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ABSTRACT
Galactic cosmic-ray (CR) acceleration to the knee in the spectrum at a few PeV is only possible
if the magnetic field ahead of a supernova remnant (SNR) shock is strongly amplified by CRs
escaping the SNR. A model formulated in terms of the electric charge carried by escaping
CRs predicts the maximum CR energy and the energy spectrum of CRs released into the
surrounding medium. We find that historical SNRs such as Cas A, Tycho and Kepler may be
expanding too slowly to accelerate CRs to the knee at the present time.

Key words: acceleration of particles – magnetic fields – shock waves – cosmic rays – ISM:
supernova remnants.

1 IN T RO D U C T I O N

During diffusive shock acceleration (DSA) cosmic rays (CRs) gain
energy by repeatedly passing back and forth between the up-
stream and downstream plasmas (Axford, Leer & Skadron 1977;
Krymskii 1977; Bell 1978; Blandford & Ostriker 1978). CRs dif-
fuse ahead of the shock to form a precursor with an exponential
scaleheight Du/us, where us is the shock velocity and Du is the CR
diffusion coefficient upstream of the shock. The average dwell-time
spent upstream of the shock between successive shock crossings is
4Du/cus for relativistic particles (Bell 2012). This, along with the
corresponding downstream dwell-time, determines the rate at which
CRs are accelerated. Lagage & Cesarsky (1983a,b) showed that the
time taken for CR acceleration is taccel = 4Du/u

2
s + 4Dd/u

2
d, where

Dd is the downstream diffusion coefficient and ud is the downstream
fluid velocity in the shock rest frame. Since ud = us/4 for a strong
shock, it might appear that the downstream dwell-time determines
the acceleration rate, but we can expect Dd � Du partly because
the magnetic field is increased by compression by the shock, partly
because the compressed downstream magnetic field is more closely
perpendicular to the shock normal, and partly because the down-
stream field is disturbed and more irregular after passing through
the shock. If the downstream and upstream dwell-times are the
same, taccel = 8Du/u

2
s . A further common assumption is that Bohm

diffusion applies: Du = crg or Du = crg/3, where rg is the CR
Larmor radius. This assumes a diffusion model in which CRs are
scattered by irregularities in the magnetic field such that the scatter-
ing mean free path is of the order of the CR Larmor radius. There is
some observational evidence for Bohm diffusion (Stage et al. 2006;
Uchiyama et al. 2007). Furthermore, if the mean free path were
much larger than a Larmor radius, acceleration by a supernova rem-
nant (SNR) to the knee in the Galactic CR spectrum would be very
difficult. The maximum CR energy is determined by the condition
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that taccel cannot exceed the age tSNR of a SNR (Lagage & Cesarsky
1983a,b). Assuming Du = crg, the maximum CR energy Tmax in eV
is given by Tmax = 0.03BµGu2

7t1000 PeV, where BµG is the upstream
magnetic field in microgauss, u7 is the shock velocity in units of
10 000 km s−1 and t1000 is the SNR age in thousands of years. For
a typical young SNR expanding into the interstellar medium (ISM)
without magnetic field amplification, BµG = 3, u7 = 0.5 and t1000 =
0.4, giving Tmax = 0.01 PeV which falls a factor of ∼100 short of
that required to explain the Galactic CR spectrum. SNRs in the
Sedov phase do not fare better. Their shock velocities decrease in
proportion to time−3/5 and radius−3/2, so little benefit accrues from
their larger age and radius. This posed a serious problem for DSA
as an explanation of the Galactic spectrum until it was shown that
a plasma instability driven by streaming CRs in the upstream pre-
cursor could amplify the magnetic field ahead of the shock and
facilitate rapid acceleration to higher energies (Lucek & Bell 2000;
Bell 2004, 2005).

The phenomenon of magnetic field amplification provides a
mechanism by which the CR energy can be raised significantly
beyond 0.01 PeV, but there remains the question of why the fields
are amplified to the observed magnitude, up to hundreds of μG
in the historical SNR (Berezhko, Ksenofontov & Völk 2003; Vink
& Laming 2003; Völk, Berezhko & Ksenofontov 2005), and why
CRs are accelerated to a few PeV rather than 0.1 or 10 PeV. We try
to answer these questions by examining the self-consistent interac-
tion between streaming CRs, behaving kinetically, and the upstream
plasma behaving magnetohydrodynamically.

It has been known for many years that the escape of CRs up-
stream of the shock is an important part of the overall acceleration
process as discussed below in the final paragraphs of Section 3. We
find that the combined CR–magnetohydrodynamics (CR–MHD)
system organizes itself to allow a suitable number of CRs to escape
upstream. The CRs drive magnetic field amplification which in turn
regulates the number of escaping CRs. If a smaller number of CRs
escaped, the magnetic field would be insufficiently amplified to con-
fine and accelerate the CRs. If a larger number of CRs escaped, the

C© 2013 The Authors
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magnetic field would grow too rapidly to allow their escape. Hence,
a self-regulating system is set up that determines the number and
maximum energy of escaping CRs.

The paper is organized as follows. Sections 2 and 3 present ap-
proximate calculations showing how a limit on the CR energy is
placed by the need for CRs to drive magnetic field amplification by
escaping upstream. Sections 4–7 describe Vlasov–Fokker–Planck
(VFP) simulations that support the arguments of Sections 2 and
3. Sections 8–11 apply the results to SNRs and the Galactic CR
spectrum. Readers unfamiliar with VFP simulations may wish to
read Sections 1–3 and 8–11 before returning to the computational
validation and illustration in Sections 4–7.

2 C O N D I T I O N S FO R S T RO N G M AG N E T I C
FIELD A M P LIF ICATION

We assume that magnetic field is generated by the non-resonant
hybrid (NRH) instability described by Bell (2004). This is one of a
class of plasma instabilities driven by CR streaming. In its simplest
form, CRs have a Larmor radius much greater than the wavelength
of spiral perturbations in a zeroth-order uniform magnetic field. Be-
cause of their large Larmor radius, the streaming CRs, carrying an
electric current density jCR, are essentially undeflected by the per-
turbed field but the jCR × B force acts towards the centre of the spi-
ral. A corresponding reactive force acts on the background plasma to
expand the spiral. This stretches and increases the magnitude of the
perturbed magnetic field, thereby increasing the jCR × B force in
a positive feedback loop that drives the instability. NRH appears to
be the most rapidly growing instability driven by CRs streaming on
a relevant scalelength. Other instabilities that have attracted signifi-
cant attention are the resonant Alfvén instability (Kulsrud & Pearce
1969; Wentzel 1974) that grows with spatial wavelengths spatially
resonant with the CR Larmor radius and the Weibel instability
(Weibel 1959) that grows quickly on the spatial scale of an electron
or proton collisionless skin depth, c/ωpe = 5.3(ne/cm−3)−1/2 km,
c/ωpi = √

mp/mec/ωpe. The Weibel instability is important for in-
teractions engaging thermal or mildly suprathermal electrons and
ions, and may be effective for CR acceleration to low energies, but it
grows on a scale too small to scatter PeV ions which have a Larmor
radius of ∼109c/ωpe. The Alfvén instability grows on the desired
spatial scale but grows less quickly than the NRH instability in the
SNR shock environment. Instabilities that grow on scales larger than
the CR Larmor radius (Drury & Falle 1986; Malkov & Diamond
2009; Bykov, Osipov & Ellison 2011; Schure & Bell 2011; Drury
& Downes 2012; Rogachevskii et al. 2012) tend to have longer
growth times but turbulent amplification may increase the growth
rate (Bykov et al. 2011). An extended discussion of instabilities
driven by CRs streaming can be found in Schure et al. (2012).

From the Lagage & Cesarsky (1983a,b) limit as described in
Section 1, it is clear that proton acceleration to a few PeV is only
possible if the magnetic field is strongly amplified above its char-
acteristic interstellar value of a few μG. The following argument
places an upper limit on the maximum energy of a CR that can be
strongly scattered by a magnetic field growing on the scale of a
CR Larmor radius. The background thermal plasma is highly mag-
netized on the scale of a PeV CR Larmor radius. Consequently,
the magnetic field is ‘frozen in’ to the thermal plasma. Magnetic
field amplification occurs as the plasma moves and stretches field
lines. Assuming the perturbed magnetic field does not far exceed
the initial field, the jCR × B force displaces a plasma element a
maximum distance smax ∼ (jCRBt2)/2ρ in time t where B is the
initial seed field. For the stretched magnetic field to strongly scatter

CRs as required for Bohm diffusion, the displacement must grow to
the order of a CR Larmor radius, that is, smax ∼ T/cB, where T is the
CR energy in eV. The CR current density jCR carries an energy flux
jCRT in the upstream plasma rest frame which cannot far exceed the
energy flux ρu3

s /2 carried by the upstream plasma into the shock,
where ρ is the upstream mass density. We define a CR acceleration
efficiency η such that jCRT = ηρu3

s . We then have two equations:
smax = (jCRBt2)/2ρ ∼ T/cB and jCR = ηρu3

s /T . When combined,
they yield a CR energy T ∼ (ηcu3

s )1/2Bt . This expression for T is
equivalent to T ∼ 1.5(ηu3

7)1/2BµGt1000 PeV, where u7 is the shock
velocity in units of 10 000 km s−1, BµG is the seed magnetic field
in μG from which amplification begins, and t1000 is the time in
thousands of years. Characteristically for young SNRs, u7 = 0.5,
t1000 = 0.4, η = 0.03 (see Appendix A) and BµG = 3 where the
magnetic field of a few μG represents the seed field from which
the instability grows. With these estimates, T ∼ 0.1 PeV, which is
an order of magnitude less than the energy of the knee. This esti-
mate is independent of any detailed instability theory except for the
assumption that magnetic field amplification takes place through
plasma motions generated by the jCR × B force acting on the scale
of a CR Larmor radius. It highlights the difficulty of amplifying
magnetic field by orders of magnitude on the scale of the Larmor
radius of a PeV proton and the need for an instability that can
provide non-linear growth of the magnetic field.

