ���

influenced by the North Atlantic Circulation, defined also as the Mediterranean Circulation ���

that created winter rainfalls of varying intensity (e.g. Arz et al. 2003; Marks et al. 2016). �	�

The present contribution is focused on environmental and climate changes recorded in �
�

lake sediments of the Faiyum Oasis. It partly follows a postulate of Flower et al. (2012) to 	��

demonstrate a full potential of the palaeoenvironmental records with a use of a continuous 	��

high-resolution analysis of the Holocene sediments in the Faiyum Oasis. Two cores: FA-1 	��

(26 m long) and FA-2 (4 m long) were drilled at the south-eastern shore of the Qarun Lake 	��

(Fig. 1) in February 2014. They provided complete and undisturbed succession of the 	��

Holocene lake sediments (Marks et al. 2016). Collected samples were subjected to 	��

comprehensive laboratory analyses, the most significant results of these are presented in this 	��

paper. 	��

 		�

Site location and previous studies 	
�

The area of the Faiyum Oasis is estimated at some 1270 to 1700 km2 (Fig. 1). It is located 
��

within Eocene and Oligocene rock formations, composed mostly of organodetritic 
��

limestones, marls and sandstones of shallow water facies. Oligocene, Late Miocene and 
��

Pliocene sedimentary series are overlain by Quaternary sediments, mainly of lacustrine and 
��

aeolian origin (Beadnell 1905; Said 1981). 
��

The Faiyum Oasis is one of the most important depressions in the Western Desert of 
��

Egypt and the question of its origin has been a subject of numerous disputes and 
��
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controversies. Its current shape had been controlled by subsidence until the Late Eocene 
��

(Dolson et al. 2002). A lake could occupy the oasis already in the Pliocene, then it probably 
	�

dried up in the Pleistocene and intensive deflation occurred, followed by filling with the Nile 

�

waters at the beginning of the Holocene (cf. Beadnell 1905; Caton-Thompson & Gardner ����

1929). On the other hand, Ball (1939) and Said (1979) suggested that the depression was ����

formed by complex tectonic movements and deflation, active since the Pleistocene to the ����

present time (Kusky et al. 2011). ����

At present, the northern part of the Faiyum Oasis is occupied by the Qarun Lake ����

(location: 29°26�36� � 29°31�15� N and 30°23�52� � 30°49�55� E), which is a relic of the ����

early and middle Holocene freshwater reservoir (cf. Caton-Thompson & Gardner 1934; ����

Wendorf & Schild 1976). The maximum depth of the Qarun Lake is about 8.5 m and its ����

water level is equal to 44 m b.s.l. The reservoir is highly saline (>30gL-1), turbid and devoid ��	�

of surface outflow, with mean water temperature changing seasonally from 15 to 33°C (El ��
�

Wakeel 1963; El-Sayed & Guindy 1999; Flower et al. 2006, 2013; El-Shabrawy & Dumont ����

2009). ����

The Qarun Lake has been studied intensively since the beginning of the 20th century, ����

particularly along its coastline. Previous investigations focused mainly on terrestrial ����

exposures of diatomite in the north-eastern part of the Faiyum Oasis (Aleem 1958; ����

Przyby
owska-Lange 1976; Schild & Wendorf 1976; Zalat 1991, 1995). This was due to ����

presence of numerous archaeological. sites, mainly of Epipalaeolithic and Neolithic age ����

(Caton-Thompson & Gardiner 1929; Wendorf & Schild 1976). These studies resulted in the ����

reconstruction of the main transgressive and regressive phases of the lake, named in turn ��	�

Paleomoeris, Premoeris, Protomoeris and Moeris (Wendorf & Schild 1976). ��
�

Recent interdisciplinary research during which several drillings were performed in the ����

lake and along the southern shore of the Qarun Lake provided important data concerning the ����
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origin and biostratigraphy of the Holocene lake (Keatings et al. 2010; Flower et al. 2012, ����

2013). The most important was the 21.4 m long core QARU 9 (Flower et al. 2013). However, ����

its location at the south-western lake shore, as with the other cores (Fig. 1), provided a ����

limited record of hydrodynamic and palaeogeographic transformations of the lake during the ����

Holocene (Marks et al. 2016). Moreover, its chronology was based on only three radiocarbon ����

dates. Therefore, here we present the new borehole FA-1 (Fig. 2), as likely the longest, best-����

dated and most complete succession of the Holocene lake sediments in north-eastern Africa ��	�

(e.g. Pachur et al. 1990; Schild & Wendorf 2001; Kröpelin et al. 2008; Marshall et al. 2009; ��
�

Baioumy et al. 2010; Flower et al. 2012). ����

 ����

Methodology ����

Drilling, sampling and lithological analysis ����

Drilling was performed with a self-propelled American set Acer with hydraulic rig. The core ����

sections were collected in plastic pipes, each 1 m long and 10 cm in diameter. The most of ����

the subsequent analysis was done at intervals of 5 cm, except where stated otherwise. ����

Preliminary lithological description was based on macroscopic inspection of the core, ����

supplemented with detailed examination of selected fragments using an optical microscope. ��	�

This general lithological-geochemical analysis of sediments enabled the selection of samples ��
�

for more detailed analyses. ����

 ����

SEM EDS analyses ����

Samples were dried at room temperature and then analyzed using an electron scanning ����

microscope (HITACHI TM 3000), supplied with an energy dispersion spectrometer (SWIFT ����

ED 3000 Oxford Instruments). Samples were put directly on a carbon band. Surface and ����

point analyses were done with using an accelerating voltage of 15 kV. The analyses were ����
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performed at the Research Centre on Innovations, John Paul 2nd State Higher School in Bia
a ����

Podlaska, Poland. ��	�

 ��
�

Ion-geochemistry analysis ����

10-mg dried samples were put into 20 ml centrifuge tube vials containing 10 mL distilled-����

deionised water (resistivity of 18 M�), placed in ultrasonic water bath for 60 min and then ����

shaken by mechanical shaker for 1h for complete extraction of ionic compounds. The extracts ����

were filtered with 0.45 µm pore size microporous me mbranes and filtrates were stored at 4°C ����

in a clean tube before further analysis. Three anions (SO4
2-, NO3

- and Cl-) and five cations ����

(Na+, NH4
+, K+, Mg2+ and Ca2+) were determined in aqueous extracts of the filters, prepared ����

in three steps using ultrapure (18 M�) water. Ion chromatography (IC, Dionex 500, Dionex ����

Corporation, Sunnyvale, California, United States) was used for the analysis at the Institute ��	�

of Earth Environment, Chinese Academy of Sciences (IEECAS). Blank values were ��
�

subtracted from sample concentrations. One sample in each group of 10 samples was ����

analyzed twice for quality control. Typical precision (percent relative standard deviation) for ����

six pairs of samples was calculated using the equation: Xi = (Ci1 � C i2)/Cia, where Ci1 and Ci2 ����

were routine and duplicate concentrations, Cia was the mean concentration for the ����

measurement pair i and Xi was the relative difference. The maximum relative precisions were ����

1.8% for Na+, 0.9% for NH4
+, 0.6% for K+, 4.0% for Ca2+, 1.0% for Mg2+, 1.2% for SO4

2-, ����

2.6% for NO3
- and 0.3% for Cl- (Shen et al. 2008). ����

 ����

Diatom analysis ��	�

Diatoms were extracted from the studied samples according to the procedure proposed by ��
�

Zalat (2002) and Zalat & Servant-Vildary (2005, 2007). Diatom identification and statistical ����

studies were done in the Geological. Department of the Tanta University in Egypt with a use ����



� 	

of Carl Zeiss light microscope combined with digital camera at normal x100 oil immersion ����

objective. In slides sufficiently rich in diatoms, 1000 diatom valves were counted, whereas at ����

least 200 valves were counted in samples with low-diatom concentrations. Percentage ����

contents of species were calculated for estimation of ecological parameters as life-form ����

groups, pH and salinity. Relative frequencies of every species were calculated as the ����

percentage of total diatom valves (%TDV) in each sample, and identification of ecological. ����

preferences of diatom species was based on previous works (e.g. Hustedt 1930-1966, 1957; ��	�

Ehrlich 1973; Stoermer et al. 1975; Gasse 1986; Kilham et al. 1986; Zalat 1991; Wolfe et al. ��
�

2000; Bradbury et al. 2004; Zalat & Servant-Vidary 2007). �	��

 �	��

Mollusc and ostracod analysis �	��

Standard methods established by Lo�ek (1986) were a pplied for mollusc analysis of 6 �	��

sediment samples with abundant shells: five were collected at 5 cm intervals at depth of 18.9 �	��

� 18.7 m (volume 50 cm 3 each) and a single bulk sample at depth 4.0 � 3.5 m (370 cm3). �	��

Samples were wet-sieved with 0.5 mm mesh. All shells and their identifiable apical �	��

fragments were picked from the dried residue, identified under a binocular microscope �	��

(magnification up to 64x) with reference to taxonomical keys (Brown 1994; Götting 2008; �		�

Welter-Schultes 2012) and counted (Lo�ek 1986). Eco logical preferences of mollusc species �	
�

were based on Taraschewski & Paperna (1981), Brown (1994), Götting (2008), Ghamizi et �
��

al. (2010, 2012) and Welter-Schultes (2012). �
��

Ostracod valves and carapaces were studied in 29 samples according to the method �
��

described by Löffler (1986). The core was sampled a t every 5 cm at 18.9 � 18.7 and 18.1 � �
��

17.9 m depth. Samples were collected every 1 m at 18.1 � 13.0 m and 8.0 � 5.0 m depth and �
��

every 0.5 m at 13.0 � 8.0 m depth. Density of sampl ing depended on the abundance of fossils. �
��

Ten cm3 of sediment per sample were washed through 0.1 mm mesh sieve. Ostracods were �
��



� 


taxonomically determined according to Sywula (1974) and Keatings et al. (2010) using a �
��

binocular microscope (magnification up to 64x). �
	�

 �

�

Radiocarbon dating ����

From layers with organic-rich mud or mud with dispersed organic matter, samples were ����

selected for radiocarbon dating. The organic matter could have been produced within the lake ����

itself but also partly derived from external terrestrial sources (for example through inwash ����

from local heavy rainfall or periodical floods of the Nile). AMS dating was done at the ����

Pozna� Radiocarbon Laboratory in Poland using graphite targets (Goslar et al. 2004). ����

Conventional 14C ages were calculated using corrections for isotopic fractionation according ����

to Stuiver & Polach (1977). The �13C values cannot be used for palaeoecological ����

reconstructions, because they were measured in the graphite prepared from the samples, and ��	�

the graphitisation process introduces significant isotopic fractionation. The second point is ��
�

that the AMS spectrometer introduces fractionation, too. The �13C values reflect therefore the ����

original isotopic composition in the sample very roughly only. Nevertheless, this �13C ����

measurement is fully suitable for fractionation correction of 14C/12C ratios. ����

Calibration of 14C age was performed (Fig. 3), using OxCal ver. 4.2 software ����

(http://c14.arch.ox.ac.uk) and the northern hemisphere terrestrial calibration curve IntCal13 ����

(Reimer et al. 2013). An age-depth model was produced using the Bayesian software Bacon ����

(Blaauw & Christen 2011), which assumed a piece-wise linear accumulation of the lake ����

sediment constrained by prior information on the lake�s accumulation rate and its variability ����

between neighbouring depths. ���	�

 ��
�

Results ����

Lithological characteristics of the core FA-1 ����
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The basal succession of the core FA-1 (Fig. 2) is composed of massive carbonate clayey ����

eluvium (26.0 � 20.8 m depth). This is overlain by coarse sand at 20.8 � 19.8 m depth, ����

followed by thinly and rhythmically-laminated silt and clay, interrupted at 15.53 � 15.45 m ����

depth by a sand layer. The clayey and silty material is probably fluvial in origin and indicates ����

inflow of the Nile water during the summer floods, whereas sandy and carbonate material ����

could be derived by local heavy rainfalls from the vicinity of the lake (cf. Flower et al. 2012). ����

The thinly laminated part of the core (19.76 � 13.0 5 m depth) is composed of carbonate, ��	�

diatomite and clayey laminae. Light laminae contain almost exclusively planktonic diatoms ��
�

of the genera Stephanodiscus and Aulacoseira (relative abundance of 60-90%). There are also ����

very thin (~0.5 mm) layers of amorphic organic matter.�����

A considerable lithological change occurs at 13.1 m depth (Fig. 2). Rhythmites are ����

replaced by massive silt and clay with irregular, thick diatomite and ferruginous interbeds. At ����

12.8 � 10.0 m depth, the core is composed mostly of  silty clay with white-grey interbeds, 1-5 ����

mm thick, containing predominantly Aulacoseira granulata and Stephanodiscus diatoms (90-����

95%). Starting from depths of ~8 m upwards, the core is composed of massive silty clay with ����

sandy interbeds at ~7.6 m and 7.2 m. At 6.9 � 6.3 m  they are replaced by silty clay with ����

dispersed organic matter and irregular crystals of gypsum. ��	�

Steel-gray silty clay is characteristic at depth 6.0 � 5.6 m and it is occasionally ��
�

interbedded with organic and white-gray laminae (Fig. 2). At depth 5.5 � 4.0 m the core is ����

composed of massive gray-brown silty clay. Above, at 4.0 � 3.4 m there is a loose shell ����

sediment with pieces of malacofauna mixed with gray sludge silt. This deposit resembles ����

modern shell accumulations on the present beach. The overlying sediments at 3.4 � 1.9 m ����

depth are composed of massive gray-brown silty clay with gravel grains, several mm in ����

diameter (depth 2.57 � 2.65 m). At 2.2 m depth silt  is predominated by angular grains of ����

quartz. ����



� ��

 ����

Age model and sedimentation rate ��	�

Most samples for radiocarbon dating were collected from layers rich in organic matter, except ��
�

for the lowermost part (Table 1). In the lower part of the core (depth 18.5 � 13.0 m) there are ����

regular and very thin laminae of dark brown amorphous organic matter intercalated with ����

diatom and calcite laminae. Other fragments of the core contain laminated deposits separated ����

by either sandy-silty massive or deformed series (cf. Fig. 2). Several successive laminae could ����

be deposited in a single year (cf. Marks et al. 2016).�����

Organic material, usually associated with calcite layers, indicates a predominance of ����

inner-lake biological processes including a high algal productivity (cf. Flower et al. 2012). In ����

the upper 13.0 � 2.0 m, less regular (see Marks et al. 2016), bulk samples were collected for ����

radiocarbon dating, composed of silty clay with varied admixture of organic matter. We ��	�

assumed that this organic matter was produced by both biogenic production within the lake ��
�

and delivery of allochthonous material, both alluvial from the Nile during summer floods and ����

terrestrial material eroded during occasional heavy rainfall in winter (see Flower et al. 2012). ����

Such significant redeposition could result in a hard water effect and incorporation of old ����

carbonates and other carbon sources. We note that the radiocarbon dates show a considerable ����

spread at this section of the core (Fig. 3), whereas they appear much more coherent within the ����

other sections. ����

Calcite is present in the laminated deposits and it means that a hard water effect is very ����

likely on the authochonous organic material as well. We have not done any exact estimation ����

of the hard water effect but it seems obvious that it is higher in the lower part of the core, ��	�

because of intensive redeposition of carbonates from the area around the lake. This effect is ��
�

considerably smaller in the laminated part of the section, especially as we selected the ����

samples from the organic laminae. In the upper part of the section where the lamination is ����
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absent the hard water effect can be higher as the bulk samples were mostly collected for the ����

radiocarbon dating. ����

Construction of the age-depth model of the lake sediments required an assessment of ����

several agents that could disturb constant accumulation of deposits. Disturbances could result ����

both from sedimentary and post-sedimentary processes, including varying rates of deposition, ����

erosional and omission surfaces, progressive or varied compaction and impacts of ����

bioturbation. In the examined core some of these factors could be ignored such as effects of ��	�

compaction (because of highly homogeneous sediment in the analyzed section) and ��
�

bioturbation (no benthic organisms were detected) (e.g. Björck & Wohlfarth 2001). A �	��

potentially important factor was a varied influx of sediment to the lake from the adjacent area �	��

and by the Nile. We therefore used Bacon (Blaauw & Christen 2011), a flexible age-depth �	��

routine which explicitly models the accumulation rate and its variability, and which uses �	��

student-t distributions with wide tails to accommodate dating scatter. We used all the default �	��

settings, except for the section thickness which was set at 20 cm given the length of this core. �	��

Bacon used the IntCal13 curve (Reimer et al. 2013) to calibrate the radiocarbon dates.��	��

Sedimentation rate in the lake was estimated based on counting of the laminae, using the �	��

high-resolution photographs of the core. Every set of laminae (diatom, mineral and organic �		�

mud) was assumed to represent a single year. The reconstructed sedimentation rate was the �	
�

lowest in the initial phase of the lake, represented by the finest and most regular lamination at �
��

19.8 � 18.9 m depth, with average annual sedimentat ion rate of 1.4 mm (Fig. 4). Uniform and �
��

then slightly rising sedimentation rate of 2.7 � 7. 7 mm a-1 occurs at 18.4 � 14.1 m depth �
��

Sedimentation rate has risen consequently above the depth of 14.1 m and reached maximum �
��

of 37.7 mm a-1 at 9.08 � 8.5 m, indicating an unstable sedimentar y environment. At depth �
��

18.25 � 12.50 m twelve samples were radiocarbon dat ed, both from organic agglomerations �
��

and bulk samples with dispersed organic matter (Table 1). Contents of total organic carbon �
��
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are the highest and of carbonates are the lowest in this part of the core and all ages are almost �
��

in perfect superposition, presumably indicating that neither substantial disturbances in carbon �
	�

content nor significant redeposition have impacted sedimentation in this part of the core. �

�

Taking into account the above considerations and other data, tentative chronological. ����

boundaries were determined for the core FA-1 (Fig. 3). Very low contents of total organic ����

carbon below 19.7 m depth and much inorganic carbonate between 19.5 and 19.0 m depth ����

made the age model tentative for these parts of the core.�����

 ����

Lake salinity and geochemical. indicators of climate change ����

Variations of salinity in the lake could directly reflect incoming water sources and ����

evaporation. Among the former the most important were intermittent inflows of the Nile ����

water, because impermeable bedrock and small annual precipitation made eventual feeding ��	�

by groundwater doubtful (Flower et al. 2012). Palaeosalinity of the lake was determined via ��
�

measurement of contents of water-soluble ions in the sediment. The lake water was found to ����

have evolved generally from freshwater to saltwater setting but it was not a straightforward ����

change. This went through several important stages of sedimentation: from carbonate to ����

sodium, to sulphur and then to the final desiccated lake basin. Analytical. results from the ����

core FA-1 sediments indicate at least 6 phases (Fig. 5), based on varying contents of ions in ����

the sediments: ����

Phase 1 (>19.8 m depth, >9.8 cal. ka BP): except of NH4
+ which was derived mainly from a ����

soil release, the lowest values of all anions were due to drier climate and indicated a ����

desiccated lake basin. ��	�

Phase 2 (19.8 � 13.1 m depth, ~9.8 � 6.2 cal. ka BP ): contents of NH4
+ and NO3

- increased ��
�

dramatically upwards but with minor increases for Cl-, Na+, Mg2+ and Ca2+ (Fig. 5), ����

suggesting a relatively strong nitrification due to enhanced productivity of the lake ����



� ��

dominated by freshwater setting. Therefore, the freshwater environment implies a ����

hydrological linkage with the Nile, although minor fluctuations in ion contents ����

suggested certain irregularities over time. ����

Phase 3 (13.1 � 12.4 m depth, 6.2 � 5.9 cal. ka BP) : sharp increases of Cl-, Mg2+, Ca2+ and ����

Na+ indicated rapid rise in lake water salinity (Fig. 5). This implies a dry ����

environment setting and notably a restricted hydrological. connection with the Nile. ����

Phase 4 (12.4 � 7.9 m depth, 5.9 � 4.4 cal. ka BP) � ion contents were kept almost stable. ��	�

This implies slight salinization resulting from moderate connection to the Nile. ��
�

Phase 5 (7.9 � 4.0 m depth, 4.4 � 1.5 cal. ka BP): evident increase of all ion contents at the ����

beginning (Fig. 5) indicates enhanced salinization due to lack of precipitation and/or ����

input from the Nile. ����

Phase 6 (4.0 � 1.9 m depth, <1.5 cal. ka BP): all a nions contents were kept lower than ����

previously. This suggests a sound connection of the lake to the Nile. ����

 ����

Diatom phases ����

Diatoms are abundant and moderately to well-preserved throughout the core FA-1 from a ����

depth 19.8 to 6.5 m, and relatively frequent toward the top but with some samples containing ��	�

poorly preserved sporadic diatoms (depths: 6.3 � 5. 9, 5.7 � 5.6, 4.9 � 4.8 and 4.2 � 4.0 m). A ��
�

low diversity with 112 species is recognized. Planktonic taxa are the most abundant, reaching ����

to 98% of the total assemblage, while benthic and epiphytic forms are very rare and sparsely ����

distributed. Aulacoseira with 11 species, followed by Stephanodiscus with 9 species are the ����

most dominant planktonic genera, with Cyclostephanos and Cyclotella species distributed ����

frequently (Fig. 6). ����

The diatom spectra are dominated by riverine taxa including Aulacoseira granulata, A. ����

italic, A. ambigua and Stephanodiscus spp. Abundant peaks of these taxa are intepreted as an ����
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indication of increased discharge of the Nile water into the lake. The diatom assemblage ����

indicative of high stand lake level and increased nutrient availability persisted in the ��	�

Holocene but lower concentrations or lack of diatom valves at some depths (6.3 � 5.6, 4.95 � ��
�

4.8, 4.9, 4.2 � 4.0 m) suggest lower diatom product ivity. The upper part of the core (depth 4.0 ����

� 2.0 m) is completely barren of diatom frustules, reflecting marked environmental changes ����

in the lake, connected with transition from freshwater through brackish to saline conditions. ����

Stratigraphic distribution of recorded planktonic taxa samples led to recognition of 5 types of ����

diatom ecozones in the studied core that is Aulacoseira spp., Stephanodiscus spp., ����

Aulacoseira-Stephanodiscus spp., Cyclostephanos dubius and Aulacoseira spp.-Cyclotella ����

meneghiniana (Fig. 6). ����

 ����



� ��

Aulacoseira spp. assemblage. � This assemblage is recorded 9 times (Fig. 6), b eing ��	�

dominated by Aulacoseira granulata and accompanied commonly by A. granulata var. ��
�

angustissima, A. ambigua, A. italica and A. islandica. There are low contents of other ����

planktonic taxa. Aulacoseira granulata was a freshwater planktonic and alkaliphilous ����

species, common in eutrophic water of higher temperature (Hustedt 1957; Ehrlich 1973; ����

Stoermer et al. l975). The Aulacoseira species indicates high growth requirements for silicon ����

and demanded high silica content in water (Kilham & Kilham 1971), presumably in different ����

combinations of P and light (Kilham et al. 1986). However, Aulacoseira species are non-����

competitive, so their wide distribution normally coincided with low concentration of other ����

diatoms (Wolfe et al. 2000). Aulacoseira taxa are also used as indicators of warmer climate, ����

which may have led to wind-induced mixing in the lake, higher input of humic substances ��	�

and increased precipitation. They suggest stabilized conditions, remaining wet and windy ��
�

with increased turbulence and upwelling in the lake, typical of a late phase of the Nile flood ����

cycle (Zalat 1995). Aulacoseira species were presumably most dominant in summer and ����

relatively common in spring. Their predominance indicates summers with high silica ����

concentration. Maximum abundances of Aulacoseira granulata associated with other ����

Aulacoseira species and decreased abundance of Stephanodiscus and Cyclotella species ����

could reflect a freshwater lake with relatively high level due to nutrient-rich influx from the ����

Nile during a wet warm period. ����

 ����



� ��

Stephanodiscus spp. assemblage. � Seven such assemblages are recorded (Fig. 6). T hey have ��	�

the highest abundance of planktonic freshwater Stephanodiscus species (60-83%), including ��
�

S. rotula, S. agassizensis, S. minutulus, S. aegyptiacus, S.neoastraea, S. alpinus, S. hantzschii �	��

and S. niagarae. Other planktonic taxa are rare. Stephanodiscus species are known to occupy �	��

slightly alkaline and eutrophic freshwater with low silica content (Gasse 1986; Kilham et al. �	��

1986; Zalat & Servant-Vildary 2007). Stephanodiscus taxa were dominant in winter and �	��

spring when increased turbulence could suspend these relatively heavy diatoms, therefore �	��

they could denote moist winters and springs with active circulation (Bradbury 1992; �	��

Bradbury et al. 2004). Dominance of small and intermediate-sized Stephanodiscus species (S. �	��

minutulus, S. hantzschii, and S. agassizensis) characterized spring bloom when nutrient �	��

loading was related to spring runoff, along with Aulacoseira granulata. The increased �		�

abundance of planktonic Stephanodiscus species reflects a high lake level and increased �	
�

nutrient loading to the lake with low Si and high P supply rates prevailing at time of �
��

deposition (Zalat 2015). �
��

 �
��

Aulacoseira-Stephanodiscus spp. assemblage. � This assemblage is recorded three times in �
��

the core FA-1 (Fig. 6) and is characterized by common occurrence of Aulacoseira spp. and �
��

Stephanodiscus spp. (80-90%). Other planktonic taxa are distributed sporadically. This �
��

diatom assemblage is indicative of a high stand lake level with enhanced nutrient availability �
��

by repeated inflows of the Nile to the lake at the transition from spring to summer. �
��

 �
	�

Cyclostephanos dubius assemblage. � This assemblage is observed in 3 thin zones (Fi g. 6). It �

�

is characterised by abundance of Cyclostephanos dubius (40-55%), accompanied by ����

Aulacoseira spp., which is more abundant than Stephanodiscus taxa. Other planktonic taxa as ����

Cyclotella kützingiana and C. ocellata are distributed frequently. Cyclostephanos dubius is a ����



� �	

pelagic taxon, common in flowing and stagnant freshwater in a coastal area, of low ����

conductivity and low to medium alkalinity (pH = 7.6-8.9). The diatom assemblage includes ����

common occurrences of Aulacoseira spp., Cyclostephanos dubius and Stephanodiscus taxa, ����

indicating a high stand lake level with clear dominance of eutrophic freshwater conditions ����

and slightly higher salinity and alkalinity in summer. ����

 ��	�

Aulacoseira spp. � Cyclotella meneghiniana assemblage. � The zone was recorded only once, ��
�

with a thickness of about 0.5 m (Fig. 6) and is characterised by high abundance of ����

Aulacoseira spp. and Cyclotella meneghiniana. Other planktonic taxa including ����

Stephanodiscus spp. and Cyclotella spp. are rare. Cyclotella meneghiniana is a facultative ����

planktonic taxon typical for moderately alkaline conditions (Hecky & Kilham 1973; ����

Richardson et al. 1978), in coastal and estuarine locations with water of varied chemistry ����

(Trigueros & Orive 2000; Tibby & Reid 2004). Its most favourable development occurs at ����

~20°C but it is eurythermal (Gasse 1986). This spec ies was reported from slightly brackish ����

water of coastal Egyptian lakes, being dominant in spring and at the beginning of summer at ����

water temperatures of 29-31°C (Zalat & Servant-Vild ary 2007). Common occurrence of ��	�

Cyclotella meneghiniana with high abundances of Aulacoseira species and frequently to low ��
�

amounts of Stephanodiscus taxa reflect warm eutrophic freshwater conditions with slight ����

increased salinity and alkalinity. ����

 ����

Mollusc and ostracod indicators ����

Altogether 10 taxa of molluscs (6 snails and 4 bivalves) and 8 taxa of ostracods are ����

recognized in the FA-1 core (Table 2). Molluscs are represented by 735 specimens, but with ����

1-8 taxa and from 2 to 726 specimens in a single sample. Shells are abundant in the upper ����

part of the core (4.0 � 3.5 m depth) and their asse mblage is predominated by brackish species, ����



� �


among which the most numerous is Hydrobia ventrosa and Cerastoderma glaucum. These ��	�

species are accompanied by euryhaline snails Pirenella conica and Hinia costulata and three ��
�

freshwater snails, the most abundant of which was Melanoides tuberculata (Table 2). The ����

lowermost samples (18.9 � 18.7 m depth) contain ver y scarce shell material with only few ����

specimens of the freshwater endemic snail Valvata nilotica and fragments of saline bivalves ����

Abra ovata and Cerastoderma sp. (Table 2). ����

Ostracods with 8 taxa and 2872 specimens are more abundant than molluscs. There are ����

1-6 taxa and from 2 to 626 specimens in a single sample, with the lowest number at depths of ����

18.05, 17.95 � 17.9 and 17.0 � 6.0 m (Table 2). Mos t ostracod species have wide ecological. ����

tolerance (Sywula 1974; Park & Martens 2001; Keatings et al. 2010). Samples from 18.9 � ����

18.7 m depth are dominated by Herpetocypris sp. (juveniles and damaged valves) and ��	�

Gomphocythere sp., most common and characteristic for a sublittoral zone of a freshwater ��
�

lake (e.g. Park & Martens 2001; Boomer & Gearey 2010; Cohen et al. 2013). Numerous ����

Candona neglecta and Limnocythere inopinata tolerate both fresh and salty waters, and ����

various depth conditions. Cyprideis torosa dominate at 18.0 m and 4.0 � 3.5 m depth. It is th e ����

most frequent in calm, near-shore zones of a brackish water body (cf. Sywula 1974; Neale ����

1988). The valves of this species are all without the nodes (cf. Keatings et al. 2010). It seems ����

that most ostracods represent a near-shore zone and they were common at depths when a ����

coastline was near the drilling site. ����

The occurrence of Valvata nilotica and Gomphocythere sp. at 18.9 � 18.7 m depth ����

indicates a freshwater environment. Single fragments of shells of salt-water taxa Abra ovata ��	�

and Cerastoderma sp. were probably redeposited during drilling from the uppermost part of ��
�

the core. Scarce molluscs and abundant ostracods with Gomphocythere sp., Candona ����

neglecta and Limnocythere inopinata could provide evidence for somewhat deeper part of the ����

lake in the lower part of the succession. A small number of complete carapaces (2.4 � 28.0%) ����
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point out to presumably high-energy conditions (cf. Keatings et al. 2010). Variable relations ����

of Cyprideis torosa and Limnocythere inopinata at 18.0, 5.0 and 4.0 � 3.5 m depth could be ����

connected with changes of water chemistry in the Qarun Lake (cf. Keatings et al. 2010). The ����

isolated high count of C. torosa at 18 m depth (Table 2) is especially worth noting, as it ����

implies very short, probably decadal scale episode with higher salinity. C. torosa ����

predominate in waters with Na+ and Cl- ions, whereas L. inopinata prefer carbonate-��	�

bicarbonate rich waters with Na+ and low content of Ca2+. These changes can be connected ��
�

with farming in the region and/or changes of the Nile supply (cf. Keatings et al. 2010). ����

Abundant Cyprideis torosa and expansion of molluscs typical of saline waters at 4.0 � 3.5 m ����

could reflect an increased salinity and shallow-water conditions in the lake. Distinct ����

predominance of Hydrobia ventrosa and Cyprides torosa indicate a drop of water level and ����

salinity of 14-25� as no nodded valves of C. torosa occur (e.g. Neale 1988; Keyser & ����

Aladin 2004; Götting 2008; Welter-Schultes 2012). A  considerable amount of complete ����

ostracod carapaces (45%) and occurrence of Pirenella conica support steady sedimentation in ����

a shallow lake (Taraschewski & Paperna 1981; Boomer et al. 2003; Keatings et al. 2010). An ����

admixture of freshwater species could suggest some shell mixing, but most of these species ��	�

co-occurred with brackish taxa in other Egyptian lakes. Melanoides tuberculata and ��
�

Cleopatra bulimoides were even listed amongst brackish snails (e.g. Sattmann & Kinzelbah ����

1988). ����

 ����

Development of the Faiyum Lake in the Holocene ����

Multi-proxy investigations of the core FA-1 (Figs 4-6, Table 2) and comparison of their ����

results with other cores in the Qarun Lake area (cf. Baioumy et al. 2010, 2011; Flower et al. ����

2012, 2013) supplied with high-resolution palaeoclimate data indicate several phases of the ����

Faiyum Lake development during the Holocene (Fig. 7). The lake was initially a freshwater ����
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lake, but then went through brackish to saline conditions. These changes were accompanied ��	�

by a fluctuating water level in the lake (interpreted from shifts of lake shore and varying ��
�

salinity), strictly combined with more intensive or reduced annual influx from the Nile. �	��

 �	��

>10.0 cal. ka BP: pre-lake deposition �	��

Weathered mantle of the Late Eocene marls and limestones from the adjacent area were the �	��

main source of yellow-brown massive carbonate clay (depth 26.00 � 20.8 m) that could be �	��

redeposited by occasional sheet-floods to the central part of the basin. These deposits contain �	��

inserts and concentrations of clayey silt, sand, gravel and dispersed organic matter, indicating �	��

influx of mineral material in a semi-dry climate from the surroundings. There was no �	��

hydrological connection with the Nile, because of lack of any, even ephemeral lake �		�

sediments. �	
�

 �
��

10.0 � 9.8 cal ka. BP: initial lake �
��

A freshwater lake appeared in the Faiyum Oasis at about 10.0 cal. ka BP (cf. Fig. 7), �
��

confirming the earlier suggestion of Flower et al. (2012). The lake had presumably a quasi-�
��

permanent seasonal connection with the Nile at 17 m a.s.l. (Hassan et al. 2011) as indicated �
��

by deposition of gray silt (20.8 � 19.8 m depth). I ntermittent influx of terrestrial sandy �
��

material as well as gradually decreasing and varied contents of NH4
+, NO3

-, Mg2+ and Ca2+ �
��

suggests erosion and redeposition of covering deposits and soils in the surroundings (Fig. 5). �
��

Termination of this phase is represented by a greenish-gray sandy mud intercalated with �
	�

bedded sand with taxa of Chara that indicate shallow (0.5 �4.0 m), fresh to slight ly brackish �

�

lake and increased evaporation during drier periods (Zalat 1995, 2015). Regular inflows of the ����

Nile water in late spring and early summer are evidenced by predominant diatoms of the ����

Aulacoseira spp. assemblage zone (Fig. 6). They were blooming in summer, what could result ����
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in strong nitrification and high primary productivity in the lake. The lake was freshwater, ����

slightly alkaline (pH = 7-8) and eutrophic, and due to increasing primary productivity � with ����

more silica in late spring and summer. ����

 ����

9.8 � 8.6 cal ka. BP: freshwater deep lake ����

A regularly laminated part of the core (depth 19.8 � 18.1 m) indicates a stabilized ��	�

environment of the lake (Figs 4, 7). Organic-rich clayey silt laminae reflect varied seasonal ��
�

sediment input to the lake. Thin (0.5 mm) layers of amorphic organic matter could be due ����

either floods of the Nile or a high biogenic production in the lake. Dark laminae are deposited ����

in winter and white laminae reflect high diatom productivity during summer (cf. Flower et al. ����

2012; cf. Marks et al. 2016). This phase of lake development started with a rapid replacement ����

of the planktonic Aulacoseira by the Stephanodiscus diatoms. The latter indicates increased ����

winter and spring wind-induced water turbulence and diatom blooming in spring (cf. ����

Bradbury 1975, 1988). Much P, peaks of Ca2+ and NO3
- are recorded (Figs 5, 6). The lake was ����

generally freshwater, eutrophic and slightly alkaline, with a high water level. The ����

sedimentation rate doubled from 1.4 to 2.8 mm a-1 (Fig. 4). Enhanced nutrient availability ��	�

resulted in strong nitrification and high productivity. Silica content was high in spring and ��
�

summer (Fig. 6). Peaks of K+ and NH4
+ contents, rapid rises of Na+ and Mg2+ are recorded, ����

indicating salted lake water occasionally happening (Fig. 5). ����

 ����

8.6 � 8.4 cal ka. BP: slightly brackish shallow lak e ����

The laminae of clayey silt (depth 18.1 � 17.7 m) ar e strongly deformed, presumably due to ����

unstable sedimentary environment. It was a short episode of increased salinity indicated by ����

higher contents of Na+, Ca2+, Mg2+ and Cl- (Fig. 5) and high frequency of Cyprideis torosa ����

(Table 2), accompanied by a drop of water level. Regular inflows of the Nile water in late ����
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spring and early summer are evidenced by predominant diatoms of the Aulacoseira spp. ��	�

assemblage (Fig. 6), blooming in summer. A distinct rise in contents of NH4
+ occurred at the ��
�

end, indicating input of washing-out from soils in the surroundings of the lake. ����

 ����

8.4 � 6.2 cal. ka BP: freshwater deep lake ����

This phase is expressed by thinly laminated clayey silts (depth 17.7 � 13.1 m), reflecting ����

varied seasonal sediment input to the lake. Dark laminae represent winter deposition, mostly ����

of terrigenous derivation and white laminae reflect high diatom productivity in summer ����

(Flower et al. 2012; cf. Marks et al. 2016). Thin (0.5 mm) layers of amorphous organic matter ����

could be deposited either during floods of the Nile or due to intensive biogenic production in ����

the lake. An increased influx of sand from the surroundings is recorded at about 8.2 cal. ka BP ��	�

(17.4 m depth) and 7.2 cal. ka BP (15.45 � 15.53 m depth). The former could reflect a climate ��
�

crisis connected roughly with the 8.2 ka BP event (cf. Rohling & Pälike 2005). The ����

sedimentation rate had been slightly rising from 2.7 to 3.7 mm a-1 at the beginning and ����

reached 6.9 mm a-1 at the end (Fig. 4). An enhanced nutrient availability in the lake indicates ����

regular inflows of the Nile water in late spring and early summer. Peaks of NO3
- and NH4

+ are ����

due to increased content of organic matter, presumably washed into the lake from the ����

surroundings. Diatoms of the Aulacoseira spp. assemblage (Fig. 6) bloomed in summer, ����

which could result in strong nitrification, enhanced silica content and high primary ����

productivity in the lake. The lake was slightly alkaline (pH = 7-8) and eutrophic, with a high ����

water level. Archaeological. sites of the Neolithic Faiyum A Culture located along the ��	�

shoreline prove that the lake reached its maximum extension (Fig. 8)  and depth, with its ��
�

water level at about 20 m a.s.l. (Wendorf & Schild 1976; Wenke et al. 1988). Cl- and Na+ ����

were slightly decreasing in the second part of the phase (Fig. 5), suggesting a rising water ����
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level. FeS2 formed occasionally, presumably indicating reductive conditions, but the ����

accompanying strong nitrification allowed for high productivity in the lake. ����

 ����

6.2 � 5.7 cal. ka BP: shallow brackish to freshwate r lake ����

Abrupt rise of Cl-, Na+, Mg2+ and Ca2+ and less regular lamination of lake sediments (13.1 �����

11.7 m depth) indicate restricted hydrological connection with the Nile. The lake had been ����

periodically brackish (Fig. 5) and the water level dropped significantly (cf. Baioumy et al. ��	�

2011). The reservoir became smaller and shallower, with predominance of Aulacoseira spp. ��
�

assemblage (Fig. 6) but sporadic thick diatom layers in the sediments could indicate ����

extremely huge occasional floods. Intensive influx of material from the surroundings (also ����

from exposed older lake deposits) as is indicated by interbeds of sand and silt, slightly higher ����

contents of NO3
- and SO4

2-, with local concentration of Fe compounds due to drying of the ����

peripheral area. The sedimentation rate was 9.6 mm a-1 (Fig. 4). Human settlements in the ����

Faiyum Oasis had disappeared but the Pharaonic civilization developed in the Nile valley in ����

Egypt (Wendorf & Schild 1976; Hassan et al. 2012). ����

 ����

5.7 � 4.4 cal. ka BP: shallow freshwater lake with brackish episodes ��	�

At the very beginning and at the end of this phase the littoral zone of the lake became ��
�

restricted as mostly pelagic and oligosaprobic (mesosaprobic) Cyclostephanos dubius diatoms ����

occurred (Fig. 6). Deposition of grey-brown clayey silt (11.7 � 7.9 m depth) with irregular, ����

thick (1-5 mm) diatomite prevailed, combined with few organic laminae and ferruginous ����

interbeds (Fig. 2). Rapid increase of terrestrial material is noted around 5.0 � 4.8 cal. ka BP. ����

The sedimentation rate was 16.9 � 17.0 mm a -1 at the beginning and then rapidly increased to ����

the maximum of 37.7 mm a-1 (Fig. 4), presumably due to increasing supply of material from ����

the surroundings and the Nile. During most of this time interval (5.6 � 4.6 cal. ka BP) the lake ����
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was slightly alkaline (pH = 7-8) and eutrophic, with higher water level and wind-induced ����

water mixing in winter. Aulacoseira and Stephanodiscus assemblages dominated, indicating ��	�

intensive seasonal water circulation, enhanced nutrient availability with much P and seasonal ��
�

influx of the Nile water. There was a short and weak brackish episode at about 5.1 cal. ka BP, �	��

indicated by small rises of Ca2+, Mg2+, Na+, K+, SO4
2-, NH4

+, NO3
- and Cl- (Fig. 5). �	��

 �	��

4.4 � 3.0 cal. ka BP: shallow brackish and partly d esiccated lake �	��

The deposition in the lake became considerably varied (7.9 � 6.0 m depth): at first, with �	��

significant input of sand, presumably by sheet floods caused by occasional heavy rainfalls in �	��

the surroundings (Welc & Marks 2014). Intensive wind-induced water mixing in winter could �	��

have resulted in maximum abundance of Stephanodiscus species (>70% of the total diatom �	��

assemblage) (Fig. 6). It reflects a presence of a slightly alkaline (pH = 7-8) and eutrophic lake �		�

with water level rise to about 12 m a.s.l. (Fig. 8) and low contents of Na+, K+, Cl- and NO3
- �	
�

but enhanced nutrient availability, much P and low silica. The lake was basically cut-off from �
��

the Nile but deposition of clayey silt suggests that rare inflows were possible, presumably as �
��

suggested by common planktonic Aulacoseira diatoms that bloomed in summer. The first part �
��

of this phase was generally dry and it was expressed by progressing desiccation of shallower �
��

parts of the lake as indicated by rising contents of Mg2+, Ca2+ and SO4
2- (Fig. 5) and �
��

admixture of gypsum in lake sediments. The lake level could be dramatically low at that time �
��

(Baioumy et al. 2010). Such unfavourable regional climate and environmental conditions at �
��

the beginning of this phase could be referred to the 4.2 ka event that resulted in a collapse of �
��

the Egyptian Old Kingdom (Hassan 2007). At the termination of this phase at about 3.2 cal. �
	�

ka BP, the lake sediments were completely devoid of diatoms and dominated by sand from �

�

the surroundings (Fig. 6). ����

 ����
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3.0 � 1.5 cal. ka BP: brackish to freshwater lake ����

A more regular seasonal water supply from the Nile returned presumably at the beginning of ����

this phase when the lake contained much silica and planktonic Aulacoseira were common in ����

spring (Fig. 6). The sedimentary environment became more stable with deposition of silt (6.0 ����

� 4.0 m depth), locally interbedded with organic an d diatomite laminae, sandy layers and ����

dispersed organic matter. Admixture of pyrite indicates a reducing environment and possibly, ����

also a deeper lake. The sedimentation rate was 13.75 mm a-1 (Fig. 4). However, the following ��	�

very low diatom content or even lack of diatoms in the sediments were combined with lower ��
�

productivity in the lake itself (Fig. 6). The lake had been occasionally brackish as indicated by ����

dominance of Aulacoseira spp. � Cyclotella meneghiniana assemblage, characteristic of ����

warm, eutrophic and slightly brackish water conditions (Fig. 6) what is indicated by rising ����

contents of Cl-, NO3
-, SO4

2-, Na+, K+, Mg2+ and Ca2+ (Fig. 5). Contents of Ca2+, Mg2+, Na+, ����

SO4
2-, Cl- and NO3

- were decreasing at 2.3 � 1.8 cal. ka BP (Fig. 5), showing desalinizing lake ����

water, presumably due to higher water supply from the Nile via the man-made channel in the ����

Ptolemaic Period (Garbrecht 1994). The lake water level was at about the sea level (Fig. 8). ����

Increased nutrients in the lake and probably wind as well induced winter circulation favoured ����

blooming of Stephanodiscus in spring but diatoms completely disappeared at the termination ��	�

of this phase. ��
�

 ����

1.5 � 1.2 cal. ka BP: shallow brackish-saline lake ����

Deposition of beach loose shell sediment occurred (4.0 � 3.4 m depth), mixed with grey ����

sludge silt (Fig. 2). Gastropod and ostracod assemblages indicate a drop of water level and ����

salinity of 14-25�, with carbonate-bicarbonate rich  water, seemingly due to farming and ����

changes in water supply from the Nile. ����

 ����



� ��

<1.2 cal. ka BP: shallow saline lake ����

There was a deposition of massive grey-brown clayey silt (3.4 � 1.9 m depth) with admixture ��	�

of gravel and angular quartz grains, typical of a shallow and near-shore environment. Lower ��
�

contents of Mg2+, Ca2+, Na+ and Cl-, and rise of K+ are recorded (Fig. 5). Recent ����

environmental transformations of the lake were presented by Flower et al. (2006). ����

 ����

Conclusions ����

The core FA-1 from a beach of the Qarun Lake in the Faiyum Oasis with fine-laminated lake ����

sediments supplied a continuous high-resolution record of environmental and climate changes ����

through the Holocene. We demonstrated at least partly a palaeoenvironmental record of the ����

Qarun Lake sediments, a potential of which was already estimated by Flower et al. (2012). A ����

multi-proxies analysis enabled us to establish the age model and transformation of the lake in ��	�

the Holocene. Our results confirm that a permanent lake in this area appeared at about 10 cal. ��
�

ka BP but then its evolution went through several freshwater and brackish phases, starting ����

from carbonate-dominant through Cl- and SO4
2- sedimentation, but it has never come to a total ����

desiccation of the lake. ����

The Faiyum Oasis has been outside the Intertropical Convergence Zone (ITCZ) in the ����

Holocene and therefore, its lake could survive due to inflows of the Nile water during flood ����

seasons. The latter were most regular from 9.8 to 6.2 cal. ka BP when in a deep freshwater ����

lake, a succession of fine-laminated sediments was formed, composed mostly of diatomite, ����

mineral and organic silt, clearly indicating a seasonal change of lake productivity. This was ����

significantly associated with regular inflows of the Nile water during flood seasons. ��	�

Southward migration of ITCZ in northeastern Africa resulted in less regular inflows of the ��
�

Nile water into the Faiyum Oasis. From 6.2 to 4.4 cal. ka BP the lake deposits were less ����

regularly laminated, the water level dropped considerably and there were gradually more ����



� �	

frequent brackish episodes. From 4.4 to 3.0 cal. ka BP the lake was brackish and considerably ����

less extensive, with water level at about -20 m a.s.l., the sediments were massive but with ����

occasional inputs of sandy material washed from the surroundings due to local winter ����

rainfalls. The episode 3.0 to 1.5 cal. ka BP was a return to occasional freshwater conditions in ����

the lake, mostly due to a man-made canal dug at about 2.3 cal. ka BP that renewed a ����

hydrological connection with the Nile. Then the lake was gradually turned into a brackish and ����

finally, saline lake. ��	�

The examined FA-1 core created the reference age model of the Holocene climate ��
�

change in north-eastern Africa and its impact on development and decline of ancient ����

civilisations in Egypt. ����
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Captions to the figures and tables 
�	�

Fig. 1. Location sketch; A � after Woodward et al. (2007), modified; B � based on broad 
�
�

compilation, bathymetry of the lake is after Abu-Zied et al. (2007). 
���

Fig. 2. Lithology of core FA-1. 
���

Fig. 3. Age-depth model of the core FA-1. Top panels reflect: the MCMC process (left), the 
���

prior and posterior distributions for the deposition time (middle) and its variability between 
���

depths (right). The main panel shows the calibrated radiocarbon dates and the age-depth 
���

model (grey-scale, with darker areas indicating more secure sections). Stippled curves 
���

indicate 95% range and curve between them indicates a mean. Depths are in cm.�
���

Fig. 4. Sedimentation rate and model of deposition in the lake. 
���

Fig. 5. Variation of water soluble ions in sediments of core FA-1. 
�	�

Fig. 6. Percentage diagram of selected diatoms in the FA-1; sediment without diatoms is 
�
�

indicated in gray. 
���

Fig. 7. Main phases of the Qarun Lake development indicated in core FA-1; for lithological 
���

description see Fig. 2. 
���

Fig. 8. Palaeogeography of the Faiyum Oasis in the Holocene with past lake extents (in dark 
���

gray); indicated are the present lakes (in black), the area above 50 m a.s.l. (in light gray) 
���

and contour lines at 0 m and -25 m b.s.l. 
���

 
���

Table 1. List of radiocarbon dates in core FA-1; concentrations of organic matter are indicated 
���

but dispersed organic matter occurred in every sample. Calibrated ranges are based on 
�	�

Oxcal 2016 with 95.4% probability; AMS �13C values are for correcting measurement-
�
�

induced fractionation and should not be interpreted ecologically. 
���

Table 2. Molluscs and ostracods of core FA-1. 
���



� ��

F � freshwater: s � stagnant water, f � flowing water; Sa � saltwater: br � brackish; d � 
���

shell detritus, fr � few fragments of shell, 2-6 � phases of the lake based on sedimentary 
���

sequence; for bivalves and ostracods a number of valves is given 
���


