The NRH instability offers a way round this difficulty by initially
growing very rapidly on a scale much less than the CR Larmor
radius. Since the small-scale magnetic field grows unstably, the
jCR × B force grows exponentially in time. The scale-size increases
to the CR Larmor radius during non-linear growth. The NRH growth
rate is γ = (kjCRB0/ρ)1/2, where B0 is the zeroth-order magnetic
field and k is the wavenumber on which the instability grows. The
maximum NRH growth rate is γ max = 0.5jCR(μ0/ρ)1/2 which occurs
at a wavenumber kmax = 0.5μ0jCR/B0. γ max is (kmaxrg)1/2 times
larger than the NRH growth rate for krg = 1, thus allowing the
magnetic field and the jCR × B force to increase rapidly. The NRH
and Alfvén growth rates are similar at krg = 1 (see Appendix E and
Bell 2004). Using the above nomenclature, kmaxrg = ηu3

s /cv
2
A =

2 × 104η0.03u
3
7neB

−2
µG, where vA is the Alfvén speed, η = 0.03η0.03

and ne is the electron density in cm−3. For a discussion of the value
of η, see Appendix A and Bell (2004). The growth time of the fastest
growing mode is then γ −1

max = 50η0.03−1n−1/2
e u−3

7 TPeV yr, where TPeV

is the energy in PeV of the CR driving the instability. γ −1
max = 400 yr

for η0.03 = 1, ne = 1, u7 = 0.5 which implies that even the NRH
instability struggles to amplify the magnetic field sufficiently to
accelerate CRs to PeV energies in the historical SNR. For growth
by many e-foldings, the NRH instability must be driven by CRs
with energies less than 1 PeV.

As remarked above, the fastest growing mode grows on a scale
k−1

max, whereas efficient CR scattering requires fluctuations in the
magnetic field on a scale rg. The above analysis showed that
kmaxrg = 2 × 104η0.03u

3
7neB

−2
µG. The instability initially grows on

a scale too small to effectively scatter PeV CRs. Two factors save
the situation. First, as the magnetic field grows from a few μG to
a few hundred μG, the CR Larmor radius decreases by the corre-
sponding factor of ∼100. Secondly, the characteristic scalelength of
the structured magnetic field increases during non-linear growth of
the instability. Fig. 1 is drawn from figs 3 and 4 of Bell (2004). The
graph of energy densities shows how the magnitude of the magnetic
field grows to many times its seed value in a time ∼10γ −1

max. The
characteristic scalelength grows during this time as shown by the
grey-scale images. By the time t = 10 the scalelength has grown
to the size of the computational box from its initially much smaller
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Figure 1. Plots of the magnitude of a magnetic field driven by CRs streaming into the page (2D slices of a 3D simulation). The field grows from noise on a
small spatial scale at t = 0. By t = 10 the spatial scale has grown to the size of the computational box. The graph shows how the mean magnetic, kinetic and
thermal energy densities increase with time. This figure is composed from figs 3 and 4 of Bell (2004) where further details can be found. The units of time are
such that γ max = 1.26.

scale. Both k and rg decrease by a large factor by the time 10γ −1
max.

The simulation reproduced in Fig. 1 had a fixed CR current so it
was impossible to demonstrate strong CR scattering by the mag-
netic field after t = 10γ −1

max, but the figure provides strong evidence
for rapid initial growth of the fastest growing modes into large-scale
magnetic structures able to scatter CRs on the scale of a Larmor
radius.

3 C OSM IC-RAY ESCAPE U PSTREAM
O F T H E SH O C K

The previous section does not provide an estimate of the magnitude
of the amplified magnetic field, but it does define conditions under
which strong magnetic field amplification occurs. CR acceleration
to PeV energies requires strong magnetic field amplification which
fixes the number of instability e-foldings in the range 5–10. This
in turn fixes the CR current. From Fig. 1 we take the condition
for strong magnetic field amplification in a particular volume of
upstream plasma to be that

∫
γ maxdt ∼ 5 in the time before the

shock overtakes it. Since γmax = 0.5jCR
√

μ0/ρ, the condition for
field amplification is

QCR =
∫

jCRdt = 10
√

ρ/μ0 , (1)

where QCR is the total electric charge of CRs passing through a
unit surface area upstream of the shock before the shock arrives. (It
makes no difference whether the CRs passing through the plasma
have high or low energies. It is only the number of CRs escaping
upstream that counts.) Since only the highest energy CRs escape,
the areal charge QCR is carried by the highest energy CRs being
accelerated. The Larmor radius of a PeV proton in the ISM is com-
parable with the radius of the historical SNR and its scattering mean
free path is very much greater than the SNR radius. These escaping
CRs pass into the ISM with a low probability of further encoun-
ters with the SNR shock. Strongly scattered CRs at lower energies
are confined by the shock and are advected away downstream after
acceleration.

Suppose that the CR distribution follows a p−4 power law up to
a momentum pmax, then in steady state the electrical current of CRs
escaping in a small band of energies above the energy eTmax = cpmax

is

jCR = eusπp3
maxf0(pmax) , (2)

where f0 is the isotropic part of the CR distribution in momentum
space at the shock. Equation (2) is derived from equation (11a)
below by integrating in space across the shock and deriving the
rate at which CRs reach the momentum pmax. The derivation can be
found in Appendix B. In comparison, the CR pressure at the shock,
where the CR distribution extends down to p = mc and m is the
proton mass, is

PCR = 4π

3
cp4

maxf0(pmax) ln
(pmax

mc

)
, (3)

giving

jCR = 0.05
usPCR

Tmax
, (4)

where we have assumed ln (pmax/mc) = 14 for a CR distribution
extending from 1 GeV to 1 PeV. The condition for magnetic field
amplification that

∫
jCRdt = 10

√
ρ/μ0 can be rearranged to give a

value for Tmax:

Tmax = 0.005
PCR

ρu2
s

ρu3
s t

√
μ0

ρ
, (5)

which is equivalent to

Tmax = 8 n1/2
e u3

7t1000
PCR

ρu2
s

PeV . (6)

For characteristic values (u7 = 0.5, ne = 1, t = 0.4, PCR/ρu2
s = 0.3)

Tmax ∼ 100 TeV. As expected from the above discussion, this falls
short of the few PeV required to explain Galactic CRs. This will be
discussed further in Section 8.

Zirakashvili & Ptuskin (2008) and Zirakashvili, Ptuskin & Völk
(2008) developed a related analytic model of the excitation of the
NRH instability and CR confinement upstream of the shock. They
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derived an estimate for the maximum CR energy with a similar
dependency on n1/2

e u3t in the numerator of their equation (19) but
with an additional denominator that depends on the magnitude of the
amplified magnetic field. Their analysis operates at a more detailed
level than ours since they consider the growth in amplitude of the
amplified magnetic field over a range of scales and small angle
CR scattering by small-scale field. However, the dominant physics
is similar in their analysis and ours, and their estimate of the CR
energy (equation 19) is similar to that in our equation (6).

Note that the magnetic field does not enter into the estimation
of the maximum energy CR in equation (6). The magnetic field is
assumed to grow to whatever magnitude and spatial scale required to
confine CRs at energies less than Tmax. This assumption is justified
on the basis that the magnitude of the field increases by a substantial
numerical factor in time γ −1

max even in the non-linear regime and that
this is accompanied by rapid growth in characteristic spatial scale.
For example, the magnetic field and its spatial scale are very much
larger in Fig. 1 when

∫
γ maxdt ≈ 8 than when

∫
γ maxdt ≈ 5 even

though the time is different by a factor of only 1.6. Allowing the field
to grow for just a little longer gives a much larger magnetic field
and spatial scale. Consequently, the primary parameter is not the
magnitude of the magnetic field but the charge carried by escaping
CRs.

It is clear that magnetic field amplification is only possible if a
population of high-energy CRs escape upstream of the shock. A
magnetic field capable of stopping their escape is only produced
after the areal charge QCR has escaped. Thus, CR escape upstream
of the shock is an essential aspect of DSA when magnetic field
amplification is operational. If a charge QCR has not passed through a
particular point upstream of the shock, then CRs cannot be confined
at that distance from the shock.

Previous authors have also concluded that CR escape upstream is
inevitable, but generally for different reasons. One possibility is that
CRs escape through filamentary cavities in the magnetic field (Re-
ville & Bell 2012, 2013) but usually it is assumed that CRs escape
at a free-escape boundary in position or momentum. Free-escape
boundaries were introduced at an early stage in the development of
shock acceleration theory (Ellison, Jones & Eichler 1981). It was
appreciated that steady-state models were impossible without CR
escape (Ellison & Eichler 1984; Berezhko & Ellison 1999; Malkov,
Diamond & Völk 2000). The standard T−2 test particle energy spec-
trum at strong shocks diverges if integrated to infinite energy. The di-
vergence is even stronger if non-linear CR feedback on to the shock
structure is included since the relativistic CR pressure increases the
density jump at the shock resulting in a spectrum flatter than T−2 at
high CR energy. However, the conditions for a steady-state solution
do not present a compelling argument for a free-escape boundary
since time-dependent solutions offer an acceptable option. Indeed
the Lagage & Cesarsky limit on CR energy is based on the assump-
tion that the maximum CR energy increases with time. The case
for CR escape was strengthened by the recognition that magnetic
field amplification is essential since there will always be a distance
upstream at which amplification is inoperative and CRs must es-
cape. Similarly, there must always be an upper limit to the spatial
scale to which field is amplified and a corresponding limit, through
the Larmor radius, on the momentum to which CRs can be acceler-
ated. This led to the imposition of a free-escape boundary either at
an imposed distance upstream of the shock (e.g. Caprioli, Blasi &
Amato 2010b; Ohira, Mirase & Yamazaki 2010) or at an imposed
CR momentum (e.g. Ellison & Bykov 2011). Whether the free-
escape boundary is imposed in momentum or configuration space,
the momentum at which CRs escape depends on the magnetic field.

Some authors (e.g. Ptuskin, Zirakashvili & Seo 2010) assume that
the field is amplified until the magnetic energy density reaches a
given fraction of ρu2

s . The fractional magnetic energy density can
be chosen to match observation (Völk et al. 2005; Ptuskin et al.
2010). Alternatively the field can be chosen to match the saturation
value estimated by Bell (2004). Others (Caprioli, Blasi & Amato
2010a; Drury 2011) choose a mathematical form for the amplified
magnetic field that allows for multiple possibilities. Ptuskin & Zi-
rakashvili (2003), Caprioli, Blasi & Amato (2009a) and Caprioli
et al. (2009b, 2010b) include magnetic field generation due to the
resonant instability as it develops ahead of the shock. Vladimirov,
Ellison & Bykov (2006) include magnetic field generation in re-
sponse to gradients in the CR pressure. Ellison et al. (2012) choose
an amplified magnetic field suitable for SNR expansion into a cir-
cumstellar wind.

In contrast to the above, CR escape in our model is determined
by the escaping CR electric charge rather than the magnetic field
generated in the upstream plasma, although magnetic field ampli-
fication is implicitly required by our model. Reville, Kirk & Duffy
(2009) also used the escaping flux to calculate growth rates in an
effort to motivate a realistic free-escape boundary location in their
steady-state non-linear model. Their discussion on self-regulation
of CR precursors, however, did not extend to the maximum CR
energy.

4 A N U M E R I C A L M O D E L

We now set out to test the above conclusions as far as we are able
with a numerical model that includes the self-consistent interaction
of CRs modelled kinetically with a background plasma modelled
magnetohydrodynamically. Standard MHD equations describe the
background plasma except that a − jCR × B force is added to the
momentum equation:

ρ
du
dt

= −∇P − 1

μ0
B × (∇ × B) − jCR × B (7)

as described in Lucek & Bell (2000) and Bell (2004). The CR
distribution function f (r, p, t) at position r and momentum p is
defined in the local fluid rest frame and evolves according to the
VFP equation

df

dt
= −vi

∂f

∂ri

+ pi

∂uj

∂ri

∂f

∂pj

− εijkeviBj

∂f

∂pk

+ C(f ) , (8)

where C(f) is an optional collision term included to represent scat-
tering by magnetic fluctuations on a small scale. The electric field
is zero in the local fluid rest frame. Quadratic terms in the local
fluid velocity u are neglected on the assumption that u � c. The
CR current jCR, required for insertion into the MHD momentum
equation, is calculated by integration over f in momentum space.
The magnetic field in the CR kinetic equation is taken from the
MHD calculation.

As in Lucek & Bell (2000) and Bell (2004) three spatial dimen-
sions are needed to represent the turbulence adequately. Since our
aim is to investigate the mutual interactions of magnetic field am-
plification, CR acceleration and CR escape upstream of the shock,
we need to model the complete system including the shock and the
complete CR precursor. Because we model the detailed interaction
between the CR and the distorted magnetic field, we need to resolve
the CR Larmor radius in configuration space and the rotation of CR
trajectories in momentum space. As a consequence, the numerical
model should be 6D in momentum-configuration space with spatial
scales extending from the CR Larmor radius of the lowest energy CR
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to the precursor scaleheight of the highest energy CR. This would
be impossible without extraordinary computational resources so our
strategy is to design a computational model that includes all the im-
portant processes at a minimal level. We retain the three dimensions
in configuration space but limit the range of CR momentum to a
factor of 10 so that we do not have to resolve the Larmor radius of
very low energy CR. We choose a shock velocity us = c/5 to keep
the ratio of the CR to the MHD time-scale to a minimum while
staying close to the range of conceivable SNR expansion speeds.
Our greatest approximations are made in the momentum space rep-
resentation of the CR distribution function since this is the aspect of
the calculation in which the number of dimensions can be reduced.

The VFP equation (equation 8) is important in the physics of
laser-produced plasmas where it is solved in finite difference form
to model electron transport. The successful use of the VFP simula-
tion to model electron transport in laser-produced plasmas stretches
back more than 30 years (Bell, Evans & Nicholas 1981) so it is
natural to apply the techniques to CRs that obey the same equa-
tion. The distribution function f (r, p, t) of charged particles (CRs
or energetic electrons) is usually represented in spherical coordi-
nates (p, θ , φ) in momentum space. A common representation of
the distribution function is as a sum of spherical harmonics:

f (r, p, t) =
∑
l,m

f m
l (r, p, t)P |m|

l (cos θ )eimφ,

l = 0, ∞, m = −l, l, f −m
l = (

f m
l

)∗
, (9)

where f m
l (r, p, t) is the coefficient for the (l, m) spherical har-

monic. f m
l (r, p, t) is a function of time, position and magnitude of

momentum p. The spherical harmonics describe the angular struc-
ture on shells of constant magnitude of momentum. Reviews of the
VFP technique, or papers containing a significant review element,
are Bell et al. (2006), Tzoufras et al. (2011) and Thomas et al.
(2012). For information on the application of VFP techniques to
CR acceleration, the reader is referred to Reville & Bell (2013)
which includes an appendix setting out the full VFP equations for a
spherical harmonic expansion. Bell, Schure & Reville (2011) also
apply VFP techniques to CR acceleration. The use of an expansion
in tensors (used here) as an alternative to spherical harmonics is
discussed by Schure & Bell (2011).

VFP simulation was used by Bell, Schure & Reville (2011) for
the calculation of CR acceleration by oblique shocks. They found
that an expansion to the 15th harmonic could be needed for oblique
shocks because of the abrupt change in magnetic field direction
at the shock, but that only a few harmonics are needed for quasi-
parallel shocks. Here we reduce the computational size of the prob-
lem by modelling parallel shocks in which the zeroth-order mag-
netic field is parallel to the shock normal. There are good reasons
to suppose that the first few terms in the expansion capture the es-
sential physics. First, as shown by Bell (2004), the NRH instability
is driven by the CR current density jCR. Higher order anisotropies
do not directly contribute to the instability. Secondly, the CR pre-
cursor scaleheight is c/us times the CR scattering mean free path
in standard DSA theory. DSA theory is based on the diffusive ap-
proximation in which only the first-order anisotropy is needed and
only the first two terms (isotropy and drift anisotropy) in the har-
monic expansion are retained. In diffusion theory, the higher order
anisotropies are damped by scattering. Hence, it might be supposed
that only the first two terms are needed and an adequate repre-
sentation of the CR distribution function might be f (r, p, t) =
f 0

0 (r, p, t) + f 0
1 (r, p, t) cos θ + 
{f 1

1 (r, p, t) sin θeiφ}. This ‘f0 +
f1’ expansion allows free CR propagation along magnetic field lines

but restricts transport across the magnetic field because the direc-
tion of the anisotropic drift term is rotated by the field. However,
this expansion omits an essential feature of CR transport. It does
not allow CRs to gyrate as they travel along a magnetic field line.
The f0 + f1 expansion allows CRs to propagate along field lines and
separately it allows CRs to gyrate around field lines, but it does not
allow CRs to do both at the same time. Spiral trajectories require
the inclusion of the off-diagonal components of the stress tensor f2.
Without the stress tensor, CRs cannot resonantly interact in space
with magnetic perturbations on the scale of a Larmor radius. Clearly
this would rule out the Alfvén instability, and more surprising it also
rules out the NRH instability. The role of the stress tensor is dis-
cussed by Schure & Bell (2011) in which the linear NRH dispersion
relation is derived with the perturbed CR distribution expressed as a
tensor expansion. We proceed on the basis that the CR distribution
function may be adequately represented by an isotropic part (zeroth
order in us/c) plus a drift component (first order in us/c) plus a term
representing the stress tensor (second order in us/c). This second-
order expansion is more easily represented in the equivalent tensor
notation instead of spherical harmonics:

f (r, p, t)=f0(r, p, t)+fi(r, p, t)
pi

p
+fij (r, p, t)

pipj

p2
, (10)

where the trace of fij is zero because it is already accounted for in the
isotropic term f0. Following Johnston (1960), the reduced Vlasov
equation for the CR distribution function is then

∂f0

∂t
+ ∂(f0ui)

∂ri

= − c

3

∂fi

∂ri

+ ∂ui

∂ri

1

3p2

∂(p3f0)

∂p
, (11a)

∂fi

∂t
+ ∂(fiuj )

∂rj

= −c
∂f0

∂ri

− 2c

5

∂fij

∂rj

− εijk

ceBj

p
fk , (11b)

∂fij

∂t
+ ∂(fijuk)

∂rk

= − c

2

(
∂fi

∂rj

+ ∂fj

∂ri

)
+ c

3
δij

∂fk

∂rk

− ceBk

p

(
εkilflj + εkjlfli

)
, (11c)

where quadratic-order terms in the velocity u have been neglected
and we have omitted terms involving ∂f /∂p times a gradient of u
apart from the term in equation (11a) for the evolution of f0. This
amounts to the neglect of second-order Fermi acceleration and the
acceleration resulting from shear motions in the background hydro-
dynamics. In our problem, these processes are small in comparison
with acceleration at the shock.

We have chosen to terminate the set of equations at equation
(11c) by setting fijk to zero. Additionally, we soften the termina-
tion of the tensor expansion by replacing the magnetic rotation in
equation (11c) by a damping term with a damping rate equal to the
magnetic gyration frequency. The logic of this approximation is that
random rotation of the stress tensor anisotropy leads to its damping.
A similar assumption underlies Bohm diffusion which replaces rota-
tion of fi by a damping rate, thereby terminating the tensor expansion
at fi, whereas we terminate it at fij. Our approximation makes intu-
itive sense, and we support it in Appendices D and E by examining
its effect on propagating modes and on the NRH instability.

The notation is simplified by introducing the vector gi related
to shear and vorticity (∇ × f 1) in CR motion to represent the off-
diagonal components of the stress tensor. The on-diagonal compo-
nents of fij (i = j) are accounted for by multiplying the −c∂f0/∂ri

term in equation (11b) by 9/5 to allow for the stress tensor contri-
bution to compressional waves and to allow freely streaming CRs
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to propagate at
√

3/5c instead of
√

1/3c, as shown in Appendix D.
The equations to be solved (their derivation is given in Appendix
C) are then

∂f0

∂t
+ ∂(f0ui)

∂ri

= − c

3

∂fi

∂ri

+ ∂ui

∂ri

1

3p2

∂(p3f0)

∂p
,

∂fi

∂t
+ ∂(fiuj )

∂rj

= −9

5
c
∂f0

∂ri

− 1

5
cεijk

∂gk

∂rj

− εijk

ceBj

p
fk ,

∂gi

∂t
+ ∂(giuj )

∂rj

= cεijk

∂fk

∂rj

− νBgi . (12)

Equivalently, expressed in vector notation,

∂f0

∂t
+ ∇ · (uf0) = − c

3
∇ · f 1 + ∇.u

3p2

∂(p3f0)

∂p
,

∂ f 1

∂t
+ ∇ · (uf 1) = −9c

5
∇f0 − c

5
∇ × g1 − � × f 1 ,

∂g1

∂t
+ ∇ · (ug1) = c∇ × f 1 − νB g1 , (13)

where � = ecB/p is the vector CR Larmor frequency and we take
νB = ecB/p. The presence of the curls of f 1 and g1 facilitates the
propagation of transverse modes in f 1 and g1 as needed for helical
motion along magnetic field lines or CR propagation at an angle to
the wavevector k.

The termination of the harmonic expansion at the stress tensor
makes the computation tractable with available resources. Appen-
dices D and E show that the truncated expansion provides an ade-
quate representation of the essential physics of CR propagation and
CR-driven instability.

5 TH E S I M U L AT I O N

A full 3D simulation with realistic parameters is not possible be-
cause of the large ratio of the largest distances (the CR precursor
scaleheight and the CR free-escape distance) to the smallest distance

(the shortest wavelength on which the NRH instability grows). The
correspondingly large ratio of the largest time-scale (the SNR ex-
pansion time) to the shortest time-scale (the shortest NRH growth
time) similarly makes substantial demands on computer resources.
The computational constraints are discussed in Appendix F.

We artificially increase the magnetic field and stretch other pa-
rameters in a favourable direction, choosing

ne = 0.1 cm−3 , us = 60 000 km s−1 ,

B0 = 47 μG , vA = 3 × 105 m s−1 , Tinject = 100 TeV , (14)

where Tinject is the energy at which CRs are injected at the shock.
The zeroth-order magnetic field is aligned along the shock normal.
The instability is seeded by imposing random fluctuations on the
magnetic field with a mean magnitude of 9 μG. CRs are injected at
the shock into the lowest momentum bin (width �p) according to
the rule

4πp2�p cp
∂f0

∂t
= −constant × ∇ · u min(ρ0u

2, U ) , (15)

where ρ0 is the density upstream of the shock and u is the local
background fluid velocity relative to the initially stationary upstream
plasma. U is the local thermal energy density. This prescription is
designed to inject a suitable energy density of CRs at the shock,
dependent on the choice of the constant, whilst avoiding a negative
value of U due to excessive transfer of energy to CRs from cold
plasma at the foot of the shock. The resulting CR current density
ahead of the shock is displayed in panel (e) of Figs 2 and 3. The
peak CR current density in the population freely escaping ahead of
the shock in Fig. 2 is

jCR = 1.1 × 10−14 A m−2 . (16)

This current density corresponds to η = 0.026, giving

γ −1
max = 2.3 × 106 s , cγ −1

max = 7 × 1014 m , (17)

Figure 2. 2D slices of a 3D simulation with peak values in brackets: electron density (9.7 cm−3), pressure (340 nPa), CR pressure (2.3 nPa), magnitude of
the magnetic field perpendicular to the shock normal (610 µG), CR current parallel to the shock normal (1.1 × 10−14 A m−2). t = 4.12 × 107 s (1.3 yr).
The dimensions of the computational box are 7.9 × 1015 m by 4.5 × 1013 m. The horizontal spatial scale, in the direction of the shock normal, is artificially
compressed by a factor of 24.
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Figure 3. 2D slices of a 3D simulation with peak values in brackets: electron density (6.9 cm−3), pressure (320 nPa), CR pressure (1.9 nPa), magnitude of
the magnetic field perpendicular to the shock normal (590 µG), CR current parallel to the shock normal (4.2 × 10−15 A m−2). t = 6.18 × 107 s (2.0 yr).
The dimensions of the computational box are 7.9 × 1015 m by 4.5 × 1013 m. The horizontal spatial scale, in the direction of the shock normal, is artificially
compressed by a factor of 24.

k−1
max = 7 × 1011 m , rg = 7 × 1013 m ,

rgkmax = 100 , MA = 200 . (18)

We use a spatial grid with �x = �y = �z = 1.4 × 1012 m. 10 cells
in momentum cover an energy range from 100 TeV to 1 PeV with
logarithmic spacing. There are 32 cells in each of x and y with
periodic boundary conditions. In contrast, 5676 cells are used in z

with reflective boundary conditions for the MHD part of the code
and for CRs at the right-hand boundary. CRs reaching the left-hand
boundary are disposed of on the assumption that they escape freely.
Correspondingly, the computational box extends 7.9 × 1015 m by
4.5 × 1013 m by 4.5 × 1013 m. The box-size in x and y is comparable
with the initial CR Larmor radius, but the Larmor radius contracts
significantly as the magnetic field is amplified. The cell-size is π−1

times the wavelength of the fastest growing mode, which is barely
sufficient to represent the initial growth of the instability, but the
characteristic scalelength of the instability increases rapidly as its
amplitude grows. These parameters are only marginally sufficient
to represent the physics, but, for example, a halving of the compu-
tational cell-size would increase the computational cost by a factor
of 16. The simulation in Fig. 3 was run for 6.2 × 107 s = 2 yr using
128 processors for 75 h on the SCARF-LEXICON cluster at the
UK Rutherford Appleton Laboratory. The MHD part of the code
is the same as that used by Lucek & Bell (2000) and Bell (2004).
The VFP part of the code that models the CR uses a second-order
Runge–Kutta scheme in configuration space, a donor-cell scheme
in magnitude of momentum, and the Boris algorithm for rotation in
momentum due to magnetic field as used in particle-in-cell codes
(Birdsall & Langdon 1985). The VFP equations are formulated in
tensor notation rather than in spherical harmonics, but the two for-
mulations are similar for the low-order expansion used here, and
their numerical solution is informed by experience with the KALOS

spherical harmonic code (Bell et al. 2006) where Runge–Kutta ad-
vection is found to be robust, sufficiently accurate, and a good fit to
the form of the equations. Numerical diffusion due to limited spatial

resolution is ameliorated by designing the simulation to initialize
the upstream background plasma at rest relative to the computa-
tional grid. The more usual approach of initiating the simulation
by setting the background plasma in motion towards a reflective
boundary would exacerbate the effect of numerical diffusion on
small structures during advection. Instead, a dense piston is ini-
tialized moving leftwards from the right-hand boundary, pushing a
shock before it into the stationary background plasma.

6 SI M U L AT I O N R E S U LT S I N 3 D

Results from the 3D simulation are presented in Figs 2 and 3 at t =
4.1 × 107 and 6.2 × 107 s, respectively. Note that the horizontal
spatial scales, in the direction of the shock normal, are artificially
compressed by a factor of 24. The actual aspect ratio of the compu-
tational box is 177:1. The plot of the background plasma density in
panel (a) shows the position of the dense plasma piston propagat-
ing leftwards and pushing the shock ahead of it. The high-pressure
region in panel (b) is due to plasma heating at the shock. The CR
pressure is plotted in panel (c). The maximum CR pressure occurs at
the shock. Panel (c) of Fig. 2 shows the CR population dividing into
a population freely propagating ahead of the shock and a population
confined by magnetic field (panel d) near the shock. CRs confined
near the shock continue to be accelerated. The banded structure in
the CR pressure ahead of the shock in panel (c) is exaggerated by
the colour coding. It represents only a variation of a few per cent in
the CR pressure and probably arises from a small oscillation in the
injection rate at the shock. Also, the horizontal spatial compression
of Fig. 2 distorts the aspect ratio of the bands.

The escaping CRs are an essential aspect of the process of
CR confinement by the self-generated magnetic field. They ex-
cite the instability and carry the escaping areal charge QCR =∫

jCRdt identified in equation (1) as necessary for substantial field
amplification. In Fig. 2, the escaping CRs are only just reaching
the left-hand side of the grid where the integral

∫
jCRdt is small and
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field amplification is negligible. In contrast, immediately in front of
the shock in Fig. 2

∫
jCRdt has reached the critical value needed for

strong field amplification causing the onset of CR confinement.
By the time of Fig. 3 most of the escaping population has passed

through the free-escape boundary at the left-hand end of the grid.
By this time, a large magnetic field in the upstream plasma has
switched off CR escape, creating an expanse of low CR density
between the confined and escaping CR populations. Panel (d) shows
that the magnetic field is amplified by an order of magnitude by the
escaping CRs over a large distance ahead of the shock.

The separation of CRs into escaping and confined populations
matches expectations from the argument in Section 3. The CR
charge per unit shock area in the escaping population is ∼1 ×
10−7 coulomb m−2 in Fig. 2 in good agreement with the estimate
of 1.3 × 10−7 coulomb m−2 from equation (1). Panels (e) in Figs 2
and 3 plot the CR current density ahead of the shock.

7 SI M U L ATI O N R E S U LT S I N 2 D

Fig. 4 follows the calculations of Figs 2 and 3 to later times with
the same parameters but in 2D instead of 3D to reduce the demand
on computer resources. The top row of plots in Fig. 4 is the 2D

equivalent of the 3D results in Fig. 2 at t = 4.1 × 107 s. The
dimensions of the spatial grid are the same as in Fig. 2 and the top
row of Fig. 4. In subsequent rows of Fig. 4, the spatial dimensions
normal to the shock are expanded by factors of 2, 3 and 4 such that
CRs travel the length of the grid in the respective times (t = 8.2 ×
107, 1.2 × 108 and 1.6 × 108 s).

In 3D at t = 4.1 × 107 s the dip in the CR density separating the
escaping and confined CRs has only recently formed as shown in
Fig. 2(c). At the same time in 2D (Fig. 4, top row), the separation
between the confined and escaping populations is relatively more
developed. Otherwise, the results are similar in 2D and 3D. The
reason for the slightly earlier development of CR confinement in
Fig. 4 is that magnetic structures can expand more freely in 2D. In
2D, magnetic structures expand in the ignored dimension without
running into stationary or counterpropagating plasma. Non-linear
development in 2D is therefore less inhibited and the magnetic field
grows more rapidly. The magnetic field in 2D reaches a steady value
similar to that found in the 3D calculation. The eventual limit on
the magnitude of the magnetic field may be set by magnetic tension
which operates equally in 2D and 3D.

Comparison of the CR distributions at different times in Fig. 4
shows that at early times (t = 4.1 × 107 s) only the low-energy
CRs are confined. At t = 8.2 × 107 s, CRs are confined at 100
and 167 TeV with the confinement beginning to occur at 278 TeV

Figure 4. 2D simulations. Plots of f0p3 at CR energies 100, 167, 278 and 464 TeV at times between 4.1 × 107 s (top row) and 16 × 107 s (bottom row), with
computational box lengths L proportional to t between 7.9 × 1015 and 3.2 × 1016 m chosen such that the CRs travel the length of the box during the simulation
time. The width of the computational box is 4.5 × 1013 m in each plot. The vertical axes are in dimensionless units with peak values given against the axis.
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and no evidence of the development of two separate populations
in the few CRs reaching 464 TeV. By t = 1.2 × 108 s a larger
number of CRs have reached 464 TeV with a local minimum in CR
density f0p3 evident at all energies up to 464 TeV in front of the
shock. By t = 1.2 × 108 s, CRs at 100 and 167 TeV are strongly
confined with a short precursor scaleheight ahead of the shock,
which is unsurprising since the Larmor radius of a 100 TeV proton
in a 700 μG magnetic field is 5 × 1012 m. By t = 1.6 × 108 s CRs
are confined at all energies up to 464 TeV.

At all four times in Fig. 4, the CR spectrum is much steeper than
the steady-state test particle spectrum (f0 ∝ p−4) because of CR loss
into the downstream plasma. Magnetic field amplification takes
place ahead of the shock and the downstream field only becomes
large when the shock overtakes the field amplified in the upstream.
Hence, at early times CRs escape downstream. This causes a reduc-
tion in the number of CRs accelerated to high energy at the shock,
thereby steepening the spectrum. Downstream confinement at the
shock improves at later times as shown by the downstream gradi-
ents in f0 at t = 1.2 × 108 and 1.6 × 108 s. However, unphysical
numerical relaxation of the spatially compressed downstream mag-
netic field due to limited spatial resolution may be playing a part in
allowing CRs to escape downstream.

There is slight evidence of pulsed acceleration as seen in the three
separate peaks in the 278 TeV CR density at t = 1.2 × 108 and 1.6 ×
108 s, but overall the CR profiles develop in an orderly manner.

8 A P P L I C ATI O N TO SN R s

Our simulations support the model developed in Section 3. Accord-
ing to our model, CRs are confined and accelerated if the electrical
charge of CRs escaping upstream of the shock reaches QCR =
10

√
ρ/μ0 coulomb m−2. We now apply this to spherical SNR

shocks. The CR current density at a radius R is jCR = ηρu3
s r

2/R2T

due to CRs accelerated to energy eT when the shock radius was r.
Since only the highest energy CRs escape upstream, we assume that
the CRs reaching the radius R are monoenergetic with energy eT.
T evolves as the shock expands. When the SNR shock reaches the
radius R, CRs are confined if∫ R

0

ηρ(r)u2
s (r)

T (r)
r2dr = 10R2

√
ρ(R)

μ0
. (19)

Differentiating this equation with respect to R and assuming a
power-law dependence of density on radius, ρ(R) = ρ0(R/R0)−m,

T (R) = η
√

μ0

5(4 − m)
u2

s R
√

ρ . (20)

Defining u7 = us/10 000 km s−1, Rpc = R/pc, η0.03 = η/0.03, ne =
ρ/2 × 10−21 kg cm−3 (such that ne is approximately the electron
density in cm−3), and taking m = 0 for expansion into a uniform
medium,

T = 230η0.03n
1/2
e u2

7Rpc TeV . (21)

A SNR with u7 = 0.6, ne = 1 and Rpc = 1.7, representative of Cas A,
would then accelerate CRs to ∼140 TeV. A SNR with u7 = 0.5,
ne = 0.1 and Rpc = 10, representative of SN1006, would accelerate
CRs to ∼180 TeV. These energies are a factor of 10 lower than the
energy of the knee. Abbasi et al. (2013) place the knee at 4–5 PeV,
although data from other experiments indicate a lower energy and
the turnover in the spectrum is not well defined as shown in their
fig. 15.

Our model places a considerable question mark over the ability
of the well-known historical SNRs to accelerate CRs to the knee.

Acceleration by SNRs such as Cas A and SN1006 fails to reach the
knee in our analysis because their expansion is already significantly
decelerated. Zirakashvili & Ptuskin (2008) also reach the conclusion
(their table 2) that the historical SNRs do not accelerate CRs beyond
100–200 TeV, but note that their parameter ηesc differs from our
parameter η by a factor of 2 (ηesc = 2η).

Initial expansion velocities of very young SNRs can reach
30 000 km s−1 (Manchester et al. 2002) or possibly higher for some
types of SNe (Chevalier & Fransson 2006). According to equa-
tion (21) expansion into a density of 1 cm−3 at 30 000 km s−1 for
16 yr to a shock radius of 0.5 pc accelerates CRs to ∼1 PeV. More-
over, the energy processed through the shock is comparable to that
for expansion to 1.5 pc at 6000 km s−1, thereby contributing a com-
parable CR energy content to the Galactic energy budget. A com-
plementary perspective on the same problem is obtained by express-
ing the maximum CR energy in terms of the mass M = 4πρR3/3
swept up by the shock and the characteristic energy of the blast
wave E = Mu2

s /2. If M� is the mass in units of a solar mass and
E44 is the energy in units of 1044 J, the maximum CR energy is

T = 0.5η0.03n
1/6
e E44 M−2/3

� PeV , (22)

which indicates that a typical SNR should be able to accelerate CRs
to ∼1 PeV and that the maximum CR energy is greater for the same
energy E given to a smaller mass M. The maximum CR energy
is nearly independent of density ne because a shock expands to a
larger radius in a low-density medium before deceleration (Hillas
2006).

In the self-similar Sedov phase, E is constant, M is proportion to
R3 and hence T ∝ R−2. The maximum CR energy decreases with
radius during the Sedov phase until magnetic field amplification
ceases, at which point our analysis in terms of the charge carried by
escaping CRs is inapplicable.

Equation (20) with m = 2 indicates that the highest CR energies
might be achieved by SNR shocks expanding into a dense circum-
stellar medium previously ejected as a wind from the SN progenitor.
ρR2 is independent of radius in a steady wind, in which case the CR
energy depends only on u2

s and η according to equation (20), thus
favouring CR acceleration in the very early stages of rapid expan-
sion as previously suggested by Völk & Biermann (1988) and Bell
& Lucek (2001). The maximum CR energy for a SNR expanding
into a wind carrying Ṁ5 × 10−5 M� yr−1 at a velocity of v4 ×
10 km s−1 is

T = 760η0.03u
2
7

√
Ṁ5

v4
TeV (23)

indicating that PeV energies are attainable. CRs may be accel-
erated to energies beyond the knee if the initial shock velocity
is ∼30 000 km s−1 and the shock expands into a particularly dense
wind or otherwise dense circumstellar medium.

The estimates made in this section are subject to considerable
numerical uncertainty. For example, our estimates for the efficiency
η ∼ 0.03 or the escaping charge QCR = 10

√
ρ/μ0 could be uncer-

tain by a factor of 2 or 3. However, the accumulated error in our
estimates would need to be a factor of 10 for the well-known histor-
ical SNR to account for acceleration to the knee. Our arguments are
not completely watertight but we tentatively conclude that accel-
eration to the knee takes place in younger relatively undecelerated
SNRs.
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9 TH E C R E N E R G Y S P E C T RU M

In this section, we discuss the energy spectrum of escaping CRs
integrated over the lifetime of the SNR. The energy T of escaping
CRs changes as the SNR evolves in radius and expansion velocity.
The integrated energy spectrum of CRs escaping into the ISM need
not be the same as the spectra of CRs at the shock during acceleration
or that of CRs carried downstream into the interior of the SNR.
Related analyses based on different models of CR escape can be
found in Caprioli et al. (2010a), Drury (2011), Ohira et al. (2010),
Ptuskin & Zirakashvili (2003) and Ptuskin et al. (2010).

We assume a power-law density gradient, ρ ∝ R−m, where m =
0 for a uniform circumstellar medium and m = 2 for a steady
pre-SN wind. We further assume that the shock velocity can be
approximated as a power law us ∝ R−q over a sufficiently large part
of the SNR’s evolution. In this approximation, us ∝ t−q/(1+q) and
R ∝ t1/(1+q). In the Sedov phase, q = 3/2. From equation (20), T ∝
R1−2q−m/2.

In a uniform circumstellar medium (m = 0), the energy T of
escaping CRs decreases during expansion if q > 1/2, which is
equivalent to us decreasing more rapidly than t−1/3. If a SNR ex-
pands into a steady pre-SN wind (m = 2), the maximum CR energy
always decreases with time, provided us decreases with time (q >

0) as expected.
Let

∫ ∞
T

E(T ) dT be the total energy given to CRs above an energy
T. By definition of η the CR energy flux escaping upstream is ηρu3

s ,
so

∫ ∞
T

E(T ) dT = ∫ R

0 η4πr2ρu2
s dr and

E = −dR

dT
η4πR2ρu2

s , (24)

where CRs with energy T escape when the shock radius is R. From
equation (20)

T

T0
=

(
R

R0

)1−2q−m/2

, where T0 = η
√

μ0

5(4 − m)
u2

0R0
√

ρ0 , (25)

and ρ0, u0 and T0 are the values of ρ, us and T at a reference radius
R = R0. Manipulating these equations gives

NCR = 4πηρ0u
2
0R

3
0

(2q − 1 + m/2)eT 2
0

(
T

T0

)−α

,

where α = 4q + 2

4q + m − 2
(26)

and NCR(T) = E/eT is the CR differential spectrum in energy. For
SNR expansion into a uniform medium, the CR spectral index is
αuniform = (2q + 1)/(2q − 1), and for expansion into a wind the
index is αwind = (2q + 1)/2q. During the Sedov phase, m = 0 and
q = 3/2, giving

αSedov = 2 (27)

although the analysis only applies while the magnetic field is being
amplified by the NRH instability. A slightly less rapid decrease
in shock velocity, us ∝ t−0.57 (q = 4/3), would reproduce the CR
spectral index (α ≈ 2.2) inferred for CRs at their source at energies
less than 1 PeV (Gaisser, Protheroe & Stanev 1998; Hillas 2005).
The spectral index of CRs escaping in the Sedov phase, αSedov = 2,
is the same as that for test particle acceleration at a strong shock.
There is no obvious reason why this should be so.

We emphasize that this discussion and the derived spectral index
α or αSedov applies only to CRs escaping upstream from the shock
during SNR expansion. A further population of lower energy CRs
is carried into the centre of the SNR where they reside until they
are released into the ISM when the SNR slows, disintegrates and

dissolves into its surroundings. These lower energy particles lose
energy adiabatically as the SNR expands but they can be expected
to contribute most of the Galactic population of low-energy CRs.

In Section 8, we suggested that acceleration beyond the knee
might result from high-velocity expansion into a dense circumstel-
lar medium. The CR population beyond 1 PeV is an uncertain mix
of protons and heavy ions. The overall spectral index of CRs re-
leased into the Galaxy by SNRs beyond 1 PeV can be approximated
as α ≈ 2.7 with further spectral steepening occurring during prop-
agation from the source to the Earth. This spectral index at source
is predicted by our analysis if q = 0.29 (us ∝ t−0.22) for expansion
into a steady wind. It would correspond to a reduction in the shock
velocity by a quite reasonable factor of 2.1 between t = 10 and
300 yr. Expansion into a uniform medium would require q = 1.09
(us ∝ t−0.52) equivalent to a reduction in shock velocity by a less
reasonable, but not impossible, factor of 5.9 between t = 10 and
300 yr. This supports the contention that acceleration to 10–100 PeV
may occur at a SNR shock expanding into a circumstellar wind.

1 0 M AG N E T I C FI E L D

The Hillas parameter ξusBR (shock velocity times magnetic field
times spatial scale) provides an estimate of the energy Tmax to which
CRs can be accelerated under various circumstances (Hillas 1984).
ξ is a numerical factor of order unity, probably lying in the range
between 1/8 and 3/8 depending upon the CR diffusion coefficient
(Lagage & Cesarsky 1983a,b; Bell 2012). Tmax =
4ξ8u7BµGRpc TeV, where ξ = ξ 8/8 (ξ 8 = 1 for ξ = 1/8).
Combining this with equation (21) gives an estimate of the
pre-shock magnetic field required to accelerate CRs to Tmax:

B ∼ 60η0.03ξ
−1
8 n1/2

e u7 μG. (28)

The post-shock field is approximately three times larger due to
compression at the shock. For our simulation parameters (ne =
0.1, u7 = 6), the estimated post-shock maximum magnetic field
is ∼400 μG which is consistent with a field of ∼600 μG seen in
panel (d) of Figs 2 and 3. This confirms that the magnetic field
in the simulation is amplified sufficiently to confine and accelerate
CRs and that diffusion in the CR precursor is approximately Bohm,
D ∼ rgc.

The above estimate of the magnetic field is derived on the basis
that the magnetic field must be sufficient to contain and accelerate
CRs to the energy estimated in equation (21). Continued growth
in the magnetic field would inhibit CR escape and remove the CR
current that drives the NRH instability. Part of the energy generated
by the NRH instability is stored in the kinetic energy of plasma
motions. These motions might continue to stretch magnetic field
lines and further increase the magnetic field after the CR current
becomes inhibited. Further release of CRs into the upstream plasma
would then be heavily restricted until the magnetic field relaxes to
a lower level. This might result in oscillation about a marginal state
defined by a balance between magnetic field amplification and CR
escape upstream. Weak evidence for periodic releases of CRs into
the upstream plasma can be found in the plot of the 278 TeV CR
density at 1.2 × 108 s in Fig. 4, but on the whole the system appears
to evolve without oscillation.

In planar geometry, escaping CRs are in principle capable of
generating magnetic field at an unlimited distance ahead of the
shock. In the spherical geometry of an expanding SNR, the CR
current decreases with distance ahead of the shock, jCR ∝ R−2, so
continuous CR escape is needed to amplify the magnetic field at
a general radius R before the shock reaches that point. Hence, the
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marginal balance between CR escape and magnetic field generation
is more likely in spherical than planar geometry.

The above discussion assumes that magnetic field growth and
CR acceleration are determined by the growth rate of the NRH in-
stability. However, it is possible that the instability might saturate
and stop growing before it reaches that given by equation (28). Bell
(2004, 2009) argue that tension in the field lines limits amplification
when ∇ × B ∼ μ0 jCR for magnetic field structured on the scale of
a CR Larmor radius. This implies a saturation magnetic energy den-
sity B2

sat/μ0 ∼ jCRT /c and predicts a saturated upstream magnetic
field

Bsat ∼ 160 η
1/2
0.03n

1/2
e u

3/2
7 μG (29)

with a further approximately three times increase at the shock. The
ratio of the magnetic field given by equation (28) to the saturated
magnetic field is

B

Bsat
∼ 0.4ξ−1

8 η
1/2
0.03u

−1/2
7 , (30)

which implies that tension in the magnetic field does not stop the
field growing to that given in equation (28). However, it would not
require magnetic field growth to overshoot that indicated by equa-
tion (28) by a large factor before the magnetic tension intervenes to
halt growth. According to equation (28) the magnetic energy den-
sity is proportional to ρu2

s , whereas the magnetic energy density
determined by saturation is proportional to ρu3

s . Observations of
SNRs slightly favour a dependence on ρu3

s , but the difference is too
close to be called (Vink 2006).

From equation (20) [T = 0.05ηu2
s R(ρμ0)1/2 for m = 0] and the

modified Hillas condition (T = usBR/8), the required post-shock
magnetic energy density is

B2

2μ0
∼ η2ρu2

s . (31)

For magnetic field structured on the scale of the Larmor radius of
the highest energy CR, we should assume η ∼ 0.03 as the fraction
of ρu2

s given to the highest energy CR in which case the post-shock
magnetic energy density would be ∼0.1 per cent of ρu2

s , allowing
for compression at the shock. Völk et al. (2005) find observationally
that the post-shock magnetic energy density is typically ∼3 per cent
of ρu2

s in the historical SNR. However, magnetic field will also be
amplified on the scale of the Larmor radii of low-energy as well
as high-energy CRs. The difference between ∼0.1 and ∼3 per cent
may be explained by integration over the magnetic structures on
scales varying by six orders of magnitude corresponding to the
difference between the Larmor radii of GeV and PeV protons. If
this is the case, most of the magnetic energy at the shock resides
at scalelengths too short to accelerate CRs to PeV energies. The
magnetic field inferred from X-ray synchrotron observations of a
SNR shock should not be inserted without adjustment into the Hillas
parameter to estimate the maximum CR energy.

Our analysis of CR escape leads to the result that the energy
density of the magnetic field confining the highest energy CR is
proportional to ρu2

s . Previous analyses of CR escape often start
from the assumption that the magnetic energy density is propor-
tional to ρu2

s and consequently they produce similar results for the
spectrum of escaping CRs. Comparable results for the CR spectrum
produced in the Sedov phase can be found in Caprioli et al. (2010a),
Drury (2011), Ohira et al. (2010), Ptuskin & Zirakashvili (2003)
and Ptuskin et al. (2010). For example, a T−2 energy spectrum
for escaping CRs in the Sedov phase has previously been derived

by Berezhko & Krymskii (1988), Ptuskin & Zirakashvili (2005),
Caprioli et al. (2010a) and Drury (2011).

1 1 C R E N E R G Y I N P U T TO TH E G A L A X Y

In our model, only the highest energy CRs escape upstream of the
shock. At any given time, more CR energy is carried away down-
stream into the SNR than escapes into the Galaxy. Efficient produc-
tion of Galactic CRs might therefore seem impossible. However,
the CR energy carried into the interior of the SNR is subsequently
recycled to drive the SNR expansion and is available to accelerate
further CRs at a later stage. The overall efficiency of the production
of Galactic CRs is demonstrated by integrating over the lifetime
of the SNR. Assuming a T−2 energy spectrum (α = 2, q = 3/2),
equation (26) can be integrated to deduce a total CR energy input
to the Galaxy:

Etotal = 3η

2

4πR3
0

3
ρ0u

2
0 ln

(
T2

T1

)
(32)

between energies T1 and T2 (∼1 GeV and ∼ 1 PeV, respectively). A
small value of η (∼0.03) is balanced by the factor ln (T2/T1) which
results from recycling CR energy carried into the interior of the
SNR.

It is occasionally remarked that CR acceleration by very young
SNRs during the first few years cannot inject sufficient energy into
the Galaxy to account for CRs at energies beyond the knee because
the SNR shock is small. However, if the CR spectrum connects
smoothly across the knee and the spectrum beyond the knee of es-
caping CRs matches observation as shown to be possible in Section
9, then it follows that the CR energy input is sufficient to match the
Galactic energy budget.

1 2 C O N C L U S I O N S

The central message of this paper is that CRs of a given energy
escape freely ahead of a shock until magnetic field amplification
takes place to inhibit propagation. The condition for propagation
inhibition is that a sufficient number of CRs must escape upstream
for the NRH instability to grow through ∼5–10 e-foldings at the
growth rate of the fastest growing mode. Since the instability is
driven by the CR current, the condition is that a CR electric charge
QCR ∼ 10

√
ρ/μ0 per unit area must escape through a spherical sur-

face surrounding the SNR to amplify the magnetic field and inhibit
CR escape through that surface. Since high-energy CRs carry less
charge than low-energy CRs for a fixed CR energy flux, the condi-
tion on QCR determines the energy of escaping CRs. We find that the
energy eT of escaping CRs is proportional to ηRu2

s
√

ρ as given by
equation (21). The energy eT varies during the evolution of the SNR
and determines the energy spectrum of CRs injected into the ISM
by the SNR. In our estimation, the historical SNRs (Cas A, Tycho,
Kepler, SN1006) are currently accelerating CRs to ∼100–200 TeV.
Acceleration to the knee at a few PeV takes place in SNRs at an ear-
lier stage of evolution when the shock velocity is ∼10 000 km s−1

or greater. This is an unsurprising conclusion since if the histori-
cal SNR were to accelerate CRs to the knee, we would be asking
why even higher energy CRs were not being produced by younger
SNRs. Observations by the planned Cherenkov Telescope Array
should be crucial in testing our conclusions (Hinton & Hofmann
2010; Aharonian 2012).

Acceleration beyond the knee may take place in very young SNRs
expanding at 20–30 000 km s−1 into a dense circumstellar pre-SN
wind.
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The spectral index of escaping CRs is consistent with the mea-
sured Galactic CR spectrum at energies less than 1 PeV. Beyond the
knee the proton spectral index is uncertain both theoretically and
observationally. The theoretical prediction depends on the rate at
which the SNR shock decelerates during its early expansion.

The magnetic field can be estimated from the Hillas parameter as
the field needed to accelerate CRs to the escape energy. The field
is close to, but slightly less than, the saturation field determined
by tension in the magnetic field. The predicted magnetic fields are
consistent with those observed in SNRs if allowance is made for
the large range of scalelengths, corresponding to the range of CR
Larmor radii, in the structure of the magnetic field.

The model is tested against numerical simulations. The
MHD/VFP code is 3D in space and 1D in CR momentum with
anisotropy included to second order. The computational parameters
are pushed to their limit to allow for a solution of this multiscale mul-
tidimensional problem, but the results support the analytic model. In
the simulation, CRs are seen to escape upstream with the electrical
charge predicted by theory and magnetic field is strongly amplified
to the predicted level.
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A P P E N D I X A : T H E VA L U E O F η

The CR electric current jCR drives the amplification of magnetic
field through the NRH instability. Throughout this paper, we express
jCR as a fraction of the CR current needed to carry the characteristic
energy flux ρu3

s : jCR = ηρu3
s /T , where T is the characteristic CR

energy in eV. In this appendix, we briefly explain why we choose
η ≈ 0.03 as our best estimate (see also Bell 2004).

In the absence of CR acceleration the thermal energy den-
sity downstream of a strong shock is 9ρu2

s /8 from the Rankine–
Hugoniot relations. Assuming that a third of this energy is given to
CRs as required for efficient CR production by SNRs, the down-
stream CR energy density is 3ρu2

s /8. From continuity across the
shock the CR energy density immediately ahead of the shock is

http://arxiv.org/abs/1301.3173
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also 3ρu2
s /8 and the CR energy flux relative to the upstream plasma

is 3ρu3
s /8. However, only the highest energy CRs escape upstream.

Lower energy CRs do not penetrate far upstream and they amplify
magnetic field on too small a scale to engage the escaping CRs.
Hence, the analysis in this paper depends on the current carried
only by high-energy CRs. For a T−2 CR energy spectrum extending
from Tmin ≈ 1 GeV to Tmax ≈ 1 PeV, the energy is spread equally
across each decade in energy with a fraction 1/ln (Tmax/Tmin) ≈
1/14 associated with any energy T. The energy flux carried by
CRs with energy T is then ∼3ρu3

s /8 ln(Tmax/Tmin) ∼ 0.03ρu3
s . The

energy flux carried by CRs streaming at velocity v with number
density nCR and energy eT is nCRveT = jCRT. Consequently, we
assume that jCR = ηρu3

s /T , where η ∼ 0.03.

A P P E N D I X B: TH E D E R I VAT I O N
O F E QUAT I O N ( 2 )

Equation (2) for the electric current jCR carried by escaping CRs
assumes (i) that CRs escape upstream in a small range of momenta
just above pmax; (ii) that any CRs reaching a momentum pmax or
higher freely stream ahead of the shock at a velocity much greater
than the shock velocity us; and (iii) that escape is predominantly
upstream. The electric current density is

jCR = e

∫ ∞

pmax

4π

3
f1cp

2 dp, (B1)

where f1pr/p is the anisotropic part of the distribution function
representing CR drift in the r direction. In a steady state on an ac-
celeration time-scale ∂f0/∂t can be neglected from equation (11a).
The second term ∂(f0ui)/∂ri can also be neglected since the CRs
are assumed to be freely streaming at energies above cpmax and
advection at the fluid velocity is small. In one spatial dimension r
equation (11a) then reduces to

− c

3

∂f1

∂r
+ ∂u

∂r

1

3p2

∂(p3f0)

∂p
= 0 (B2)

for energies above cpmax. Integrating in space across the shock and
in momentum from pmax upwards gives

jCR = e�u
4π

3
p3f0(pmax), (B3)

where �u is the change in velocity across the shock. Since �u =
3us/4 for a strong shock,

jCR = eπusp
3f0(pmax) (B4)

as in equation (2).

A P P E N D I X C : TH E D E R I VAT I O N
O F E QUAT I O N S (1 2 ) A N D ( 1 3 )

Here we show how equation (12) and its vector equivalent can be
derived from equations (11). For simplicity we omit terms repre-
senting advection at the fluid velocity and the effect of the magnetic
field. These can easily be inserted at the end of the derivation. The
difficult part is the replacement of the stress tensor fij by the vec-
tor gi. The most transparent way of presenting the derivation is to
write it out in terms of individual components in the x, y and z

directions. In the following, we present the derivation of the equa-
tion for ∂fx/∂t . The derivations of the equations for ∂fy/∂t and
∂fz/∂t follow the same pattern. In component form, the relevant

equations (11) are

∂f0

∂t
= − c

3

(
∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z

)
,

∂fx

∂t
= −c

∂f0

∂x
− 2c

5

(
∂fxx

∂x
+ ∂fxy

∂y
+ ∂fxz

∂z

)
,

∂fxx

∂t
= c

3

(
−2

∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z

)
,

∂fxy

∂t
= − c

2

(
∂fx

∂y
+ ∂fy

∂x

)
,

∂fxz

∂t
= − c

2

(
∂fx

∂z
+ ∂fz

∂x

)
. (C1)

Eliminating the components of the stress tensor between these equa-
tions gives

∂2fx

∂t2
+ 9c

5

∂

∂t

∂f0

∂x
= c2

5

(
∂2fx

∂x2
+ ∂2fx

∂y2
+ ∂2fx

∂z2

)

− c2

5

∂

∂x

(
∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z

)
(C2)

which is the x component of the vector equation

∂2 f 1

∂t2
+ 9c

5

∂(∇f0)

∂t
= − c2

5
∇ × (∇ × f 1) (C3)

and the same derivation holds for the y and z components of the
equation. This equation is second order in time differential. It can
be separated into two first-order equations:

∂ f 1

∂t
= −9c

5
∇f0 − c

5
∇ × g1,

∂g1

∂t
= c∇ × f 1. (C4)

These equations become equations (12) and (13) with the addition
of fluid advection, rotation of f 1 by the magnetic field, and damping
of the stress tensor at a rate νB as discussed above equation (12) in
Section 4.

Note the analogy of f 1 and g1 in the above equations with E and
B in Maxwell’s equations. In both cases, they support transverse
waves.

APPENDI X D : THE APPROX I MATE C R
EQUATI ONS: PROPAG ATI NG MODES

Here we demonstrate that the equations set out in Section 4 describe
the essential CR propagation modes for monenergetic CRs. For
simplicity we neglect the damping term (νB = 0). Propagating CR
solutions in a stationary background plasma can be found by setting
u = 0, ∂/∂ri → iki and ∂/∂t → −iω in equation (13):

ωf0 = c

3
klfl,

ωfi = 9c

5
kif0 + c

5
εijkkj gk − iεijk�jfk,

ωgm = −cεmpqkpfq. (D1)

The resulting dispersion relation is(
ω2 − 3c2k2

5

) {(
ω2 − c2k2

5

)2

− ω2�2

}

−2k2c2

5
ω2�2 sin2 θ = 0 , (D2)
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where θ is the angle between k and B. There are two independent
modes in the absence of magnetic field (� = 0). The mode propagat-
ing at

√
3/5c represents the motion of freely propagating CRs with

f 1 parallel to k. The mode propagating at
√

1/5c is the transverse
mode representing the motions of CRs with f 1 perpendicular to k.
The transverse mode propagates more slowly because CR velocities
are aligned preferentially away from the direction of propagation.

In the presence of a magnetic field, a longitudinal mode still prop-
agates parallel to B (θ = 0) at

√
3/5c representing free propagation

along field lines unaffected by the field. The transverse mode is rel-
atively unaffected by the magnetic field at wavelengths shorter than
a Larmor radius kc � �. At wavelengths longer than the Larmor ra-
dius, the transverse mode propagates more slowly as the transverse
CR current rotates rapidly in the magnetic field.

When mode propagation is directed across the magnetic field
(sin θ = 1), the wave frequency is given by

ω2 = �2

⎧⎨
⎩ 1

2
+ 2k2r2

g

5
±

√
1

4
+ k4r4

g

25
+ 2k2r2

g

5

⎫⎬
⎭ , (D3)

where rg is the CR Larmor radius. In the limit of wavelengths
smaller than the Larmor radius, the frequency converges to those
derived for the longitudinal and transverse waves in zero magnetic
field as expected. At long wavelengths (krg � 1), the frequency
converges to the Larmor frequency, representing CR rotation in the
magnetic field, without significant propagation.

This analysis of the dispersion relation indicates that equations
(13) for f0, f 1 and g1 provide an adequate representation of CR
propagation.

APP ENDIX E: THE APPROX IMATE C R
EQUATION S: THE NRH INSTABILITY

We now investigate whether the approximate treatment of CR ki-
netics in Section 4 is adequate to model the NRH instability. We
derive the dispersion relation for the NRH instability in a simple
case with the following assumptions. The CRs are monoenergetic
with momentum p. The zeroth-order CR current j0, the wavenum-
ber k and the zeroth-order magnetic field B0 are all parallel. The
background plasma is at rest to zeroth order, u0 = 0. The first-order
perturbations to the magnetic field B1, CR current j1 and plasma
velocity u1 are all perpendicular to the zeroth-order magnetic field
and the wavevector k. Since the modes are transverse, the plasma
density is unperturbed to first order: ρ1 = 0. The coupled linearized
forms of equations (7), (13) and the Maxwell equation for ∂B/∂t

are then

ρ
∂u1

∂t
= − j0 × B1 − j1 × B0 + 1

μ0
(B0 · ∇)B1 ,

∂B1

∂t
= (B0 · ∇)u1 ,

∂ j1

∂t
= − c

5
∇ × G1 − ec

p
B0 × j1 − ec

p
B1 × j0 ,

∂G1

∂t
= c∇ × j1 − νB G1 , (E1)

where G1 = (4π/3)ec
∫

p2 g1dp. For circular polarization any first-
order perturbation ξ 1 (B1, j1, G1 or u1) satisfies

∂ξ 1

∂t
= −ωn × ξ 1; (n · ∇)ξ 1 = kn × ξ 1 , (E2)

where n is a unit vector in the direction of B0, giving

− ρωu1 = −j0 B1 + B0 j1 + kB0

μ0
B1 ,

−ωB1 = kB0u1 ,

−ω j1 = − ck

5
n × G1 − ecB0

p
j1 + ecj0

p
B1 ,

−ωG1 = ckn × j1 + νB n × G1 . (E3)

As discussed in Section 4, we set the scattering frequency νB equal
to the CR Larmor frequency. For SNR conditions, the NRH growth
rate (∼�) is much less than the CR Larmor frequency, in which
case the dispersion relation simplifies to

ω2 ≈ k2v2
A − σ±�2

(
1 ± 5i

k2r2
g

)−1

, (E4)

where vA =
√

B2
0 /ρμ0 is the Alfvén speed, rg is the CR Larmor ra-

dius in the magnetic field B0 and � = √
kB0j0/ρ is the NRH growth

rate where it dominates in the range r−1
g � k � �/vA. σ± = ±1

according to the sense of the circular polarization as determined by
the sign of k.

For wavelengths much shorter than the Larmor radius (krg � 1)

ω2 = k2v2
A − σ±�2 (E5)

which represents a purely growing instability for wavenumbers less
than �/vA in the appropriate polarization σ± = 1. Tension in the
magnetic field correctly damps waves with wavenumbers greater
than �/vA (Bell 2004). The truncated tensor analysis is correct on
scales smaller than the Larmor radius because CR trajectories are
then relatively unaffected by perturbations in the magnetic field.
This is the important regime in which the rapidly growing NRH
instability amplifies the magnetic field.

At wavelengths longer than the Larmor radius (krg � 1), the
approximate tensor expansion gives

ω2 = k2v2
A ± i

k2r2
g

5
�2 . (E6)

In comparison the correct dispersion relation in this limit is ω2 =
k2v2

A − k2r2
g �2/5 for the resonant instability and ω2 = k2v2

A +
k2r2

g �2/5 for the non-resonant instability which in fact is stable
for monoenergetic CRs in this limit. The Alfvén term k2v2

A is neg-
ligible at long wavelengths so the tensor expansion gives a growing
mode with

ω = i ± 1√
10

(krg)� (E7)

in both resonant and non-resonant polarizations.
Fig. E1 compares the approximate tensor dispersion relation (top

row) with the correct dispersion relations of Bell (2004) (bottom
row) for both the resonant instability (σ± = −1) that dominates
for krg < 1 and the rapidly growing non-resonant NRH instabil-
ity (σ± = −1) that dominates for krg > 1. Crucially, the tensor
expansion accurately calculates the NRH growth rate in the range
r−1

g < k < �/vA. Outside this range, the growth rate is too small
for the instability to be effective. The tensor expansion reproduces
the growth of the resonant instability for krg < 1 although it in-
correctly produces weak growth of the non-resonant instability in
this regime. The crucial point for the simulation is that the tensor
expansion gives an accurate account of instability where the growth
rate is large.
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Figure E1. Dispersion relation for the resonant and non-resonant circular
polarizations as derived from the tensor expansion (top row) compared
with the dispersion relation derived by Bell (2004) for monoenergetic CRs
(bottom row). The growth rates in units of the CR Larmor frequency are
given by the full lines and the real frequencies by the dashed lines. Parameters
relevant to the historical SNR are assumed.

A P P E N D I X F: C O M P U TAT I O NA L
C O N S T R A I N T S

The simulation makes heavy demands on computational resources
because it models spatial scales encompassing the wavelength of
the fastest growing mode, the CR Larmor radius and the free prop-
agation of CRs ahead of the shock. It is three dimensional in con-
figuration space and models the CR distribution in momentum. The
spatial cell size �x must be small enough to allow the NRH in-
stability to grow from its initially small scale (�x < π/kmax) and
the time-step �t must be short enough to resolve CRs crossing one
computational cell (�t < �x/c). The simulation must be run for

a time τ at least 10 times the growth time of the fastest growing
mode τ = 10γ −1

max, and the length of the computational grid L|| in the
direction parallel to the shock normal must be large enough to allow
the CRs to escape upstream: L|| = 10cγ −1

max. Provided the boundary
conditions are periodic in the directions perpendicular to the shock
normal, they can be much smaller than L|| but they must be able to
accommodate a CR Larmor radius: L⊥ = rg. The number of com-
putational operations is proportional to Ncomp = τL||L2

⊥/(�t�x3),
which from definitions and equations presented above is of order

Ncomp ∼ η2M6
A

4
. (F1)

As discussed above, the NRH instability grows strongly in a
wavenumber range between r−1

g and kmax. Saturation due to mag-
netic tension occurs on scalelengths comparable to the CR Larmor
radius rg, sat when Bsat/rg, sat = μ0jCR as discussed in Section 10.
The ratio of the saturated field Bsat to the initial field B0 is Bsat/B0 =
(2rgkmax)1/2, where kmax and rg are defined in the initial field B0.
The equation for kmax can be found in Section 2, giving

Bsat/B0 ∼ MA

√
ηus

c
, (F2)

where the acceleration efficiency η is also defined in Section 2.
The Alfvén Mach number MA must be large to allow significant
amplification of the magnetic field (Bsat � B0). From equation (F1)
large MA imposes a heavy demand on computational resources, but
from equation (F2) the cost can be minimized by making the shock
velocity us a large fraction of the speed of light. We initiate the
simulation with an unrealistically large magnetic field of 47 μG to
reduce the Alfvén Mach number from its typical value of ∼1000
for shocks in young SNRs.
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